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Abstract

The core of an enzyme molecule is its active site from the viewpoints of both academic research and industrial application. To

reveal the structural and functional mechanism of an enzyme, one needs to know its active site; to conduct structure-based drug

design by regulating the function of an enzyme, one needs to know the active site and its microenvironment as well. Given the

atomic coordinates of an enzyme molecule, how can we predict its active site? To tackle such a problem, a distance group approach

was proposed and the support vector machine algorithm applied to predict the catalytic triad of serine hydrolase family. The success

rate by jackknife test for the 139 serine hydrolases was 85%, implying that the method is quite promising and may become a useful

tool in structural bioinformatics.

r 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

After the structure of a protein has been solved, the
next challenge is to extract functional information from
its structural data (see, e.g., Chou et al., 1998, 1999a;
Chou, 1992, 2004; Zhou and Troy, 2003). With the
increasing number of protein 3D structures having been
solved by X-ray crystallography and NMR spectro-
scopy techniques, it is highly desirable to develop a high
throughput tool to identify their active sites, based on
the structural information. For many years, it has been
suggested that the active sites in proteins are straight-
forwardly related to their biochemical function and are
better conserved during evolution than the other part of
proteins (Chou and Howe, 2002; Chou et al., 1997, 2000;
Zvelebil et al., 1987). Through the similarity searching
of active sites, one could even identify proteins with the
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same function but almost without related sequences or
global folds (Chou et al., 1998, 1999b; Zhang et al.,
2002). Hence, the identification of protein active sites is
the key element for the assignment of biochemical
function to a new protein.
To detect an active site in proteins whose 3D

structures are available, a straightforward approach is
to search the structural analogues of the known active
sites. Currently, there exist many protein structure
comparison approaches based on the geometric hashing
algorithm (Nussinov and Wolfson, 1991) or the graph-
theoretic algorithm (Artymiuk et al., 1994) that can
match the user-defined structure against a whole protein
structure (Fischer et al., 1994; Wallace et al., 1996). With
the enzyme active site templates provided by PROCAT
database (Wallace et al., 1997) (http://www.biochem.
ucl.ac.uk/bsm/PROCAT/PROCAT.html), one can use
these approaches to compare the available active
site templates with a target protein so as to deduce
the possible active site for the query protein. However,
the speed of structural comparison process is usually

http://www.biochem.ucl.ac.uk/bsm/PROCAT/PROCAT.html
http://www.biochem.ucl.ac.uk/bsm/PROCAT/PROCAT.html
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very slow. The present study was initiated in an attempt
to develop a different approach that can be used for fast
identification of active sites.
Fig. 1. The active sites (catalytic triad) of the serine hydrolase family

are characterized by His–Asp–Ser, particularly the following five

atoms (in red): Nd and Ne of His, Od1 and Od2 of Asp, as well as Og

of Ser.
2. Materials and methods

In order to improve the speed for the active site
identification and meanwhile keep the high success rate,
the support vector machines (SVMs) approach has been
introduced to detect the active site of proteins. Support
vector machine (SVM) is a class of learning machines
based on the statistical learning theory. The basic idea of
applying SVM to pattern classification can be outlined
as follows. First, map the input vectors into one feature
space (possible with a higher dimension), either linearly
or nonlinearly, which is relevant to the selection of the
kernel function. Then, within the feature space from the
first step, seek an optimized linear division, i.e. construct
a hyper-plane that separates the samples into two classes
(this can be extended to multi-class). SVM training
always seeks a global optimized solution and avoids
over-fitting, so it has the ability to deal with a large
number of features. A complete description to the
theory of SVMs for pattern recognition is given in the
book by Vapnik (1998). SVMs have been used to deal
with protein fold recognition (Ding and Dubchak,
2001), protein–protein interactions prediction (Bock
and Gough, 2001), protein secondary structure predic-
tion (Hua and Sun, 2001), protein subcellular location
prediction (Chou and Cai, 2002), and membrane
protein-type prediction (Cai et al., 2003). A brief
introduction about SVMs and some relevant key
equations can be found in some recent papers (see,
e.g., Cai et al., 2003; Chou and Cai, 2002), and hence
there is no need to repeat here.
The 139 serine hydrolase entries in enzyme class E.C.

