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Support Vector Machines for Prediction of Protein Domain Structural Class
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The support vector machines (SVMs) method was introduced for predicting the structural
class of protein domains. The results obtained through the self-consistency test, jack-knife
test, and independent dataset test have indicated that the current method and the elegant
component-coupled algorithm developed by Chou and co-workers, if effectively comple-
mented with each other, may become a powerful tool for predicting the structural class of
protein domains.
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1. Introduction

Protein domains can be classified into one of the
following seven classes: all-a; all-b; a=b; aþ b;
multi-domain, small protein and peptide (Chou
& Maggiora, 1998). The structural class of a
protein domain is correlated with its amino acid
composition. However, given the amino acid
composition of a protein domain, how may one
predict its structural class? Various efforts have
been made in addressing this problem (Bahar
et al., 1997; Cai et al., 2000; Chou, 1995; Chou
et al., 1998; Chou & Maggiora, 1998; Chou &
Zhang, 1994, 1995; Zhou, 1998).

We applied Vapnik’s support vector machine
(SVM) (Vapnik, 1995) to this problem. In this
work, SVM was performed according to the
database derived from SCOP (Murzin et al.,
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1995), which was established based on domains
of known structure and the evolutionary rela-
tionships, and the principles that govern their
3-D structure. As a result, high success rates in
both the self-consistency test and jack-knife test
were obtained. This indicates that the structural
class of protein domain is considerably corre-
lated with its amino acid composition, and the
SVM may become a powerful tool for predicting
the structural classes of protein domains.

2. Support Vector Machine

SVMs are kinds of learning machines based
on statistical learning theory. The basic idea of
applying SVMs to pattern classification can be
stated briefly as follows. First, map the input
vectors into one feature space (possible with a
higher dimension), either linearly or nonlinearly,
which is relevant with the selection of the kernel
function. Then, within the feature space from the
first step, seek an optimized linear division; i.e.
r 2002 Elsevier Science Ltd. All rights reserved.
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construct a hyperplane which separates two
classes (this can be extended to multi-classes).
The SVM training process always seeks a global
optimized solution and avoids over-fitting, so it
has the ability to deal with a large number of
features. A complete description to the theory of
SVMs for pattern recognition is given in the
book by Vapnik (1998).

SVMs have been used in a range of problems
including drug design (Burbidge et al., 2000),
image recognition and text classification
(Joachims, 1998).

In this paper, we applied Vapnik’s SVM
(Vapnik, 1998) for predicting the structural
classes of protein domains. We downloaded the
SVMlight from the website at http://svmlight.-
joachims.org. The SVMlight program is an
implementation (in C language) of SVM for
the problem of pattern recognition. The optimi-
zation algorithm used in SVMlight can be found
in Joachims (1999a, b). The code has been used
in text classification, image recognition (Joa-
chims, 1998).

Suppose we are given a set of samples, i.e. a
series of input vectors

xiARd ði ¼ 1;y;NÞ

with corresponding labels yiAfþ1;�1g ði ¼
1;y;NÞ; where �1 and +1 are used to stand,
respectively, for the two classes. The goal here is
to construct one binary classifier or derive one
decision function from the available samples,
which has small probability of misclassifying a
future sample. Both the basic linear separable
case and the most useful linear non-separable
case for most real-life problems are considered
here:

2.1. THE LINEAR SEPARABLE CASE

In this case, there exists a separating hyper-
plane whose function is ~WW 	 X

,
þb ¼ 0; which

implies

yið ~WW 	 ~xxi þ bÞX1; i ¼ 1;y;N:

By minimizing 1
2
jj ~WW jj2 subject to this constraint,

the SVM approach tries to find a unique
separating hyperplane. Here jj~wwjj2 is the Eucli-
dean norm of ~ww; which maximizes the distance
between the hyperplane [optimal separating
hyperplane or OSH in (Cortes & Vapnik, 1995)]
and the nearest data points of each class. The
classifier is called the largest margin classifier.

By introducing Lagrange multipliers ai; using
the Karush–Kuhn–Tucker (KKT) conditions
and the Wolfe dual theorem of optimization
theory, the SVM training procedure amounts to
solving the following convex QP problem:

Maximize
Xn

i¼1

ai �
1

2

Xn

i¼1

Xn

j¼1

aiaj

	 yiyj 	 ~xxi 	 ~xxj

subject to aiX0;

XN

i¼1

aiyi ¼ 0; i ¼ 1;y;N:

The solution is a unique globally optimized
result and can be shown to have the following
expansion:

~WW ¼
XN

i¼1

yiai 	 ~xxi:

Only if the corresponding ai40; these ~xxi are
called Support Vectors.

When an SVM is trained, the decision func-
tion can be written as

f ð~xxÞ ¼ sgn
XN

i¼1

yiai 	 ~xx 	 x
,

i þ b

 !
;

where sgnð Þ in the above formula is the given
sign function.

2.2. THE LINEAR NON-SEPARABLE CASE

Two important techniques needed for this case
are given below.

