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ABSTRACT Membrane proteins are generally classified into the following five types: 1), type I membrane protein; 2), type II
membrane protein; 3), multipass transmembrane proteins; 4), lipid chain-anchored membrane proteins; and 5), GPI-anchored
membrane proteins. In this article, based on the concept of using the functional domain composition to define aprotein, theSupport
VectorMachine algorithm is developed for predicting themembrane protein type. High success rates are obtained by both the self-
consistency and jackknife tests. The current approach, complementedwith the powerful covariant discriminant algorithmbasedon
the pseudo-amino acid composition that has incorporated quasi-sequence-order effect as recently proposed byK.C.Chou (2001),
may become a very useful high-throughput tool in the area of bioinformatics and proteomics.

INTRODUCTION

A cell is enclosed by the plasma membrane (cell envelope).
Inside the cell there are various organelles such as the endo-
plasmic reticulum, Golgi apparatus, mitochondria, and other
membrane-bound organelles. Although the basic structure
of biological membranes is provided by the lipid bilayer,
most of the specific functions are carried out by themembrane
proteins. Membrane proteins consist of transmembrane pro-
teins and anchored membrane proteins. The transmembrane
proteins contain one or more transmembrane segments with
one or more hydrophobic segments to ensure stable associ-
ation with the hydrophobic interior of the membrane, and
hence are relatively easily discriminated from nonmembrane
proteins (Rost et al., 1995). The anchored membrane proteins
do not have the hydrophobic membrane spanning portions,
but they have a consensus sequence motif at either the N- or
C-terminus (Casey, 1995; Resh, 1994). Accordingly, mem-
brane proteins can be reliably distinguished by using exist-
ing methods, as elaborated by many previous investigators
(Chou and Elrod, 1999a; Reinhardt and Hubbard, 1998; Rost
et al., 1995). Membrane proteins are generally classified into
the following five types: 1), type I membrane protein; 2), type
II membrane protein; 3), multipass transmembrane proteins;
4), lipid chain-anchored membrane proteins; and 5), GPI-
anchored membrane proteins (Fig. 1). The way that a mem-
brane-bound protein is associated with the lipid bilayer
usually reflects the function of the protein. The trans-
membrane proteins, for example, can function on both sides
of membrane or transport molecules across it, whereas
proteins that function on only one side of the lipid bilayer
are often associated exclusively with either the lipid mono-
layer or a protein domain on that side.
Accordingly, it will certainly expedite the function de-

termination for new membrane proteins if a fast and effective
algorithm is available to predict their types. In a pioneer work,
Chou and Elrod introduced the covariant discriminant
algorithm (Chou and Elrod, 1999a) to predict the types of
membrane proteins based on the amino acid composition.
According to the conventional definition, the amino acid
composition of a protein consists of 20 components, rep-
resenting the occurrence frequency of each of its 20 native
amino acids (Chou, 1989; Nakashima et al., 1986). Ob-
viously, if using the conventional amino acid composition
as the representation for a protein, all the sequence-order and
sequence-length effects would be missed. To improve this
situation, a novel concept, the so-called pseudo-amino acid
composition, was proposed recently by Chou (2001). Based
on the concept, an elegant formulation was given that can
incorporate part of sequence effects or the quasi-sequence
order effect (Chou, 2000), remarkably improving the pre-
diction quality. Stimulated by the concept of pseudo-amino
acid composition, the present studywas initiated in an attempt
to incorporate the sequence-order effects by a different ap-
proach, the so-called functional domain composition.

