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Abstract
Background: This paper presents the use of Support Vector Machines (SVMs) for prediction and
analysis of antisense oligonucleotide (AO) efficacy. The collected database comprises 315 AO
molecules including 68 features each, inducing a problem well-suited to SVMs. The task of feature
selection is crucial given the presence of noisy or redundant features, and the well-known problem
of the curse of dimensionality. We propose a two-stage strategy to develop an optimal model: (1)
feature selection using correlation analysis, mutual information, and SVM-based recursive feature
elimination (SVM-RFE), and (2) AO prediction using standard and profiled SVM formulations. A
profiled SVM gives different weights to different parts of the training data to focus the training on
the most important regions.

Results: In the first stage, the SVM-RFE technique was most efficient and robust in the presence
of low number of samples and high input space dimension. This method yielded an optimal subset
of 14 representative features, which were all related to energy and sequence motifs. The second
stage evaluated the performance of the predictors (overall correlation coefficient between
observed and predicted efficacy, r; mean error, ME; and root-mean-square-error, RMSE) using 8-
fold and minus-one-RNA cross-validation methods. The profiled SVM produced the best results (r
= 0.44, ME = 0.022, and RMSE= 0.278) and predicted high (>75% inhibition of gene expression) and
low efficacy (<25%) AOs with a success rate of 83.3% and 82.9%, respectively, which is better than
by previous approaches. A web server for AO prediction is available online at http://
aosvm.cgb.ki.se/.

Conclusions: The SVM approach is well suited to the AO prediction problem, and yields a
prediction accuracy superior to previous methods. The profiled SVM was found to perform better
than the standard SVM, suggesting that it could lead to improvements in other prediction problems
as well.
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Background
The expression of a gene can be inhibited by antisense oli-
gonucleotides (AOs) targeting the mRNA. However, if the
target site in the mRNA is picked randomly, typically 20%
or less of the AOs are effective inhibitors in vivo [1]. The
sequence properties that make an AO effective are not well
understood, thus many AOs need to be tested to find good
inhibitors, which is time-consuming and costly.

Antisense oligonucleotides contain 10–30 nucleotides
complementary to a specific subsequence of an mRNA tar-
get, which are designed to bind to targets by standard
Watson-Crick base pairing rules. The bound duplex can
knockdown gene expression through a number of mecha-
nisms. These are RNase-H mediated cleavage, inteference
with translation or splicing and destabilization of the tar-
get mRNA [2-4]. The AO inhibits gene expression in a spe-
cific and reversible manner, a process termed 'Gene
knock-down' and all mechanisms leave the AO intact to
induce further knock-down. For a comprehensive review
of the topic see [5].

There are many laboratory-based strategies for selecting
AOs. A classical approach is the 'gene-walk' approach, in
which 15 or more AOs are evaluated for a gene in order to
find a sufficiently effective AO. Methods with higher reli-
ability experimentally determine mRNA regions that are
accessible to RNase-H clevage and therefore more likely to
be an e'ective site for AOs [6-8]. In general, the experimen-
tal approaches are time consuming and expensive.

There are many examples in the literature of experimental
groups attempting to correlate AO sequence properties
with efficacy. A correlation between binding energy (AO-
RNA) and efficacy has been observed [6,9]. Particular tar-
get secondary structures have been shown to correlate
with efficacy [10]. However, the correlations are not con-
sistently detected across studies. This variation can be due
to many factors including biases in the selection of the
AOs, varying experimental conditions, or, in cases where
computational RNA folding prediction was used, limita-
tions in the structure prediction methods. In [11], pub-
lished AOs were examined and recomended values for
dimer, hairpin and ∆G to increase the proportion of
higher efficacy AOs were given.

AO selection can be based on either experimental or the-
oretical approaches (for a review, see [12]). Computa-
tional approaches to AO design have so far focused on
prediction of the structure of the target mRNA and from
this deriving the accessibility of target regions (e.g. [12-
19]). Perhaps the most successful method is that of Ding
and Lawrence [19], using a statistical sampling of second-
ary structures to predict accessible regions to find effective
AOs for rabbit β-globin. In general, methods have not

been evaluated on a broad range of gene targets. Another
method is to look for motifs that occur more often in
effective AOs. Ten sequence motifs have been identified
with a correlation to AO efficacy in [20], and recently,
motifs have been used as the input to neural network
models [21,22] with reasonable success.

In this context, the challenge is hence to discover general
principles that hold across all AO studies. One approach
to discover such principles is to explore a diverse range of
sequence properties and incorporate the factors that affect
AO efficacy into a computational model for AO design.
This requires both a database of tested AOs, such as that
produced by [21,23], and machine learning methods of
model building. The database should be based on large
AO screening experiments to ensure comparability. In this
context, the use of advanced pattern recognition methods
such as neural networks or Support Vector Machines
(SVMs) is becoming very popular because of their good
capabilities for classification, function approximation and
knowledge discovery. In particular, the use of SVMs in
bioinformatics has found a natural match because they
work efficiently with high input dimension spaces and
low number of labeled examples. As a consequence, many
biological problems have been solved in this field. The
interested reader can visit [24] for a collection of SVM
applications in bioinformatics. However, the use of the
SVM has been traditionally attached to the classification
problem, and few efforts have been made to tackle the
regression (or function approximation) problem.

