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Abstract—Kernel Methods are algorithms that, by replacing the inner product with

an appropriate positive definite function, implicitly perform a nonlinear mapping of

the input data into a high-dimensional feature space. In this paper, we present a

kernel method for clustering inspired by the classical K-Means algorithm in which

each cluster is iteratively refined using a one-class Support Vector Machine. Our

method, which can be easily implemented, compares favorably with respect to

popular clustering algorithms, like K-Means, Neural Gas, and Self-Organizing

Maps, on a synthetic data set and three UCI real data benchmarks (IRIS data,

Wisconsin breast cancer database, Spam database).

Index Terms—Kernel methods, one class SVM, clustering algorithms, EM

algorithm, K-Means.
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1 INTRODUCTION

KERNEL Methods [6], [21] are algorithms that, by replacing the
inner product with an appropriate positive definite function [4],
implicitly perform a nonlinear mapping of the input data to a high
dimensional feature space. While powerful kernel methods have
been proposed for supervised classification and regression
problems, the development of effective kernel method for
clustering, aside for a few tentative solutions [9], [18], is still an
open problem.

Tax and Duin [20] and Schölkopf et al. [19] proposed a kernel
method, also known as one-class Support Vector Machine (SVM),
to characterize the support of a high dimensional distribution.
Intuitively, one-class SVM computes the smallest sphere in feature
space enclosing the image of the input data. In this paper, we
present a kernel method for clustering based on this idea. We start
off by initializing K centers in feature space and, for each center,
computing the smallest sphere enclosing the closest data. Following
a K-Means-like strategy, the centers are moved repeatedly by
computing, at each iteration and for each center, the smallest
sphere enclosing the closest data until no center changes anymore.
Unlike other popular clustering algorithms [11], our algorithm
obtains naturally nonlinear separation surfaces of the data. The
plan of the paper is as follows: We recall the main facts of the
two methods at the basis of our algorithm, K-Means and one-class
SVM, in Sections 2 and 3, respectively. In Section 4, we present and
discuss our method. Experiments are reported in Section 5, while
we draw our conclusions in Section 6.

2 K-MEANS

K-Means [14], which we now briefly review, is a classical
algorithm for clustering. We first fix the notation: Let D ¼
fxig‘i¼1 be a data set with xi 2 IRN . We call codebook the set W ¼
fwkgKk¼1 with wk 2 IRN and K � ‘. The Voronoi Region (Rk) of the
codevector wk is the set of all vectors in IRN for which wk is the
nearest codevector

Rk ¼ fx 2 IRN jk ¼ arg min
j¼1;...;K

kx� wjkg:

The partition of IRN formed by all Voronoi regions associated
with the codebook W is called Voronoi Tessellation. The Voronoi Set
(Vk) of the codevector wk is the set of all vectors inD for which wk is
the nearest vector, that is,

Vk ¼ fxi 2 D j k ¼ arg min
j¼1;...;K

kxi � wjkg:

For a fixed training set D, the quantization error EDðWÞ
associated with the Voronoi tessellation induced by the codebook
W can be written as

EDðWÞ ¼ 1

2‘

XK

k¼1

X

xi2Vk

kxi � wkk2: ð1Þ

K-Means is an iterative method for minimizing the quantization
error EDðWÞ by repeatedly moving all codevectors to the
arithmetic mean of their Voronoi sets. It can be proved [10] that
a necessary condition for a codebook W to minimize the quantiza-
tion error in (1) is that each codevector wk fulfills the centroid
condition. In the case of finite data setD and Euclidean distance, the
centroid condition reduces to

wk ¼
1

jVkj
X

xi2Vk

xi; ð2Þ

where jVkj denotes the cardinality of Vk. Therefore, K-Means is
guaranteed to find a local minimum for the quantization error.

The K-Means algorithm consists of the following steps:

1. Initialize the codebook W with K codevectors wk, k ¼
1; . . . ;K (each vector wk drawn randomly without replace-
ment from the set D).

2. Compute the Voronoi Set Vk of each codevector wk.
3. Move each codevector wk to the mean of Vk as in (2).
4. Return the codebook if no codevector changed in Step 3,

otherwise go to Step 2.

K-Means is an example of an Expectation-Maximization (EM)

algorithm [5], [7]. The Expectation and Maximization steps are

the second and third step, respectively. Since each EM algorithm

is always convergent to a local minimum [23], the convergence of

K-Means is guaranteed. We note that K-Means is a batch

algorithm, that is, all inputs are evaluated before any adaptations,

unlike on-line algorithms, in which the codebook is updated after

the evaluation of each input. The main drawback of K-Means is

lack of robustness with respect to outliers; this problem can be

easily appreciated by looking at the effect of outliers in the

computation of the mean in (2).