PSEUDO-AMINO ACID COMPOSITION AND
FUNCTIONAL DOMAIN COMPOSITION

First of all, let us give a brief introduction about the pseudo-
amino acid composition. Instead of 20 discrete numbers as
defined in the conventional amino acid composition (Chou,
1989; Nakashima et al., 1986), the pseudo-amino acid com-
position consists of 20 1 l discrete numbers (Chou, 2001),
and hence a protein can be expressed as a vector in a (20 1
l)-D space, as given by
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where the first 20 components are the same as those in the
conventional amino acid composition and the components
p2011, . . . , p201l are related to l different ranks (Fig. 2) of
sequence-order correlation factors as formulated by the
following equation (Chou, 2002):
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In the above equation, L is the chain length of the protein
concerned, t1 is called the first-rank coupling factor that
harbors the sequence-order correlation between all the most
contiguous residues along a protein chain (Fig. 2 a), t2 the
second-rank coupling factor that harbors the sequence-order
correlation between all the second most contiguous resi-
dues (Fig. 2 b), t3 the third-rank coupling factor that harbors
the sequence-order correlation between all the third most
contiguous residues (Fig. 2 c), and so forth. The coupling
factor Ji,j in Eq. 2 is a function of amino acidsRi andRj, such
as the physicochemical distance (Schneider and Wrede,
1994) from Ri to Rj (Chou, 2000) or some combination of
several biochemical quantities related to Ri and Rj (Chou,
2001, 2002). As we can see from Fig. 2, the sequence-order
effect of a protein can be, to some extent, reflected through
a set of discrete numbers t1, t2, t3, . . . , tl, as defined by Eq.
2. Accordingly, the first 20 components of Eq. 1 reflect the
effect of the amino acid composition, while the components
from 201 1 to 201 l reflect the effect of sequence order. A
set of such 20 1 l components as formulated by Eqs. 1–2 is
called the pseudo-amino acid composition for protein P.
Using such a name is because it still has the main feature of
amino acid composition, but on the other hand, it contains
the information beyond the conventional amino acid com-
position. The pseudo-amino acid composition thus defined

has the following advantage: compared with the 210-D pair-
coupled amino acid composition (Chou, 1999) and the 400-D
first-order coupled amino acid composition (Liu and Chou,
1999) that contain the sequence-order effect only for a very
short range (i.e., within two adjacent amino acid residues
along a chain), the pseudo-amino acid composition incor-
porate much more sequence effects, i.e., those not only for
the short range but for the medium range and long range as
well, as reflected by a series of sequence-coupling factorswith
different tiers of correlation (see Fig. 2 and Eqs. 1–2).
Therefore, the prediction quality can be significantly im-
proved by using the pseudo-amino acid composition to rep-
resent a protein. The detailed formulation and application of
the pseudo-amino acid composition are given in two recent
articles (Chou, 2001, 2002).
Now, let us use a different approach to incorporate the

sequence-order effects. By searching 139,765 annotated pro-
tein sequences, Murvai and co-workers (Murvai et al., 2001)
have constructed a database called SBASE-A that contains
2005 sequences with well-known structural and functional
domain types. Based on the 2005 functional domains, a pro-
tein can be defined in a 2005-D space according to the fol-
lowing procedures.

1. Use BLASTP to compare a protein with each of the 2005
domain sequences in SBASE-A to find the high-scoring
segment pairs and the smallest sum probability. A de-
tailed description about this operation can be found in
Altschul (Altschul et al., 1990).

2. If the high-scoring segment pairs score &75 and smallest
sum probability\0.8 in comparing the protein sequence
with the ith domain sequence, then the ith component of
the protein in the 2005-D space is assigned 1; otherwise, 0.

3. The protein can thus be explicitly formulated as
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FIGURE 1 Schematic drawing showing the

following five types of membrane proteins: (a)
type I transmembrane, (b) type II transmem-

brane, (c) multipass transmembrane, (d) lipid-
chain anchored membrane, and (e) GPI-an-

chored membrane. As shown from the figure,

although both type I and type II membrane

proteins are of single-pass transmembrane, type
I has a cytoplasmic C-terminus and an extra-

cellular or luminal N-terminus for plasma

membrane or organelle membrane, respectively, while the arrangement of N- and C-termini in type II membrane proteins is the reverse. No such distinction
was drawn between the extracellular (or luminal) and cytoplasmic sides for the other three types in the current classification scheme. Reproduced from Chou

(2001) with permission.
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where

pi ¼
1; whenHSP score & 75 and SSP\0:8

:
0; otherwise

(

(4)

