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Abstract

Classification of gene function remains one of the most important and demanding tasks in the post-genome era. Most of the current

predictive computer methods rely on comparing features that are essentially linear to the protein sequence. However, features of a protein

nonlinear to the sequence may also be predictive to its function. Machine learning methods, for instance the Support Vector Machines

(SVMs), are particularly suitable for exploiting such features. In this work we introduce SVM and the pseudo-amino acid composition, a

collection of nonlinear features extractable from protein sequence, to the field of protein function prediction. We have developed prototype

SVMs for binary classification of rRNA-, RNA-, and DNA-binding proteins. Using a protein’s amino acid composition and limited range

correlation of hydrophobicity and solvent accessible surface area as input, each of the SVMs predicts whether the protein belongs to one of

the three classes. In self-consistency and cross-validation tests, which measures the success of learning and prediction, respectively, the

rRNA-binding SVM has consistently achieved >95% accuracy. The RNA- and DNA-binding SVMs demonstrate more diverse accuracy,

ranging fromf 76% tof 97%. Analysis of the test results suggests the directions of improving the SVMs.

D 2003 Elsevier Science B.V. All rights reserved.
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1. Introduction

Large-scale genome sequencing projects are producing

gene sequences at unprecedented rates. Within merely a

few years about 60 cellular genomes have been completely

or nearly completely sequenced. An archean or bacterial

genome may contain thousands of genes, while mammalian

and plant genomes have tens of thousands. The enormous

flux of genomic data exerts great pressure to the task of

gene function determination. At present, only a number of

predictive computer methods can keep up with the pace.

Most of these methods adopt fast algorithms to search

annotated databases for similarity in sequence, motif,

profile, or hidden Markov models. Once sufficient similar-

ity is found between the query sequence and one in the

databases whose function is known, the query is predicted

to possess a similar function. By this procedure, for

example, researchers are able to assign functions to 69%

of the 4524 putative proteins coded in the recently

sequenced genome of an archean, M. acetivorans strain

C2A [1]. While the coverage is remarkable for the latter,

for this relatively small genome there are still f 1500

proteins to classify functionally. It will not be surprised if

eventually only a minority of these proteins proves to

possess a novel function.

The above example argues for the need to further

advance protein function prediction methods. The question

is, besides refining existing methods, in what directions can

we explore? We notice that the current methods mostly

operate on contiguous sequences or sequence segments,

evaluating summations of per-position properties. How-

ever, protein sequence and function may not always asso-

ciate with each other in this linear fashion. For instance,

evolution may conserve among proteins of a common

binding function the correlation between segments consti-

tuting the binding site, which are often short and discon-
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tinuous, rather than conserve the congruous sequences

encompassing each of these segments. The quantification

of correlation between positions across a distance amounts

to a nonlinear mapping of the sequence. This observation

prompts us to consider features nonlinear to protein

sequence, and methods for nonlinear pattern comparison.

These dual elements are rather new to protein function

prediction, but have been used in other predictive applica-

tions. For instance, we have implemented Support Vector

Machines (SVMs) to predict protein structural classes,

subcellular locations, and proteolytic sites [2–4]. These

SVMs each works with a nonlinear set of protein features,

collectively referred to as pseudo-amino acid composition.

They have achieved performance comparable or superior to

other contemporary methods. Encouraged by the experi-

ences, we are tempted to extend their application to protein

function prediction.

SVM can be roughly described as follows. An SVM

takes as input a set of features, called a feature vector. It

outputs a classification. The SVM learns how to classify

from a training set of feature vectors, whose expected

outputs are already known. Figuratively, we may consider

that the input vectors are mapped into a feature space.

The training enables a binary classifying SVM to define a

plane in the feature space, which optimally separates the

training vectors of two classes. When a new feature vector

is inputted, its class is predicted on the basis of which

side of the plane it maps. Conceived recently as a pattern

classification engine [5], SVM is based on rigorous sta-

tistical learning theories, and has been used in a wide

range of problems, including image recognition and text

classification [6] and drug design [7]. SVM has found

increasing applications to protein classification problems,

including fold recognition [8], gene expression data [9],

etc.

