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Abstract

Tight turns play an important role in globular proteins from both the structural and functional points of view. Of tight turns,�-turns
and�-turns have been extensively studied, but�-turns were little investigated. Recently, a systematic search for�-turns classified�-turns
into nine different types according to their backbone trajectory features. In this paper, Support Vector Machines (SVMs), a new machine
learning method, is proposed for predicting the�-turn types in proteins. The high rates of correct prediction imply that that the formation of
different�-turn types is evidently correlated with the sequence of a pentapeptide, and hence can be approximately predicted based on the
sequence information of the pentapeptide alone, although the incorporation of its interaction with the other part of a protein, the so-called
“long distance interaction”, will further improve the prediction quality.
© 2003 Elsevier Science Inc. All rights reserved.
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1. Introduction

Like �-helices and�-sheets in proteins, tight turns also
play a very important role from both the structural and
functional points of view (see, e.g. a recent review by
Chou[8], where a rigorous definition for each of different
types of tight turns has been systematically given). Among
the tight turns, less work has been done on�-turns in
comparison with�-turns and�-turns due to lower occur-
rence in protein. Based on the work in predicting�-turns
[7,17] and �-turns types[9], Chou [6] proposed a new
sequence-coupled model for prediction of the�-turns
in proteins. According to Chou’s study, the prediction
quality is significantly improved in comparison with the
prediction results reported previously. Subsequently, Cai
and Chou[1] used neural network to predict�-turns. In
this paper, we applied Vapnik’s Support Vector Machine
(SVM) [16] to approach this problem, and good results are
obtained.
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2. Materials and methods

Support Vector Machine is a machine learning paradigm
based on the statistical learning theory. The theory and al-
gorithms SVM can be found in Refs.[12,15,16].

Up to now, SVM has been applied to many biology ar-
eas, such as splicing sites prediction in eukaryotic RNA
[13], gene expression data analysis[14], prediction of pro-
tein subcellular location[4,10], structural classes[2] and the
prediction of the specificity of GalNAc-transferase[3].

Following the same procedures and rationale as given by
Chou[6], the�-turn types were clustered into 10 categories,
i.e. type I-�-RS, type I-�-LS, type II-�-RS, type II-�-LS,
type I-�-RU, type I-�-LU, type II-�-RU, type II-�-LU, type
I-�-C and non-�-turn.

Since the�-turn structure is a pentapeptide that contains
five consecutive residues (i), (i + 1), (i + 2), (i + 3) and
(i + 4), its sequence can be represented as: R(i), R(i + 1),
R(i+2), R(i+3), R(i+4), where R(i) represents the amino
acid residue at the protein sequence position (i), R(i+1) the
amino acid residue at the protein sequence position (i + 1),
and so forth.

In this research, 20 bases of pentapeptides are coded as
20-D vectors composed of only 0 and 1 (A = 100000. . .
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000,C = 010000. . . 000, . . . ,Y = 000000. . . 001), which
are taken as the input of the SVMs.

The computations were carried out on a Silicon Graphics
IRIS Indigo work station (Elan 4000).

The training dataset was taken from Chou[6] that contains
25,416 pentapeptides, of which 238 are type I-�-RS�-turns,
5 type I-�-LS �-turns, 39 type II-�-RS �-turns, 8 type
II-�-LS �-turns, 28 type I-�-RU �-turns, 14 type I-�-LU
�-turns, 9 type II-�-RU �-turns, 8 type II-�-LU �-turns, 7
type I-�-C �-turns and 25,060 non-�-turns. In this research,
for the SVMs, the width of the Gaussian RBFs is selected
as that which minimised an estimate of the VC-dimension.
The parameter C that controls the error-margin trade-off is
set at 100. After being trained, the hyperplane output by the
SVMs was obtained. This indicates that the trained model,
i.e. hyperplane output which is including the important in-
formation, has the function to identify the�-turns.

In this research, we predict�-turns and their types from
the entire primary sequence of Rhe (114 residues, 110
pentapeptides). As a result, the predicting rate is quite
promising.

3. Results

First, the method was tested by the re-substitution oper-
ation. The so-called re-substitution test is an examination
for the self-consistency of a prediction method[5,11,18].
When the re-substitution test is performed for the current
study, the�-turn type of each pentapeptide in the dataset
is in turn predicted using the rule parameters derived from
the same dataset, the so-called training dataset. The rates of
correct prediction, thus, obtained reaches 100% (I-�-RS),
100% (I-�-LS), 94.9% (II-�-RS), 87.5% (II-�-LS),
100% (I-�-RU), 100% (I-�-LU), 100% (II-�-RU), 100%
(II-�-LU), 100%(I-�-C) and 100% (non-�-turn). This indi-
cates that after being trained, the hyperplanes output of the
SVMs has grasped the complicated relationship between
the pentapeptides and�-turns, and it can be used to predict
the unknown pentapeptides.

As a demonstration to show how to use the current method
to predict the�-turn types in proteins, we took Rhe as an ex-
ample. Rhe contains 110 residues, and its primary sequence
is given below[6,8]:

ESVLTQPPSASGTPGQRVTISCTGSATDIGSNSVIWY-
QQVPGKAPKLLIYYNDLLPSGV
SDRFSASKSGTSASLAISGLESEDEADYYCAAWNDS-
LDEPGFGGGTKLTVLGQPK

Along with the sequence, 114− 5 + 1 = 110 pentapep-
tides were automatically extracted in succession, and pre-

dicted by the SVMs. As a result, 110 pentapeptides are
totally correctly predicted, which is slightly higher than
98.2% which is the result obtained by the neural network
method[1].

4. Discussion

The above results obtained by the SVMs indicates that
the formation of different�-turn types or non-�-turns is
considerably correlated with the sequence of a pentapep-
tide, fully consistent with the earlier reports by the different
approaches[1,6,8].
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