Thus, a protein is corresponding to a 2005-D vector by using
each of the 2005 functional domain sequences as a base; i.e.,
rather than the 20-D space (Chou, 1995; Nakashima et al.,
1986) in terms of the amino acid composition or the (20 1
l)-D space of the pseudo-amino acid composition (Chou,
2001), a protein is defined in terms of the functional domain
composition. By using such a representation, not only some
sequence-order effects but also some functional information
are included. In other words, the representation thus obtained
for a protein would bear some sequence-order mark as well
as the structural and functional type mark. Since the function
of a membrane protein is closely related to its type, the
prediction algorithm established based on the new represen-
tation would naturally incorporate those factors that might be
directly correlated with the membrane protein type.

SUPPORT VECTOR MACHINES

Support vector machines (SVMs) are a kind of learning
machine based on statistical learning theory. The most re-
markable characteristics of SVMs are the absence of local
minima, the sparseness of the solution, and the use of the
kernel-induced feature spaces. The basic idea of applying
SVMs to pattern classification can be outlined as follows.
First, map the input vectors into a feature space (possible
with a higher dimension), either linearly or nonlinearly,
which is relevant to the selection of the kernel function.
Then, within the feature space, seek an optimized linear
division; i.e., construct a hyper-plane which can separate two
classes (this can be extended to multiclasses) with the least
errors and maximal margin. The SVMs training process
always seeks a global optimized solution and avoids over-
fitting, so it has the ability to deal with a large number of
features. A complete description to the theory of SVMs for
pattern recognition is given in the book by Vapnik (1998).

SVMs have been used to deal with protein fold recogni-
tion (Ding and Dubchak, 2001), protein-protein interactions
prediction (Bock and Gough, 2001), and protein secondary
structure prediction (Hua and Sun, 2001).
In this article, the Vapnik’s Support Vector Machine

(Vapnik 1995) was introduced to predict the types of mem-
brane proteins. Specifically, the SVMlight, which is an imple-
mentation (inCLanguage) ofSVMfor the problemsof pattern
recognition, was used for computations. The optimization
algorithm used in SVMlight can be found in Joachims
(1999). The relevant mathematical principles can be briefly
formulated as follows. Given a set ofN samples, i.e., a series
of input vectors

Pk 2 <d ðk ¼ 1; . . . ; NÞ; (5)

where Pk can be regarded as the kth protein or vector defined
in the 2005-D space according to the functional domain
composition, and <d is a Euclidean space with d dimensions.
Since themulticlass identification problem can always be con-
verted into a two-class identification problem, without loss of
the generality the formulation below is given for the two-
class case only. Suppose the output derived from the learning
machine is expressed by hk 2 f11;"1g (k ¼ 1, . . . , N),
where the indexes "1 and 11 are used to stand for the two
classes concerned, respectively. The goal here is to construct
one binary classifier or derive one decision function from
the available samples that has a small probability of mis-
classifying a future sample. Here, both the basic linear sepa-
rable case, and the most useful linear nonseparable case for
most real life problems, are taken into consideration.

The linear separable case

In this case, there exists a separating hyper-plane whose
function is W3P1 b ¼ 0, which implies:

hkðW3Pk1bÞ$ 1; ðk ¼ 1; . . . ; NÞ: (6)

By minimizing 1/2kWk2 subject to the above constraint, the
SVM approach will find a unique separating hyper-plane.

FIGURE 2 A schematic drawing to show (a) the first

rank, (b) the second rank, and (c) the third-rank sequence-
order correlation mode along a protein sequence. (a)
Reflects the correlation mode between all the most

contiguous residues, (b) that between all the secondmost
contiguous residues, and (c) that between all the thirdmost

contiguous residues.
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Here kWk2 is the Euclidean norm ofW, which maximizes the
distance between the hyper-plane, or the optimal separating
hyper-plane (Cortes and Vapnik, 1995), and the nearest data
points of each class. The classifier thus obtained is called the
maximal margin classifier. By introducing Lagrange multi-
pliers ai, and using the Karush-Kuhn-Tucker conditions
(Cristianini and Shawe-Taylor, 2000; Karush, 1939) as well
as the Wolfe dual theorem of optimization theory (Wolfe,
1961), the SVM training procedure amounts to solving the
following convex quadratic programming problem,