Pseudo-amino acid composition of protein was proposed

by Chou [10,11]. It is constructed by augmenting the tradi-

tional amino acid composition with a series of functions that

couple the physicochemical properties between amino acids,

which are separated by finite distances along the sequence.

For these physicochemical properties, the coupling func-

tions account for the effects of local sequence order, while

they do not depend on the size, contiguity, and global order

of the sequence. Pseudo-amino acid composition provides

SVM with a high-dimensional feature vector. By selecting

relevant physicochemical properties, a specific pseudo-

amino acid composition can be formulated for a specific

SVM classification application.

As a preliminary exploration of a machine learning

method combining these two elements for protein function

prediction, we have developed three prototypic SVMs.

These SVMs predict whether or not a query sequence

belongs to one of the rRNA-, RNA- and DNA-binding

protein classes, respectively. We have obtained results that

illustrate the feasibility of this approach. By fine tuning the

SVMs and experimenting with various feature vector

schemes [8,12], we can expect greater performance of

the method in the future.

2. Materials and methods

2.1. Data

By searching the SWISS-PROT database (year 2000

release) with each of the keywords (KW) rRNA-binding,

RNA-binding, and DNA-binding, 1056, 1496, and 7739

proteins were retrieved, respectively. These 3 collections are

designated ‘‘positive’’ subsets, corresponding to the func-

tions the keywords imply. A ‘‘negative’’ subset was com-

posed by the following procedure:

(1) An ‘‘contrast’’ set of 10907 proteins was retrieved from

SWISS-PROT by searching with a list of keywords suspicious

of implying RNA/DNA-binding functionality, using the ‘‘or’’

logic. Namely, KW=ActivatorjADP-ribosylationjChroma-

Chromatin regulatorjChromosomal proteinjChromosome

partitionjCore proteinjDNA damagejDNA excisionjDNA
integrationjDNA packagingjDNA primingjDNA recombina-

tionjDNA repairjDNA replicationjDNA replication inhibi-

torjDNA synthesisjDNA-directed DNA polymerasejDNA-
directed RNA polymerasejEndonucleasejExcision nucleasej
ExonucleasejHelicasejIntron homingj IsomerasejmRNA

processingjmRNA splicingjmRNA transportjNuclear

proteinjNucleasejNucleocapsidjNucleoproteinjRibonucleo-
proteinjRibosomal proteinjRibosome biogenesisjRNA

repairjRNA replicationjRNA-directed DNA polymerasej
RNA-directed RNA polymerasejrRNA processingjSpli-
SpliceosomejT-DNAjTopoisomerasejTrans-acting factorj
TranscriptionjTranscription regulationjTranscription termi-

nationjTranslation regulationjtRNA processingjtRNA-bind-
ingjDNA-bindingjRNA-bindingjrRNA-binding.

(2) The SWISS-PROT database depleted with the three

positive subsets and the contrast set was randomly picked.

The 4768 proteins resulted were entered to the negative

subset. By combining the negative subset with each of the

positive subsets, 3 function-specific datasets were obtained,

i.e., the rRNA-binding dataset of 5824 proteins, the RNA-

binding dataset of 6264 proteins, and the DNA-binding

dataset of 12507 proteins.

(3) The SWISS-PROT database depleted with the 3

positive subsets and the contrast set was reduced to a

collection of 26100 proteins by removing homologous

sequences using the CD-HIT program [13], with 40% cut-

off. This collection was used as an alternative negative

subset for the rRNA-binding SVM.

2.2. SVMs

The public domain software SVMlight [14] was used to

build three SVMs for the prediction of rRNA-binding,

RNA-binding, and DNA-binding proteins, respectively.