(i) The ‘‘soft margin’’ technique: In order to
allow for training errors, Cortes & Vapnik,
(1995) introduced slack variables:

xi40; i ¼ 1;y;N:

And relaxed separation constraint is given as

yið %w 	 ~xxi þ bÞX1� xi ði ¼ 1;y;NÞ:
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And the OSH can be found by minimizing

1

2
jj ~WW jj2 þ C

XN

i¼1

xi

instead of 1
2
jj ~WW jj2 for the above two constraints

in Section 2.1, where C is a regularization
parameter used to decide a trade-off between
the training error and the margin.

(ii) The ‘‘kernel substitution’’ technique: SVM
performs a nonlinear mapping of the input
vector %x from the input space Rd into a higher
dimensional Hilbert space, where the mapping
is determined by the kernel function. Then like
in case (i), it finds the OSH in the space H

corresponding to a nonlinear boundary in the
input space. Two typical kernel functions are
listed below:

Kð~xxi; ~xxjÞ ¼ ð~xxi 	 ~xxj þ 1Þd ;

Kð~xxi; ~xxjÞ ¼ expð�rjj~xxi � ~xxj jj2Þ;

where the first one is called the polynomial kernel

function of degree d which will eventually revert
to the linear function when d ¼ 1; the latter one
is called the radial basic function (RBF) kernel.

Finally, for the selected kernel function, the
learning task amounts to solving the following
QP problem:

Maximize
XN

i¼1

ai �
1

2

XN

i¼1

XN

j¼1

aiaj

	 yiyj 	 Kð~xxi 	 ~xxjÞ

subject to 0paipC;

XN

i¼1

aiyi ¼ 0; i ¼ 1;y;N:

And the form of the decision function is

f ð~xxÞ ¼ sgn
XN

i¼1

yiai 	 Kð~xx; ~xxiÞ þ b

 !
:

For a given dataset, only the kernel function and
the regularity parameter C must be selected to
specify one SVM.
3. The Training and Prediction of Structural
Class of Protein domain

Following the procedures and rationale given
by Chou & Maggiora (1998), the protein
domains to be considered fall into one of the
following seven classes: (1) all-a; (2) all-b; (3)
a=b; (4) aþ b; (5) multi-domain, (6) small
protein, (7) peptide. For brevity in formulation,
we shall use m;s and r to represent multi-
domain, small-domain and peptide classes,
respectively, as done by Chou & Maggiora
(1998).

According to its amino acid composition, a
protein domain can be represented by a point
or a vector in a 20-D space (Chou, 1995). The
amino acid composition is taken as the input of
the SVM.

The computations were carried out on a
Silicon Graphics IRIS Indigo workstation (Elan
4000).

In this research, for the SVM, the width of the
Gaussian RBFs is selected as that which mini-
mized an estimate of the VC-dimension. The
parameter C that controls the error-margin
trade-off is set at 100. After being trained, the
hyperplane output by the SVM was obtained.
This indicates that the trained model, i.e. hyper-
plane output which is including the important
information, has the function to identify struc-
tural classes of protein domain.

We first tested the self-consistency of the
method, then tested it by cross-validation
( jack-knife approach), and finally as a demon-
stration, we tested the prediction quality by an
independent dataset. All the results thus ob-
tained have shown that the success rates are
quite high.

4. Results and Discussion

4.1. SUCCESS RATE OF SELF-CONSISTENCY TEST

In this research, the examination for the
self-consistency of the SVMs methods was tested
for the following four datasets from Chou &
Maggiora (1998): (1) 138 domains (36 all-a
domains, 29 all-b domains, 32 a=b domains,
41 aþ b domains); (2) 253 domains (63 all-a
domains, 58 all-b domains, 61 a=b domains,
71 aþ b domains); (3) 359 domains (82 all-a
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domains, 85 all-b domains, 99 a=b domains,
93aþ b domains); (4) 1601 domains (273 all-a
domains, 461 all-b domains, 332a=b domains,
297aþ b domains, 31 m domains, 168 s domains,
39 r domains). As a result, the overall success
rates reach 100, 100, and 93% for the datasets of
138, 253, and 359 domains, respectively, indicat-
ing that after being trained, the SVMs have
grasped the complicated relationship between
the amino acid composition and protein domain
structure. The corresponding rates as reported in
Chou & Maggiora (1998) are 98, 95, and 94%,
respectively. For the dataset of 1601 domains,
the overall success rate by the SVM method was
87%. However, no self-consistency test result
was reported by Chou & Maggiora (1998) for
the same dataset.