Max: +
N

i¼1

ai "
1

2
+
N

i¼1

+
N

j¼1

aiajhihjPi 3Pj; (7)

subject to the following two conditions:

ai $ 0; ði ¼ 1; 2; . . . ; NÞ (8)

+
N

i¼1

aihi ¼ 0: (9)

The solution is a unique globally optimized result, which can
be expressed with the following expansion:

W ¼ +
N

i¼1

hiaiPi: (10)

Only if the corresponding ai[0 are these Pi called the
support vectors. Now suppose P is a query protein defined in
the same 2005-D space based on the functional domain
composition. After the SVM has been trained, the decision
function for identifying which class the query protein be-
longs to can be formulated as:

f ðPÞ ¼ sgn +
N

i¼1

hiaiP3Pi 1 b

! "
; (11)

where sgn( ) in the above equation is a sign function, which
equals to 11 or "1 when its argument is $0 or #0,
respectively.

The linear nonseparable case

For this case, two important techniques are needed that are
given below respectively.

The ‘‘soft margin’’ technique

To allow for training errors, Cortes and Vapnik (1995)
introduced the slack variables

ji[0 ði ¼ 1; . . . ; NÞ; (12)

and the relaxed separation constraint given by

hiðW3Pi 1 bÞ$ 1" ji; ði ¼ 1; . . . ; NÞ: (13)

The optimal separating hyper-plane can be found by
minimizing

1

2
kWk2 1 c+

N

i¼1

ji; (14)

where c is a regularization parameter used to decide a tradeoff
between the training error and the margin.

The kernel substitution technique

The SVM performs a nonlinear mapping of the input vectors
from the Euclidean space <d into a higher dimensional
Hilbert space H, where the mapping is determined by the
kernel function. Then like in the linear separable case, it finds
the optimal separating hyper-plane in the Hilbert space H
that would correspond to a nonlinear boundary in the original
Euclidean space. Two typical kernel functions are listed
below:

KðPi;PjÞ ¼ ðPi 3Pj 1 1Þd and (15)

KðPi;PjÞ ¼ expð"rkPi " Pjk2Þ; (16)

where the first one is called the polynomial kernel function
of degree dwhich will eventually revert to the linear function
when d ¼ 1, and the second one is called the Radial Basic
Function kernel. Finally, for the selected kernel function, the
learning task amounts to solving the following quadratic
programming problem:

Max: +
N

i¼1

ai "
1

2
+
N

i¼1

+
N

i¼1

aiajhihjKðPi 3PjÞ; (17)

subject to:

0# ai # c; ði ¼ 1; 2; . . . ; NÞ and (18)

+
N

i¼1

aihi ¼ 0: (19)

Accordingly, the form of the decision function is given by

f ðPÞ ¼ sgn +
N

i¼1

hiaiKðP;PiÞ1 b

! "
: (20)

For a given data set, only the kernel function and
the regularity parameter c must be selected to specify the
SVM.

RESULTS AND DISCUSSION

The same data set constructed by Chou and Elrod (1999a)
was used to demonstrate the current method. The data set
contains 2059 membrane protein sequences, of which 435
are type I transmembrane proteins, 152 type II transmem-
brane proteins, 1311 multipass transmembrane proteins, 51
lipid-chain anchored membrane proteins, and 110 GPI an-
chored membrane proteins (Fig. 1). The names of the 2059
membrane proteins, classified into five groups, were given in
Table 1 of Chou and Elrod (1999a).

3260 Cai et al.

Biophysical Journal 84(5) 3257–3263



During the operation, the width of the Gaussian Radial
Basic Functions was selected for minimizing the estimation
of the VC-dimension (Vapnik-Chervonenkis-dimension
(1998). The parameter C that controlled the error-margin
tradeoff was set at 1000. After being trained, the hyper-plane
output by the SVM was obtained. This indicates that the
trained model, i.e., hyper-plane output which is including the
important information, has the function to identify the
membrane protein types.
The demonstration was conducted by three different

approaches, the resubstitution test, jackknife test, and inde-
pendent data set test, as reported below.