The SVMs were binary classifying, meaning that each of

Y. Cai, S.L. Lin / Biochimica et Biophysica Acta 1648 (2003) 127–133128



them predicts whether or not an input protein possesses a

targeted function. In the following, we explain the principles

of SVM.

SVM is a learning machine based on statistical learning

theory. The basic idea can be described briefly as follows.

First, the inputs are formulated as feature vectors, of which

each is associated with one of two classes. In training, the

class of an input vector is known in advance. In prediction,

the class is the output of SVM. Secondly, the feature

vectors are mapped into a feature space (possibly with high

dimensionality) by a kernel function, either linearly or

nonlinearly. Thirdly, a division is computed in the feature

space to optimally separate the two classes of training

vectors. SVM training always automatically seeks global

optimum and avoids over-fitting. These characteristics

make it particularly suitable to deal with large numbers of

features. For the application of SVM in pattern classifica-

tion, the complete theory can be found in Vapnik’s [5,15]

monographs. Fig. 1 schematically illustrates the most basic

idea of SVM.

In this work, SVM parameters were all set to the

SVMlight default, except for that the width of the chosen

kernel functions (Gaussian RBFs) was selected to minimize

an estimate of the VC-dimension, and that the parameter C

that controls the error-margin tradeoff was set to 1000.

Readers interested in the terminology and other details

should consult SVMlight specification [14] and Vapnik’s

monographs [5,15].

2.3. Pseudo-amino acid composition as feature vector

Pseudo-amino acid composition of a protein was used as

a 40-dimensional input feature vector for SVM. The pseudo-

amino acid composition involved the protein’s amino acid

composition and coupling functions applied to the charge,

hydrophobicity, and accessible surface area of residues

(Table 1), formulated according to a procedure prescribed

by Chou [11] as follows.

First, for a protein chain of L amino acid residues

R1R2R3R4R5R6R7. . .RL;

a series of sequence-order-coupling numbers is calculated:

s1 ¼ 1
L�1

XL�1

i¼1

Ji;iþ1

s2 ¼ 1
L�2

XL�2

i¼1

Ji;iþ2

s3 ¼ 1
L�3

XL�3

i¼1

Ji;iþ3

. . .

su ¼ 1
L�u

XL�u

i¼1

Ji;iþu

; ðu < LÞ

8>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>:

ð1Þ

where s1 is called the first-rank sequence-order-coupling

number that reflects the coupling mode between all the most

 

Fig. 1. The basic idea of SVM is to employ a mapping function (K (Xi, Xj)) to transform data from the input space (Rd), where the border between two classes

may be nonlinear, to a feature space (H) where the border can be represented by a linear Optimal Separation Hyperplane (OSH).

Table 1

Amino acid properties used to compose feature vector

Amino

acid

Charge

(C 0)

Hydrophobicitya

(H 0)

Accessible surface

areab (A0)

Ala 0 1.8 44.1

Arg 1 � 4.5 152.9

Asn 0 � 3.5 80.8

Asp � 1 � 3.5 76.3

Cys 0 2.5 56.4

Gln 0 � 3.5 100.6

Glu � 1 � 3.5 99.2

Gly 0 � 0.4 0

His 1 � 3.2 98.2

Ile 0 4.5 90.9

Leu 0 3.8 92.8

Lys 1 � 3.9 139.1

Met 0 1.9 95.3

Phe 0 2.8 107.4

Pro 0 � 1.6 79.5

Ser 0 � 0.8 57.5

Thr 0 � 0.7 73.4

Trp 0 � 0.9 143.4

Tyr 0 � 1.3 119.1

Val 0 4.2 73.0

a The Kyte and Doolittle hydrophobicity scale (Kyte and Doolittle, 1982).
b Adapted from Creamer et al.’s (1995) Table 4, the N= 25 column.
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contiguous residues along a protein sequence, s2 is the