4.2. SUCCESS RATE OF JACK-KNIFE TEST

We test cross-validation ( jack-knife test) to
the SVMs method. The jack-knife test is also
called leave-one-out test, in which each domain
in the dataset is in turn singled out as a tested
domain and all the rule parameters are calcu-
lated without using this domain. In other words,
the structural class of each domain is predicted
by the rule derived using all other domains
except the one that is being predicted. During the
process of jack-knife analysis, both the training
Tabl

Predicted results for the 138, 253, a

Dataset Rate of correct prediction (%)

domains All-a domains All-b domain a=

138 19=36 ¼ 53 22=29 ¼ 78 14
253 53=63 ¼ 84 46=58 ¼ 79 50
359 76=82 ¼ 93 82=85 ¼ 98 94

nAll the domain data in this table were taken from Chou &

Tabl

Predicted results for the 1601 d

Rate of correct prediction (%)

All-a All-b a=b aþ b

243=273 ¼ 89 401=461 ¼ 87 299=332 ¼ 90 258=297 ¼ 87

nAll the domain data in this table were taken from Chou &
dataset and testing dataset are actually open,
and a protein will in turn move from each to the
other. The overall rates of correct prediction
thus obtained for the three structural classes of
138, 253 and 359 domains are 57, 83, and 95%,
respectively (Table 1), in contrast to 64, 79, and
84% as reported by Chou & Maggiora (1998).
For the dataset of 1601 domains classified into
seven classes, the overall rate of correct predic-
tion by the current method was 84% (Table 2),
and no jack-knife test result was reported by
Chou & Maggiora (1998) for the same dataset.

4.3. SUCCESS RATE OF INDEPENDENT DATASET TEST

Furthermore, the prediction quality was also
examined by the independent dataset test. This
procedure generally consists of the following
two steps: (1) construct a training dataset; (2)
construct an independent testing set for which
the prediction is performed using the SVMs
model trained by the training dataset. Here both
the training and testing datasets were taken from
Chou & Maggiora (1998). The training dataset
for the four structural classes (all-a; all-b;
a=b domains: aþ b domains) from Chou &
Maggiora (1998) consists of 225 protein domains
(61 all-a; 45 all-b; 56 a=b domains, 63 aþ b
domains), and the corresponding testing dataset
contains 510 domains, of which 109 are all-a; 130
e 1
nd 359 domains by jack-knife testn

b domain aþ b domain Overall

=32 ¼ 44 24=41 ¼ 59 79=138 ¼ 57
=61 ¼ 82 62=71 ¼ 87 211=253 ¼ 83
=99 ¼ 95 90=93 ¼ 97 342=359 ¼ 95

Maggiora (1998).

e 2
omains by the jack-knife testn

m s r Overall

12=31 ¼ 39 110=168 ¼ 65 23=39 ¼ 59 1346=1601 ¼ 84

Maggiora (1998).
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all-b; 135aþ b and 136 a=b domains. The overall
rate of correct prediction reaches 484=510 ¼
94:9%:

The training dataset for the seven structural
classes (all-a; all-b; a=b; aþ b; m; s; r) from
Chou & Maggiora (1998) consists of 1601
protein domains (273 all-a; 461 all-b domains,
332a=b domains, 297 aþ b domains, 31 m
domains, 168 s domains, 39 r domains), and
the corresponding testing dataset contains 2438,
of which 393 are all-a domains, 704 all-b
domains, 509 a=b domains, 608 aþ b domains,
46 m domains, 158 s domains and 20 r domains
(Bahar et al., 1997). The overall success rate
predicted for the 2438 independent domains by
the current method using the 1601 domains as a
training dataset reached 2304=2438 ¼ 94:5%:

Finally, it is instructive to mention that all the
datasets used in this paper were taken from
Chou & Maggiora (1998). It was clearly de-
scribed in that paper that all the protein
sequences in the datasets were taken from SCOP
according to different functional families. There-
fore, no redundant sequences exist whatsoever in
the datasets. Actually, the sequence matches
performed between all members in each class
of the datasets indicated that most pairs have
very low sequence identity. For example, for the
database of 1601 protein domains, the average
sequence identities in the all-a; all-b; a=b; aþ b;
m; s; and r classes are only 0.081, 0.087, 0.071,
0.078, 0.082, 0.127, and 0.109, respectively.

5. Conclusion

A comparison of the above results with those
reported by Chou & Maggiora (1998) indicates
that for small datasets the component-coupled
algorithm yielded better results, but for large
datasets the SVMs method yielded better results.
Nevertheless, both the component-coupled algo-
rithm (Chou et al., 1998) and the SVMs method
are much more powerful than the simple
geometry prediction algorithms as demonstrated
by Chou et al., (1998) and Chou & Maggiora
(1998). Accordingly, it is anticipated that the
current SVMs methods and the elegant compo-
nent-coupled algorithm developed by Chou and
his co-workers (Chou, 1995; Chou et al., 1998;
Chou & Maggiora, 1998; Chou & Zhang, 1994,
1995), if effectively complemented with each
other, will become a powerful tool for predicting
the structural classes of protein domains. It
should be pointed out, however, that using
amino acid composition as an input to predict
the structural class of protein domains is merely
an approximate approach. This is because no
sequence order effects are included in the amino
acid composition. Unfortunately, as analysed by
Chou (1999), if using the domain sequence as
an input, we are to face a formidable barrier in
formulating a feasible prediction algorithm and
constructing a workable training dataset. As a
compromise, the amino acid composition has
been widely used to deal with these kinds of
problems. To improve such an approximate
treatment, one promising approach is to use
the pseudo-amino acid composition (Chou,
2001), which contains some quasi-sequence
order effects and was recently developed by
Chou to predict protein subcellular location.
And this will certainly further improve the
prediction quality of protein structural class as
well.
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