3 ONE-CLASS SVM

We start by recalling the definition of a positive definite kernel,

which is at the basis of one-class SVM and kernel methods in

general.

Definition 1. Let X be a nonempty set. A function G : X �X ! IR is

called a positive definite function if and only if G is symmetric

(i.e., Gðx; yÞ ¼ Gðy; xÞ 8x; y 2 XÞ and

Xn

j;k¼1

cjckGðxj; xkÞ � 0

for all n � 2, x1; . . . ; xn � X and c1; . . .; cn � IR.

It can be shown [1] that a positive definite function G implicitly

defines a mapping � : X ! F from the input space X to the

feature space F endowed with an inner product defined as

Gðx; yÞ ¼ h�ðxÞ;�ðyÞi. Examples of positive definite functions are

the polynomial kernel
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Gðx; yÞ ¼ ðx � yþ 1Þn

with x and y 2 IRN and x � y denotes the ordinary inner product

between x and y, and the Gaussian kernel

Gðx; yÞ ¼ e�
kx�yk2

�2 :

where � 2 IR.
One-Class SVM [3], [19], [20] is a kernel method based on a

support vector description of a data set consisting of positive

examples only. If all data are in-liers, one-class SVM computes the

smallest sphere in feature space enclosing the image of the input

data.
As before, we let D ¼ fxig‘i¼1 with xi 2 IRN for all i. We start

considering the case of one-class SVM in input space. We look for

the smallest sphere of radius R that encloses the data xi. This is

described by the constraints:

kxi � ak2 � R2 i ¼ 1 . . . ‘;

where k � k is the Euclidean norm and a is the center of the sphere.

The constraints can be relaxed by using slack variables �i:

kxi � ak2 � R2 þ �i ð3Þ

with �i � 0 for all i ¼ 1; . . . ; ‘. We solve the problem of finding the

smallest sphere introducing the Lagrangian L:

LðR; a; �1; . . . ; �‘Þ ¼ R2 �
X‘

i¼1

ðR2 þ �i � kxi � ak2Þ�i

�
X‘

i¼1

�i�i þ C
X‘

i¼1

�i;

ð4Þ

where �i � 0 and �i � 0 for i ¼ 1; . . . ; ‘ are the Lagrange multi-

pliers associated to (3) and to the slack variables, C is a trade-off

parameter, and

Xl

j

�i

is the penalty term accounting for the presence of outliers. From

the conditions

@L
@R

¼ @L
@a

¼ @L
@�i

¼ 0;

we get

X‘

i¼1

�i ¼ 1 ð5Þ

a ¼
X‘

i¼1

�ixi ð6Þ

�i ¼ C � �i i ¼ 1; . . . ‘: ð7Þ

Using (5), (6), and (7), the constrained minimization of the

Lagrangian in (4) can be rewritten as the maximization of the

Wolfe dual form [2] L:

L ¼
X‘

i¼1

�ixi � xi �
X‘

i¼1

X‘

j¼1

�i�jxi � xj; ð8Þ

subject to the constraints

0 � �i � C i ¼ 1; . . . ; ‘ and
X‘

i¼1

�i ¼ 1:

Finally, the Karush-Kuhn-Tucker conditions for i ¼ 1; . . . ; ‘ yield

�i�i ¼ 0 ð9Þ

ðR2 þ �i � kxi � ak2Þ�i ¼ 0: ð10Þ

From (6), it is clear that only the points xi for which �i 6¼ 0 are

needed for defining the center of the sphere. These points are

called Support Vectors. From (9), it follows that, for the points xi
lying outside the sphere, since �i > 0, we have �i ¼ 0 and, thus,

from (7), �i ¼ C. These support vectors are sometimes called

bounded support vector (BSV). If 0 < �i < C, from (7) and (9) we

have that �i 6¼ 0 and, hence, �i ¼ 0; therefore, the corresponding

support vectors xi, from (10), lie on the surface of the sphere.

Always, from (10), it follows that, for all the points xi lying inside

the sphere, we necessarily have �i ¼ 0.
From the dual form (8), it is clear that all that has been said

remains true if the ordinary inner product between input points is

replaced by a positive definite function G. Intuitively, this is

equivalent to thinking in terms of a one-class SVM working in the

feature space induced by the choice of the kernel function G. The

dual Lagrangian L thus becomes

L ¼
X‘

i¼1

�iGðxi; xiÞ �
X‘

i¼1

X‘

j¼1

�i�jGðxi; xjÞ

with the �i subject to the same constraints as above.
The only difference with respect to the case of one-class SVM in

input space is that, if the mapping � is unknown (like for the
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Fig. 1. Comparison between (a) K-Means and (b) our method on the Delta Set.
(a) The horizontal line indicates the separation determined by K-Means. (b) The
region delimited by the darker and lighter close curves identify the input data, the
distance of which in feature space from the two center is less than 0.75 and 0.84,
respectively. For our method, we used the Gaussian kernel with � ¼ 0:4.