second-rank sequence-order-coupling number that reflects

the coupling mode between all the second most contiguous

residues, and so forth. In Eq. (1), the coupling factor Ji,j is a

function of amino acids Ri and Rj, given by

Ji;j ¼ D2ðRi;RjÞ; ð2Þ

where D(Ri,Rj) is the differential value of a physicochem-

ical property between residues Ri to amino acid Rj. In this

work,

D2ðRi;RjÞ ¼
1

3

�
½CðRjÞ � CðRiÞ�2 þ ½HðRjÞ

� HðRiÞ�2 þ ½AðRjÞ � AðRiÞ�2
�

ð3Þ

where C, H and A are residual charge, hydrophobicity and

accessible surface area, respectively, normalized from their

original values C0, H0, A0 (Table 1) by a standard

conversion described by the following formulae [11]:

CðiÞ ¼
C0ðiÞ �

X20
i¼1

C0ðiÞ
20ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX20

i¼1

C0ðiÞ �
X20
i¼1

C0ðiÞ
20

" #2

20

vuuuut

HðiÞ ¼
H0ðiÞ �

X20
i¼1

H0ðiÞ
20ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX20

i¼1

H0ðiÞ �
X20
i¼1

H0ðiÞ
20

" #2

20

vuuuut

AðiÞ ¼
A0ðiÞ �

X20
i¼1

A0ðiÞ
20ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX20

i¼1

A0ðiÞ �
X20
i¼1

A0ðiÞ
20

" #2

20

vuuuut

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

ð4Þ

where average is over the 20 amino acid types.

Secondly, suppose we have a set of N proteins, which is

the union of m subsets, i.e.,

S ¼ S1 [ S2 [ S3 [ S4 [ : : : [ Sm

Each subset has nn(n = 1, 2, 3. . ., m) proteins of the same

type. For the k-th protein in subset Sn, the traditional amino

acid composition, i.e., the 20 normalized frequencies of

amino acid occurrence fk,j
n ( j= 1. . ., 20), is augmented by u

sequence-order-coupling numbers to compute 20 +u fea-

tures

X n
k ¼

X n
k;1

X n
k;2

]

X n
k;20þu

2
666666664

3
777777775
; ðk ¼ 1; 2; . . . ; nn; n ¼ 1; 2; . . . ;mÞ; ð5Þ

in which

X n
k;u ¼

f n
k;uX20

j¼1

f n
k;j þ w

Xu

q¼1

sn
k;q

; ð1VuV20Þ

wsn
k;u�20X20

j¼1

f n
k;j þ w

Xu

q¼1

sn
k;q

; ð20þ 1VuV20þ uÞ

8>>>>>>>>>><
>>>>>>>>>>:

ð6Þ

where sk,q
n is the qth-rank sequence-order-coupling number

computed according to Eqs. (1) and (2) for the k-th protein

in subset Sn, and w is the weight factor for the sequence-

order effect. As we can see from Eqs. (3)–(6), the first 20

components reflect the effect of the amino-acid composi-

tion, while the components from 20 + 1 to 20 +u reflect the

effect of sequence order. We usually choose the parameters

from the ranges 10 <u < 40 and 0.0 <w < 0.1, depending on

the coupling distance and strength suitable for the particular

application. For this work, we chose u = 20 and w = 0.05.

2.4. Computation

All computations were carried out on a Silicon Graphics

IRIS Indigo Elan 4000 workstation with a 270-MHz IP27

processor.

3. Results

Each of the rRNA-binding, RNA-binding, and DNA-

binding SVMs was trained with the corresponding dataset.

A dataset included a positive subset and a negative subset.

The proteins of the positive subset were known to possess

the function the SVM was trained to recognize. The neg-

ative subset was known not to possess the function. The

keyword annotation in the SWISS-PROT database was taken

as prior knowledge of the protein function, regardless the

function had been determined experimentally or predicted.

Test predictions of these SMVs are reported here.

Two tests were conducted for each of the SVMs: self-

consistency test and cross-validation test. In self-consistency

test, an SVM trained with the full dataset was used to

predict the function of every protein in the same dataset, to
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make comparison with known function. Test of the rRNA-

binding SVM resulted in near-perfect correct prediction

rates: 100% for the positive subset, 99.98% for the negative

subset, and 99.98% for the full set. For the RNA-binding

SVM, results were unbalanced:f 76% for the positive

subset,f 97% for the negative subset, andf 92% overall.