Resubstitution test

The so-called resubstitution test is an examination for
the self-consistency of an identification method. When the
resubstitution test is performed for the current study, the
type of each membrane protein in a data set is, in turn,
identified using the rule parameters derived from the same
data set, the so-called training data set. The success rate thus
obtained for the 2059 membrane proteins is summarized in
Table 1, from which we can see that the overall success rate
is 93.9%, indicating that after being trained, the SVMs model
has grasped the complicated relationship between the func-
tional domain composition and the types of membrane pro-
teins. However, during the process of the resubstitution test,
the rule parameters derived from the training data set in-
clude the information of the query protein later plugged
back in the test. This will certainly underestimate the error
and enhance the success rate because the same proteins are
used to derive the rule parameters and to test themselves.
Accordingly, the success rate thus obtained represents some
sort of optimistic estimation (Cai, 2001; Chou, 1995; Chou
and Elrod, 1999b; Zhou and Assa-Munt, 2001). Neverthe-
less, the resubstitution test is absolutely necessary because it
reflects the self-consistency of an identification method, esp-
ecially for its algorithm part. An identification algorithm
certainly cannot be deemed as a good one if its self-consist-

ency is poor. In other words, the resubstitution test is
necessary but not sufficient for evaluating an identification
method. As a complement, a cross-validation test for an
independent testing data set is needed because it can reflect
the effectiveness of an identification method in practical
application. This is especially important for checking the
validity of a training database to determinewhether it contains
sufficient information to reflect all the important features
concerned so as to yield a high success rate in application.

Jackknife test

As is well known, the independent data set test, subsampling
test, and jackknife test are the three methods often used for
cross-validation in statistical prediction. Among these three,
however, the jackknife test is deemed as the most effective
and objective one; see, for example, Chou and Zhang (1995)
for a comprehensive discussion about this, and Mardia et al.
(1979) for the mathematical principle. During jackknifing,
each membrane protein in the data set is in turn singled out as
a tested protein and all the rule parameters are calculated
based on the remaining proteins. In other words, the type of
each membrane protein is identified by the rule parameters
derived using all the other membrane proteins except the one
which is being identified. During the process of jackknifing
both the training data set and testing data set are actually
open, and a protein will in turn move from one to the other.
The results of jackknife test thus obtained for the 2059
membrane proteins are also given in Table 1.

Independent data set test

Moreover, as a demonstration of practical application, predic-
tions were also conducted for the 2625 independent mem-
brane proteins based on the rule parameters derived from the
2059 proteins in the training data set. The 2625 independent
proteins were also taken from Chou and Elrod (1999a), of
which 478 are type I transmembrane proteins, 180 type II
transmembrane proteins, 1867multipass transmembrane pro-

TABLE 1 Overall rates of correct prediction for the five membrane protein types by different algorithms and test methods

Algorithm Input form

Test method

self-consistency* Jackknife* Independent data sety

Least Hamming distance
(Chou, 1980)

Amino acid composition 1293/2059 ¼ 62.8% 1279/2059 ¼ 62.1% 1751/2625 ¼ 66.7%

Least Euclidean distance

(Nakashima et al., 1986)

Amino acid composition 1307/2059 ¼ 63.5% 1293/2059 ¼ 62.8% 1816/2625 ¼ 69.2%

ProtLock (Cedano et al.,
1997)

Amino acid composition 1372/2059 ¼ 66.6% 1348/2059 ¼ 65.5% 1674/2625 ¼ 63.8%

Covariant discriminant

(Chou and Elrod, 1999a)

Amino acid composition 1670/2059 ¼ 81.1% 1573/2059 ¼ 76.4% 2085/2625 ¼ 79.4%

Augmented covariant

discriminant (Chou, 2000)

Pseudo-amino acid composition

(Chou, 2001)

