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Abstract

Tight turns play an important role in globular proteins from both the structural and functional points of view. Of tighBtiunss
andy-turns have been extensively studied, &uturns were little investigated. Recently, a systematic searak-farns classified-turns
into nine different types according to their backbone trajectory features. In this paper, Support Vector Machines (SVMs), a new machine
learning method, is proposed for predicting thurn types in proteins. The high rates of correct prediction imply that that the formation of
differenta-turn types is evidently correlated with the sequence of a pentapeptide, and hence can be approximately predicted based on the
sequence information of the pentapeptide alone, although the incorporation of its interaction with the other part of a protein, the so-called
“long distance interaction”, will further improve the prediction quality.
© 2003 Elsevier Science Inc. All rights reserved.
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1. Introduction 2. Materials and methods

Like a-helices and3-sheets in proteins, tight turns also Support Vector Machine is a machine learning paradigm
play a very important role from both the structural and based on the statistical learning theory. The theory and al-
functional points of view (see, e.g. a recent review by gorithms SVM can be found in Reffl2,15,16]

Chou[8], where a rigorous definition for each of different Up to now, SVM has been applied to many biology ar-
types of tight turns has been systematically given). Among eas, such as splicing sites prediction in eukaryotic RNA
the tight turns, less work has been done @iturns in [13], gene expression data analygid], prediction of pro-
comparison withg-turns andy-turns due to lower occur- tein subcellular locatiof,10], structural classgg] and the
rence in protein. Based on the work in predictiggurns prediction of the specificity of GalNAc-transferals.
[7,17] and B-turns types[9], Chou [6] proposed a new Following the same procedures and rationale as given by
sequence-coupled model for prediction of theturns Choul6], thea-turn types were clustered into 10 categories,
in proteins. According to Chou’s study, the prediction i.e. type l«-RS, type le-LS, type llw-RS, type lla-LS,
quality is significantly improved in comparison with the type l-«-RU, type l«-LU, type ll-a-RU, type ll-a-LU, type
prediction results reported previously. Subsequently, Cai l-a-C and none-turn.
and Chou[l] used neural network to prediet-turns. In Since thex-turn structure is a pentapeptide that contains
this paper, we applied Vapnik's Support Vector Machine five consecutive residues)(( + 1), ¢ + 2), ( + 3) and
(SVM) [16] to approach this problem, and good results are (i + 4), its sequence can be represented ag; R( + 1),
obtained. R(@+2), R¢+ 3), R¢ +4), where Ri) represents the amino
acid residue at the protein sequence positiprR( + 1) the
_ _ amino acid residue at the protein sequence posiiighl(),
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000, C = 010000... 000,...,Y = 000000... 001), which dicted by the SVMs. As a result, 110 pentapeptides are

are taken as the input of the SVMs. totally correctly predicted, which is slightly higher than
The computations were carried out on a Silicon Graphics 98.2% which is the result obtained by the neural network
IRIS Indigo work station (Elan 4000). method[1].

The training dataset was taken from CH6Lthat contains
25,416 pentapeptides, of which 238 are typeRSa-turns,
5 type lw-LS a-turns, 39 type lle-RS a-turns, 8 type 4. Discussion
ll-a-LS a-turns, 28 type k-RU a-turns, 14 type k-LU
a-turns, 9 type lle-RU a-turns, 8 type lle-LU «-turns, 7 The above results obtained by the SVMs indicates that
type l-a-C a-turns and 25,060 noa-turns. In this research, the formation of differenta-turn types or nom-turns is
for the SVMs, the width of the Gaussian RBFs is selected considerably correlated with the sequence of a pentapep-
as that which minimised an estimate of the VC-dimension. tide, fully consistent with the earlier reports by the different
The parameter C that controls the error-margin trade-off is approache§l,6,8].
set at 100. After being trained, the hyperplane output by the
SVMs was obtained. This indicates that the trained model,
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