Results of the DNA-binding SVM were also unbalanced but

tipping to the opposite direction: 93% for the positive

subset, 77% for the negative subset, and 87% overall (Table

2).

In the cross-validation test, 90% of a dataset was used to

train an SVM. Then the partially trained SVM was used to

make function prediction and comparison for the remaining

10% data. Because the latter was unknown to the SVM

during training, the prediction was realistic. In this test, the

correct prediction rate of the rRNA-binding SVM ranged

fromf 95% tof 99%, andf 98% if combining all the 10

sets of prediction together. When using the alternative ne-

gative subset, the corresponding percentages were f 84%,

f 95%, and 89%. For the RNA-binding SVM, the rates

were in thef 82–91% range andf 86% overall. For the

DNA-binding SVM, they weref 78–86% andf 81%

(Table 2).

If the jackknife test were adopted, we expect that the

correct prediction rates could be even higher and more

consistent than demonstrated in the cross-validation test.

Jackknife test is more objective and effective for appraising

the prediction capability of the fully trained SVM, leaving

away only a single data point from the training set for

prediction [3,16]. However, permuting every sequence out

from thousands would have taken too much CPU time than

practical for us. Therefore, we had settled for the less

rigorous, while still illustrating left-10%-out cross-valida-

tion scheme.

On the computer we used (Silicon Graphics IRIS Indigo

Elan 4000 workstation with a 270 MHz IP27 processor), the

CPU times consumed for training the rRNA, RNA, and

DNA-binding SVMs were 5 min, 28 min, and 18 h,

respectively (Table 3). For prediction, the CPU time was 2

min per query, averaged over 10907 attempts. The disparate

training times reflect how difficult the individual SVMs

converge to a satisfactory separating hyperplane. In general,

the greater the size of the training set, the more difficult the

convergence, giving rise to a cost nonlinear to the size of

dataset.

4. Discussion

Our work is among the early efforts of employing SVM,

a machine learning method, to build classifiers for protein

function. We have implemented three SVMs for binary

classification of rRNA-, RNA- and DNA-binding proteins,

respectively. Each of them predicts whether or not a query

protein belongs to one of the three classes. These SVMs are

exploratory prototypes, serving for an appraisal of the

potential of our approach. The three classes of proteins

present different levels of challenge by their different

degrees of diversity in sequence and functionality. By

assembling the training data from SWISS-PROT annotation,

we have introduced a fair amount of noise virtually compat-

ible to that in human knowledge. We have appraised the

performance of the three SVMs by self-consistency and

cross-validation tests. We consider their performance to be

fair to stellar. From analyzing the test results, we have

gained insights to how improvements can be made.

The self-consistency test demonstrates how successful

SVM has turned training into internal knowledge. Revisiting

the training data, the test measures the ability of SVM to

reproduce known classification. In this test, the rRNA-

binding SVM recognized the 1056 rRNA-binding proteins

with 100% accuracy, and made only one mistake out of the

4768 proteins in the negative training set (Table 2). This

nearly perfect performance indicates the following. (1) The

pseudo-amino acid composition possesses an intrinsic cor-

relation to the classification being pursued, even if the

correlation cannot be explicitly expressed. (2) The SVM is

able to abstract the correlation from training data, to con-

struct correct class distinction rules.