3.4.21 were selected from Enzyme Database (Bairoch,
2000), and their atomic coordinates extracted from the
corresponding PDB files. The catalytic triad of hydro-
lase family is formed by Ser, His, and Asp. Accordingly,
the catalytic triad of hydrolase is characterized by the
special positions of the three key residues, particularly
by the 10 pair-wise distances between the following
atoms: Og of Ser, Nd and Ne of His, and Od1 and Od2 of
Asp (Fig. 1). Their values form a distance group to
characterize the relative spatial position among the Ser,
His, and Asp residues. Since the dihedral angles
concerned are constrained by the 10 pair-wise distances
(Chou et al., 1982), the effects of angles are automati-
cally included in the distance group. For each of the 139
proteins, we can find all such distance groups with
respect to different Ser, His, and Asp along the protein
chain. Those distance groups that correspond to a
virtual active site are called the ‘‘active distance group’’,
while all the others the ‘‘non-active distance group’’.
Thus, the following two data sets can be constructed: the
positive data set S+ containing only the active distance
groups, and the negative data set S� with the negative
distance groups only. The data in S+ and S� can serve
as the positive and negative benchmarks (Chou, 1993,
1996) to train the SVMs for the active site prediction.
3. Results and discussion

The computations were carried out on a Silicon
Graphics IRIS Indigo workstation (Elan 4000). In the
current research, the width of the Gaussian RBFs for
the SVM was so selected as to minimize an estimate of
the VC-dimension (Chou and Cai, 2002). The parameter
C that controlled the error-margin trade-off was set at
1000 (Cai et al., 2003). After being trained, the hyper-
plane output by the SVM was obtained, indicating that
the trained model, i.e. the hyper-plane output, had
contained the important information for identifying the
catalytic triad.
Suppose nþ

i represents the number of active sites in
the i-th protein, for which the number of distance
groups investigated is ni: From these groups, the number
of correctly predicted active sites is mþ

i and that of
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incorrectly predicted active sites is m�
i : For hydrolase

family, each enzyme has one active site, i.e. nþ
i ¼ 1: If

mþ
i ¼ 1 and m�

i ¼ 1; i.e. the number of correctly
predicted active sites for the i-th protein is 1 but the
corresponding incorrectly predicted number is also 1,
then the success prediction rate for the i-th protein
would be mþ

i =ðn
þ
i þ m�

i Þ ¼
1
2
; if mþ

i ¼ 1 and m�
i ¼ 2;

then the corresponding rate would drop to 1
3
; and so

forth. Accordingly, the overall success rate of prediction
can be formulated by the following equation:

l ¼
PN

i¼1ðm
þ
i =ðn

þ
i þ m�

i ÞÞPN
i¼1 nþ

i

; ð1Þ

where N is the total number of proteins investigated.
When each protein contains only one active site, the
above equation can be further reduced to

l ¼
PN

i¼1ðm
þ
i =ð1þ m�

i ÞÞ
N

: ð2Þ

As is well known, the independent data set test, sub-
sampling test and jackknife test are the three methods
Table 1

Predicted results for the active sites of the 139 proteins by the jackknife test

Index (i) Protein code Number of correctly

predicted active sites

ðmþ
i Þ

Numb

incorre

active

1 1A10 1 1

2 1A1Y 1 0

3 1A46 1 1

4 1A4W7 1 0

5 1A5G 1 0

6 1A61 1 0

7 1AB9 1 0

8 1ABI 1 0

9 1ABJ 1 0

10 1AD8 1 0

11 1AF4 1 1

12 1AFQ 1 0

13 1AHT 1 0

14 1AUT 1 0

15 1AY6 1 1

16 1B5G 1 1

17 1BA8 1 0

18 1BCU 1 0

19 1BH6 1 0

20 1BMA 1 0

21 1BRA 1 0

22 1BRB 1 0

23 1BRC 1 0

24 1BTU 1 1

25 1BTW 0 1

26 1BTX 0 0

27 1BTY 0 0

28 1BTZ 0 0

29 1C4U 1 0

30 1C4V 1 0

31 1C4Y 1 1

32 1CA8 1 1

33 1CSE 1 0
often used for cross-validation to examine the prediction
quality in statistical prediction. Among these three,
however, the jackknife test is deemed as the most
effective and objective one; see, e.g., Chou and Zhang
(1995) for a comprehensive discussion about this, and
Mardia et al. (1979) for the mathematical principle.
Jackknife test is particularly useful for checking the
cluster-tolerant capacity (Chou, 1999), and hence was
often used for the case when the training data sets
were far from complete yet (see, e.g., Zhou, 1998;
Zhou and Assa-Munt, 2001; Zhou and Doctor, 2003).
During jackknifing, each protein in the data set is in turn
singled out as a tested protein and all the rule-
parameters are calculated based on the remaining
proteins. The predicted results thus obtained are listed
in Table 1. Substituting the data of columns 3 and 4
into Eq. (2), we obtained the overall success rate l ¼
118=139 ¼ 84:9%: Also, in an average it took about
10 s of CPU time to identify the catalytic triad for a
protein, much faster than the approach by the database
search. Therefore, the current approach has provided an
er of