1872/2059 ¼ 90.9% 1665/2059 ¼ 80.0% 2298/2625 ¼ 87.5%

Support vector machines Functional domain composition 1934/2059 ¼ 93.9% 1776/2059 ¼ 86.3% 1773/2625 ¼ 67.5%

*Conducted for the 2059 membrane proteins classified into five different types as described in the text and Fig. 1.
yConducted based on the rule parameters derived from the 2059 membrane proteins for the 2625 independent membrane proteins (see text).
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teins, 14 lipid-chain anchoredmembrane proteins, and 86GPI
anchored membrane proteins. The predicted results thus ob-
tained are also given in Table 1.
From Table 1 the following can be observed. 1), The

success prediction rates, by both the functional domain
composition approach and the pseudo-amino acid composi-
tion approach, are significantly than those by the other
approaches. This is fully consistent with what is expected
because both these two approaches bear some sequence-order
effects, although by means of different avenues. 2), A
comparison between the functional domain composition
approach and the pseudo-amino acid composition approach
indicates that the success rates by the former are ;3–6%
higher than those by the latter in the self-consistency test and
jackknife test, indicating the current functional domain
composition approach is very promising with a high potential
for further development. However, it had a remarkable
setback in predicting the 2065 independent proteins: the
success rate is 20% lower that that by the pseudo-amino acid
composition approach. The setbackmight be due to the reason
that the functional domain database used in the current study
is far from a complete one yet. Accordingly, many of the 2065
independent proteins cannot be effectively defined based on
the current limited functional domain database. It is
anticipated that with the continuous improvement of the
functional domain database, the setback would be naturally
overcome. 3), The goal of this study is not to determine the
possible upper limit of the success rate for membrane protein
type predictions, but to propose a novel and different
approach to incorporate the sequence-order effect because
this is both vitally important and a notoriously difficult task in
this area, and so far only the pseudo-amino acid composition
approach (Chou, 2001) has been proved really useful, widely
applied in various sequence-based (both protein and DNA)
prediction projects. Also, it is too premature to construct
a complete or quasi-complete training data set based on the
protein sequences available so far. Without a complete or
quasi-complete training data set, any attempt to determine
such an upper limit would be unjustified, and the result thus
obtained might be misleading no matter how powerful the
prediction algorithm is.

CONCLUSION

The above results, together with those obtained by the
covariant discriminant prediction algorithm (Chou, 2001;
Chou and Elrod, 1999a), have indicated that the types of
membrane proteins are predictable with a considerable accu-
racy. The development in statistical prediction of protein
attributes generally consists of two aspects: constructing
a training data set and formulating a prediction algorithm. The
latter also consists of two aspects; i.e., how to define a protein
and how to operate the prediction. The process in expressing
a protein from the 20-D amino acid composition space (Chou,
1995, 1980, 1989; Nakashima et al., 1986), to the (201 l)-D

pseudo-amino acid composition space (Chou, 2001), and to
the current 2005-D functional domain composition space
reflects the development in defining a protein. The process in
introducing the simple geometry distance algorithm (Chou,
1980; 1989; Nakashima et al., 1986), the Mahalanobis dis-
tance algorithm (Cedano et al., 1997; Chou, 1995; Chou and
Zhang, 1994), the covariant discriminant algorithm (Chou
and Elrod 1999a,b; Chou et al., 1998; Liu and Chou, 1998;
Zhou, 1998), and the current SVM algorithm reflects the
development in operating algorithms. The pseudo-amino acid
composition and the functional domain composition each
have their own advantages. For some cases, the functional
domain composition yields better results than the pseudo-
amino acid composition; but for some other cases, the out-
come may be the reverse. This is exactly the same in the
comparison of the covariant discriminant algorithm with the
SVM algorithm. Therefore, when we are still in the situation
of lacking a complete training data set and functional domain
database, it would be wise to complement the covariant dis-
criminant algorithm, based on the pseudo-amino acid com-
position, with the SVM algorithm, based on the functional
domain composition, for conducting practical predictions.
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