To our best knowledge, rRNA-binding proteins have

never been distinguished as a single class by algorithms

based on linear sequential similarity. According to the

PROSITE database, the 1056 rRNA-binding proteins in

the positive training subset belong to dozens of different

ribosomal protein families, each bearing its own signature

motif(s). Between these families, sequence homology is

generally low. For example, amino acid identity is mostly

< 10% between members of ribosomal families 30S S4 and

Table 3

CPU time of SVM training, testing, and predictiona

SVM Training Tests Prediction

Self-consistency Cross-validation

rRNA-binding 5 min 7 min 1 h 2 min

RNA-binding 28 min 30 min 4 h 2 min

DNA-binding 18 h 18 h 150 h 2 min

a For each SVM, training and testing used the corresponding rRNA_bind-

ing, RNA_binding and DNA_binding datasets. Prediction time was

per_query average over the contrast set of 10907 proteins.

Table 2

Self-consistency test results

SVM Correct prediction rate

Positive

subset

Negative

subset

Overall

rRNA-binding 1056/1056 =

100.0%

4767/4768 =

99.98%

5823/5824 =

99.98%

RNA-binding 1144/1496=

76.47%

4634/4768 =

97.19%

5778/6264 =

92.24%

DNA-binding 7183/7739 =

92.82%

3675/4768 =

77.08%

10858/12507 =

86.82%
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50S L20, both abundantly presented in the training set.

Therefore, the high performance of the rRNA-binding SVM

in self-consistency test is not due to being trained with a

unique, homologous positive subset. Rather, it showcases

that SVM can find a factor common to a diverse set of

positive training data, which the negative set lacks, and use

it to achieve optimal classification. For the rRNA-binding

proteins, it is tempting to uncover exactly what this common

factor is. It would advance our understanding of the ribo-

somal proteins, and help derive more rational prediction

methods. Unfortunately, like for other nonlinear learning

machines, currently it is still difficult to translate the

intricate SVM internal structure to biological terms.

Cross-validation test uses SVMs trained by part of the

full training dataset to predict for the rest. The goal is

twofold. First, it conducts a realistic prediction whose

accuracy is measurable. Second, by alternating the part left

for prediction, it examines the consistency in the potential of

prediction. In this test, the rRNA-binding SVM achieved

95–99% accuracy (Table 4). The accuracy is both high and

consistent. The less than perfect results agree with the

aforementioned sequence diversity in the training set. Con-

sistent with this interpretation, using a larger negative subset

that isf 26 times the size of the positive subset instead of

the originalf 5 times to train the SVM, the accuracy is

declined to 85–93%. The declination is mostly due to a

lower recognition rate of the positives (data not shown). It is

likely that the randomly picked, oversized alternative neg-

ative subset contains a greater number of false negatives that

have confused the SVM. Therefore, with the original, more

balanced dataset, the fully trained SVM is expected to

possess higher prediction power than the partially trained

versions. Nonetheless, however, slight as it is, the variation

in accuracy still reminds us a character of SVM that

probably applies to machine learning in general. Namely,

its power of prediction is limited by the statistical rules it

abstracts from the training set. By contrast, an idealistic,

‘‘mechanistic’’ rule that has grasped the essence of the data

may have greater capacity for extrapolation. These two

kinds of rules can converge when the training dataset has

sufficient coverage and negligible noise, and the SVM is

constructed perfectly. It is therefore desirable to reassemble

the training data and re-train the SVM frequently.