Gaussian kernel), the center of the sphere in feature space, A,

cannot be written explicitly as a linear combination of the image of

the training points. However, the distance RðxÞ in feature space

between the image of any input point x, �ðxÞ, and A can be

evaluated in terms of the kernel function G and the training points

xi. Since R2ðxÞ ¼ �ðxÞ � �ðxÞ � 2�ðxÞ � A þ A � A, we have

R2ðxÞ ¼ Gðx; xÞ � 2
X‘

i¼1

�iGðxi; xÞ þ
X‘

i¼1

X‘

j¼1

�i�jGðxi; xjÞ: ð11Þ

Notice that the radius of the sphere in feature space is equal to

RðxjÞ with xj any support vector for which �j < C.

4 THE PROPOSED ALGORITHM

In this section, we describe the kernel method we proposed for

clustering. For ease of convenience, we describe our method in

some feature space F assuming we have explicit knowledge of the

corrresponding map � for which � ¼ �ðxÞ. The idea is to consider

K centers in feature space fAkgKk¼1 2 F . We call the set W ¼
fA1; . . . ;AKg feature space codebook since, in our method, the centers

in feature space play the same role as the codevectors in input

space. In strict analogy with the codevectors in input space, we

define the Voronoi Region and Voronoi Set in feature space for each

center Ak.
The Voronoi Region in feature space, Rk, of the center Ak is the set

of all feature vectors � such that Ak is the closest vector, or

Rk ¼ f� 2 F j k ¼ arg min
j¼1;...;K

k� �Ajkg:

The Voronoi set in feature space, Vk, of the center Ak is the set of all

feature vectors �i ¼ �ðxiÞ in F such that Ak is the closest vector, or

Vk ¼ f�i 2 F j k ¼ arg min
j¼1;...;K

k�i �Ajkg: ð12Þ

These definitions induce a Voronoi tessellation of the feature space.
Attracted by the idea of support vector description of data sets, the
key point of the proposed method is to describe each cluster by a

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 27, NO. 5, MAY 2005 803

Fig. 3. (a) K-Means and (b) our Kernel Method on the IRIS Data Set. Each data
class is represented with a different gray level. Filled disks and circles indicate
correctly classified and misclassified data, respectively. For our method, we use a
Gaussian kernel with � ¼ 1:1.

Fig. 2. The six iterations required for convergence of our kernel method on the Delta Set (from upper left to lower right). Black and gray points indicate the data of the first
and second cluster, respectively. The points that are not attributed to either one of the clusters in each iteration are not shown. After the last iteration, all the training
points ended up in either one of the two clusters.



sphere of minimum radius. The assignment of which point to
which cluster and the spheres of minimum radius are obtained
through an iterative procedure similar to K-Means. Starting off
with a cluster initialization based on a small number of points, at
each iteration, a one-class SVM is trained on each cluster and the
obtained spheres are used to compute the Voronoi set Vk. The
procedure stops when no Voronoi set changes. In the attempt to
gain robustness against outliers, an interesting variant (which in
principle could also applied to K-Means) is to modify the notion of
Voronoi set by defining Vkð�Þ as

Vkð�Þ ¼ f�i 2 F j k ¼ arg min
j¼1;...;K

k�i �Ajk and k�i �Akk < �g:

ð13Þ

In words, the Voronoi set of the center Ak includes only the data
points in which the distance in feature space is smaller than �. The
parameter � can be chosen, for example, using model selection
techniques [5]. As we have seen in the previous section, the fact
that the centers of the sphere of smallest radius cannot be explicitly
expressed if the kernel mapping is only implicitly defined does not
undermine the method.

For a fixed choice of a kernel function G, our algorithm consists
of the following steps:

1. Initialize K Voronoi sets Vkð�Þ, k ¼ 1; . . . ;K using a small
subset of the ‘ training points.

2. Train a one-class SVM for each Vkð�Þ.
3. Update each Vkð�Þ.
4. If no Voronoi set changes in Step 3, exit; otherwise, go to

Step 2.