ctly predicted

sites ðm�
i Þ

Number of correctly

predicted non-active

sites

Number of distance

groups investigated

ðniÞ

2337 2339

2518 2519

1437 1439

1278 1279

1518 1519

1518 1519

466 467

1698 1699

1438 1439

1518 1519

1437 1439

484 485

1518 1519

6382 6383

1517 1519

1597 1599

1528 1529

1518 1519

1678 1679

922 923

814 815

862 863

1062 1063

921 923

642 644

793 794

793 794

748 749

1528 1529

1698 1699

1517 1519

1197 1199

2290 2991
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Table 1 (continued)

Index (i) Protein code Number of correctly

predicted active sites

ðmþ
i Þ

Number of

incorrectly predicted

active sites ðm�
i Þ

Number of correctly

predicted non-active

sites

Number of distance

groups investigated

ðniÞ

34 1DIT 1 1 1597 1599

35 1DWB 1 0 1598 1599

36 1DWC 1 0 1598 1599

37 1DWD 1 0 1598 1599

38 1DWE 1 0 1438 1439

39 1ELA 1 1 921 923

40 1ELB 1 1 921 923

41 1ELC 1 1 921 923

42 1ELD 1 0 922 923

43 1ELE 1 0 922 923

44 1ELF 1 0 922 923

45 1ELG 1 0 922 923

46 1ELV 1 0 1222 1223

47 1ESA 1 0 922 923

48 1ESB 1 1 921 923

49 1FAX 1 0 1258 1259

50 1FPC 1 0 1438 1439

51 1GCD 1 0 466 467

52 1GCT 1 0 466 467

53 1GMH 1 0 448 449

54 1H4W 1 0 1048 1049

55 1HAG 1 0 1698 1699

56 1HAH 1 0 1698 1699

57 1HAI 1 0 1613 1614

58 1HAO 1 0 1438 1439

59 1HAP 1 0 1438 1439

60 1HAX 1 0 922 923

61 1HAZ 1 1 921 923

62 1HB0 1 0 922 923

63 1HCG 1 0 1258 1259

64 1HGT 1 0 1698 1699

65 1HJA 1 0 988 989

66 1HPG 1 0 638 639

67 1HUT 1 0 1613 1614

68 1HXE 1 0 1518 1519

69 1HXF 1 0 1518 1519

70 1IHS 1 0 1438 1439

71 1IHT 1 0 1438 1439

72 1K1I 0 0 610 611

73 1K22 1 1 1597 1599

74 1MEE 1 0 4057 4058

75 1NRN 1 0 1698 1699

76 1NRO 0 0 1518 1519

77 1NRP 1 0 1698 1699

78 1NRQ 0 0 1358 1359

79 1NRR 1 0 1438 1439

80 1NRS 1 0 1598 1599

81 1PEK 1 0 1922 1923

82 1QGF 0 0 922 923

83 1QIX 1 0 922 923

84 1QJ1 1 0 1698 1699

85 1QL9 1 0 814 815

86 1S02 1 0 2218 2219

87 1SBC 1 0 1438 1439

88 1SBH 1 0 2506 2507

89 1SBI 1 0 2506 2507

90 1SBN 1 0 4210 4211

91 1SCA 1 0 1483 1484

92 1SCB 1 0 1438 1439

93 1SCD 1 0 1438 1439

94 1SCN 1 0 1438 1439

95 1SGP 1 0 673 674

Yu-dong Cai et al. / Journal of Theoretical Biology 228 (2004) 551–557554
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Table 1 (continued)