Both the RNA-binding and DNA-binding proteins are

broad categories, known to be highly diverse in sequence and

in the mode of nucleic acid binding. In each of these

categories, the pairwise sequence is mostly below 20%,

and the average homology is 8%. The RNA- and DNA-

binding proteins are highly diverse in function. For instance,

there are nucleic acid-processing enzymes recognizing spe-

cific RNA/DNA sites, and there are nonspecific genome-

coating proteins. They present greater challenge than the

more specialized class of rRNA-binding proteins. In the

cross-validation test, the RNA-binding and DNA-binding

SVMs resulted in 82–91% and 78–86% accuracy, respec-

tively (Table 4). At the current state with these correction

rates, we believe that these prototypic SVMs can be used for a

first pass of functional prediction, complementary to existing

methods. In the self-consistency test, both the SVMs showed

unbalanced accuracy in separate results for the positive and

negative subsets: 93% versus 77%, and 76% versus 97%,

respectively (Table 2). For the higher scoring subset, sensi-

tivity of the SVMs is high while selectivity falls behind. For

the lower scoring subset, sensitivity and selectivity exchange

positions. Armed with this knowledge, we can use these

SVMs practically within appropriate context. Furthermore,

we can find clues for improvement from the unbalance. In the

language of feature space, the phenomenon implies that the

optimal separating hyperplane is essentially able to isolate the

vectors of one of the subsets, but unable to prevent the

penetration of those of the other subset. Tuning the coupling

functions incorporated in the features may result in a more

desirable distribution of the vectors. On the other hand, if the

penetration is not randomly diffusive, implementing the

SVM with a different kernel function may ‘‘bend’’ the space

toward a better separation.

Our method is intended for complementing those fre-

quently used in functional genomics. Most of them opt for

database search of similarity in sequence, motif, profile, or

hidden Markov models, in order to transfer the functional

annotation from hit(s) to the query. By BLAST and hidden

Markov model searches lately, for example, 3571 of 5420

open reading frames of the completed genome of bacterium

P. putida KT2440 were assigned with a putative function

[17]. Thef 60% assignment rate is typical among more

than a hundred completed genomes of the three major

domains of life, and is expected for another hundred

genomes being sequenced around the world—if assignment

is limited to similar methods. Many of the thousands of

genes not being assigned by this approach may actually

perform known functions, without being homologous to any

annotated protein. In this regard, it is interesting that a

recently developed artificial neural network (ANN) method

assigned enzymes to a much larger fraction of human

genome than predicted in the original publications of the

human genome draft [18]. Even though the ANN authors

found that the differences in method made it difficult to

Table 4

Cross-validation test results

SVM Correct prediction rate

Low High Overall

rRNA-bindinga 552/581 =

95.01%

574/581 =

98.80%

5640/5824 =

96.84%

2662/2715=

84.95%

2671/2715 =

92.51%

26726/27150=

89.00%

RNA-binding 511/625 =

81.76%

567/625 =

90.72%

5371/6264 =

85.74%

DNA-binding 969/1249=

77.58%

1071/1249 =

85.75%

10131/12507=

81.00%

a The second row of rRNA-binding data was obtained using the alternative

negative subset described in Materials and methods.
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interpret the differences in prediction, the work does exem-

plify possible benefits of adopting complementary methods.

Comparing the performance of the ANN method with ours is

also difficult, because different protein categories are

studied. Nevertheless, we find it interesting that the ANN

method also demonstrates tradeoff in the accuracy between

predicting positives and negatives. For instance, a 90%

accuracy in predicting the positives is accompanied by

f 20–90% accuracy predicting the negatives for classifying

12 SWISS-PROT families. The worst of them are associated

with the families of inherently heterogeneous, an observa-

tion consistent with our own experience. Comparing the

accuracy levels, our method has shown its competitiveness

even at an infantile stage. We believe that by joining force

with other methods, it can contribute to the enhancement of

coverage and accuracy of protein function prediction.

5. Conclusion

We have demonstrated the feasibility of combining SVM

and pseudo-amino acid composition for a new protein

function prediction method. Even as prototype, the three

SVMs we implemented have shown practical performance.

With appraisal tests, we have found clues to improve SVM.

Selections of feature vector and kernel function, and an

adequate and low-noise training set, are critical to the

success of SVM. Apparently, the more specific a function

is to predict, thus the more definite a training set can be

assembled, and the higher predicting power the correspond-

ing SVM can acquire. However, being specific in function

does not require sequential similarity, as we evidently have

shown with our SVMs. This segregation of sequential and

functional similarity will be one of the most attractive

attributes of using SVM for protein function prediction.

Training, testing, and tuning SVM are computer-intensive.

Predicting is very fast. In the future, we envisage an array of

SVMs being trained to predict specific functions, and to

parse genomic sequence data in parallel, complementing

current methods to achieve more reliable, high-throughput

gene function prediction.
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