The convergence of this procedure is an open problem. In practice,
withC ¼ 1 (that is, all points in each Voronoi set Vkð�Þ are contained
within the sphere of smallest radius) and � constant across
iterations, the procedure always converged in all the performed
experiments (over one thousand runs). The intuition is that, under
these conditions, Steps 2 and 3 mimic an Expectation and a
Maximization steps. The similarity with K-Means is clear but we
notice three important differences. First, the algorithm does not aim
at minimizing the quantization error because the Voronoi sets are
not based on the computation of the centroid (not even in the feature
space). Second, depending on the choice of the constant �, not all
points are necessarily assigned to one of theK clusters. Third, since
the expression of the centers of the spheres in feature space might
not be available, the codevectors might be defined only implicitly.

5 EXPERIMENTAL RESULTS

Our algorithm has been tried on a synthetic data set (Delta Set) and
on three UCI data sets, that is, the IRIS Data, the Wisconsin’s breast

cancer database, and the Spam data set.

Delta Set1 is a 2D set formed by 424 points of two linearly

nonseparable classes. Therefore, the two classes cannot be

separated by K-Means using only two codevectors (see Fig. 1a).

K-Means shares this limitation with other clustering algorithms,

like SOM [12], [13] and Neural Gas [15]. We then applied our kernel

method to the Delta Set using only two centers. As shown in Fig. 1b,

our algorithm can separate the two clusters. It is important to

remark that the counterimages of the centers in input space do not

exist. Fig. 2 shows the algorithm behavior over the six stages

required for convergence. IRIS Data,2 possibly the most used real

data benchmark in Machine Learning proposed by Fisher [8] in

1936, is formed by 150 points belonging to three different classes.

One class is linearly separable from the other two, while the other

two are not. IRIS Data is usually represented, projecting the

original 4D data along the two major principal components. We

tested K-Means, Neural Gas, SOM, and our method on the IRIS data

using one center for each of the three classes. We also compared the

obtained results against the Ng-Jordan algorithm [17], a spectral

clustering algorithm [16]. The results obtained using K-Means and

our algorithm is shown in Fig. 3. The second column of Table 1

shows the average performances on 20 runs of K-Means, Neural

Gas, SOM, Ng-Jordan algorithm, and our method obtained with

different initializations and parameters. From the displayed

figures, it can be seen that our algorithm appears to perform better

than the other algorithms.
The Wisconsin’s breast cancer database,3 proposed by Wolberg

and Mangasarian [22] in 1990, collects 699 cases of diagnostic

samples. After the removal of the 16 database samples with missing

values, the database consists of 683 9D feature vectors belonging to

two different classes, benign and malignant tumors. The Spam

database4 collects 1,534 samples from two different classes, spam

and not-spam. Each sample is represented by a 57-dimensional

feature vector. Here, again, we tested K-Means, Neural Gas, SOM,

Ng-Jordan algorithm, and our method on both the Wisconsin and

Spam databases using one center for either of the two classes. The

third and fourth column of Table 1 display the average perfor-

mances on 20 runs obtained on Wisconsin and Spam databases,

respectively, for different initializations and parameters. As before,

it can be seen that our method obtains consistently better results

than the other algorithms.
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TABLE 1
SOM, K-Means, Neural Gas, Ng-Jordan Algorithm, and Our Kernel Method Average Performances

in Terms of Correctly Classified Points on IRIS, Wisconsin, and Spam Database

For our method, we used a Gaussian Kernel with � ¼ 1:1 for the IRIS Data, � ¼ 0:9 for the Wisconsin Data, and � ¼ 2:0 for the Spam Database.

1. The Delta data set can be downloaded from the following ftp address:
ftp.disi.unige.it/person/CamastraF/delta.dat.

2. The IRIS Data can be downloaded from the following ftp address:
ftp.ics.uci.edu/pub/machine-learning-databases/iris.

3. Wisconsin’s breast cancer database can be downloaded from the
following ftp address: ftp.ics.uci.edu/pub/machine-learning-databases/
breast-cancer-wisconsin.

4. The spam database can be downloaded from the following ftp
address: ftp.ics.uci.edu/pub/machine-learning-databases/spam.



6 CONCLUSION

In this paper, we have proposed a batch clustering method inspired
by K-Means and based on one-class SVM description of a data set.
Our method, whose empirical convergence has been consistently
verified, compares favorably against popular clustering algorithms,
like K-Means, Neural Gas, and Self-OrganizingMaps, on a synthetic
data set and three UCI benchmarks, IRIS data,Wisconsin breast cancer
database, and Spam database. Future work includes the study of the
theoretical properties of themethod (in particular, convergence) and
extension of the experimental validation to computer vision
applications, like image and video segmentation.
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