Index (i) Protein code Number of correctly

predicted active sites

ðmþ
i Þ

Number of

incorrectly predicted

active sites ðm�
i Þ

Number of correctly

predicted non-active

sites

Number of distance

groups investigated

ðniÞ

96 1SGQ 1 0 673 674

97 1SGR 1 1 672 674

98 1SGT 1 0 124 125

99 1SIB 1 0 4561 4562

100 1SUE 1 0 2218 2219

101 1TBZ 1 0 1438 1439

102 1TGN 1 0 610 611

103 1THM 1 0 1558 1559

104 1THR 1 0 1888 1889

105 1THS 1 0 1613 1614

106 1TMB 1 0 1518 1519

107 1TMT 1 0 1438 1439

108 1TMU 1 0 1518 1519

109 1TOM 1 0 1518 1519

110 1TRY 1 1 627 629

111 1YJA 1 1 2505 2507

112 1YYY 1 0 610 611

113 2EST 1 0 922 923

114 2GCH 1 0 466 467

115 2GCT 1 0 466 467

116 2GMT 1 0 466 467

117 2HAT 1 1 1612 1614

118 2HGT 1 0 1698 1699

119 2HNT 1 0 1518 1519

120 2HPP 1 0 2728 2729

121 2HPQ 1 0 3190 3191

122 2SEC 1 0 2990 2991

123 2SGP 1 0 700 701

124 2SIC 1 0 5398 5399

125 2SNI 1 0 3190 3191

126 2TGD 0 1 609 611

127 3GCT 1 1 465 467

128 3HAT 1 0 1613 1614

129 3SIC 1 0 5398 5399

130 3TGI 1 0 1006 1007

131 3TGK 1 1 829 831

132 4HTC 1 1 2277 2279

133 5GDS 1 0 1698 1699

134 5SIC 1 1 5397 5399

135 6EST 1 0 922 923

136 7EST 1 0 922 923

137 7KME 1 0 1438 1439

138 8GCH 1 1 501 503

139 8KME 1 0 1438 1439
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accurate and fast method for predicting the active sites
of enzymes.
It is instructive to point out that, many of the failed-

to-predict catalytic triads bear patterns that are far away
from the putative standard one for the catalytic triad as
shown in panel (a) of Fig. 2. These failed-to-predict
catalytic triads contain some internal distance(s) greater
than 15 (A, as shown in panels (b) of Fig. 2. According to
the common sense in biochemistry it is highly unlikely
for a catalytic triad to have such a large internal
distance. The problem with unreasonably large internal
distances for a catalytic triad might be due to some
typographic error in annotating the His–Asp–Ser
sequence positions. For illustration, let us take 1K1I
as an example (Fig. 2b). According to the annotation of
its PDB file, the catalytic triad is formed by His-40, Asp-
102, and Ser-195. Based on such an annotation, of its 10
pair-wise distances, 5 are greater 10 (A (with 2 greater
than 15 (A). Obviously, it is impossible for a structure
with these internal distances to function as a catalytic
triad. However, for the same PDB file, if only the His-40
was changed to His-57, most of the 10 pair-wise
distances would be within the range of 2 (A and 5 (A
and only one around 8 (A, suggesting that the structure
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Fig. 2. Illustration to show the ten pair-wise internal distances for the His–Asp–Ser catalytic triad in (a) 1FAX (having a putative normal pattern

with no internal distance greater than 10 (A), and (b) 1K1I (having a problematic pattern with some distance(s) greater than15 (A). For simplicity, only

three of the ten internal pair-wise distances are shown.

Fig. 3. Illustration to show the Cys–His–XbkO catalytic triad (highlighted in red) in caspase family, where XbkO represents the backbone carbonyl

oxygen. Reproduced with permission from Chou et al. (2000). For further explanation, see Chou et al. (2000).

Yu-dong Cai et al. / Journal of Theoretical Biology 228 (2004) 551–557556
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thus obtained would have the standard putative pattern
for the His–Asp–Ser catalytic triad.
Finally, it should be pointed out that the catalytic

triad for different enzyme family may be formed by
different key residues and atoms. For example, the
catalytic triad for caspase family has a catalytic Cys–
His–XbkO triad mechanism (Fig. 3), where XbkO

represents the backbone carbonyl oxygen of any residue
at the position of the 3rd component of the triad,
irrespective of the nature of the amino acid concerned:
for caspase-1, it is Pro-177; for caspase-3, Thr-62; for
caspase-8, Arg-258; and for capase-9, Arg-178 (Chou
et al., 2000). Therefore, different key residues and atoms
should be used to predict the catalytic triad for different
enzyme families.
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