This paper proposes the use of SVMs for prediction and
analysis of AO efficacy. The collected database comprises
315 AO molecules including 68 features each, which
induces a priori a well-suited problem to SVMs, given the
low number of samples and high input space dimension
[25]. Nevertheless, the problem of feature selection
becomes crucial because the number of examples in the
database (AO molecules) is low compared to the number
of features for each of them and, therefore, overfitting is
likely to occur, reducing the performance of the model
[26,27]. Additionally, being able to explain the obtained
solution (in terms of the selected input features) can be as
relevant as obtaining the best possible predictor. This is of
particular interest in bioinformatics in general and for AO
efficacy prediction in particular, as was previously illus-
trated in [21,22]. The issue of feature selection in the SVM
framework has received attention in the recent years [28-
32]. The fact that SVMs are not drastically affected by the
input space dimensionality has sometimes led to the
wrong idea that a feature selection is not necessary at all.
The guiding principle of SVMs ensures certain robustness
to outliers or abnormal samples in the distribution inher-
ently, but the selection of the optimal subset of features is
still an unsolved problem in the literature. We can state
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that in most applications, the success of machine learning
is strongly affected by data quality (redundant, noisy or
unreliable information) and thus a feature selection is not
only recommendable but mandatory.

In this paper, we propose a two-stage strategy to tackle the
problem:

1. Feature selection. This task is carried out using three tech-
niques: correlation analysis, the mutual information fea-
ture selection (MIFS) method, and the SVM-based
recursive feature elimination (SVM-RFE).

2. AO efficacy prediction. We develop standard and profiled
SVMs to accomplish this task. Several measures of accu-
racy of the estimations and two cross-validation methods
are used in order to attain both significant and robust
results.

Methods
Data collection
In the present work, we have extended the database used
in [21] by including 68 features for each AO. The so-called
AO database (AOdb) was assembled from a selection of
AO publications. Published data was incorporated for
which: (a) at least 6 AOs were tested under the same
experimental conditions, although more than one gene
target were allowed; (b) efficacy of the AOs were presented
as a percentage of the control level of the target gene
expression, either as RNA or protein. No papers were
reported matching these criteria before 1990, as is consist-
ent with [23]. Accompanying this data is the full RNA
sequence and accession number (where available)
together with positional coordinates of the AOs and the
position of the coding sequence. Publication details, cell
line used and the chemistry of the AOs were also recorded
in the database. The database consists of 315 oligonucle-
otides from 15 studies testing AO efficacy on 13 genes.
The essential information in the database is AO sequence
and efficacy expressed as (100% - [% of control expres-
sion])/100. For the cases where the same AO is tested in
two different laboratories, or twice by the same laboratory
the average efficacy is used.

A set of a priori representative parameters was derived
from the information contained in the AO sequence col-
lection, including values for: (1) base composition
(Number of A/C/G/T, % GC content): (2) RNA-AO bind-
ing properties (binding energy, enthalpy, entropy): (3)
RNA-AO terminal properties (3' binding energy, 5' bind-
ing energy); (4) AO-AO binding properties (Hairpin
energy and quality, Dimer energy); and (5) 9 of the 10 ver-
ified sequence motifs correlated with efficacy from [20].
Binding energy calculations were completed using ther-
modynamic parameters from [33]. The calculation of

dimer energy was made using an ungapped alignment
with stacking energies taken from [34] and a uniform pen-
alty 0.5 for mismatches. Hairpin energy was calculated
using both Mfold [35] and the Vienna package [36].
Parameters describing cellular uptake and protein interac-
tions were not included, as we have no explicit way of
modeling them. A number of additional features were
included to complete the AOdb: motifs, AO position, pre-
dicted conformation of the target structure, single-strand-
edness, binding energies from [14]. For brevity, the
complete list and more information on the database can
be obtained at [37]. The database is available under
request.

The feature selection problem
The Feature Selection Problem (FSP) in a "learning from
samples" approach can be defined as choosing a subset of
features that achieves the lowest error according to a cer-
tain loss functional [28]. Following a general taxonomy,
the FSP can be tackled using filter [38] and wrapper [26]
methods. Filter methods use an indirect measure of the
quality of the selected features, e.g. evaluating the correla-
tion function between each input feature and the
observed output. A faster convergence of the algorithm is
thus obtained. On the other hand, wrapper methods use
as selection criteria the goodness-of-fit between the inputs
and the output provided by the learning machine under
consideration, e.g. a neural network. This approach guar-
antees that, in each step of the algorithm, the selected sub-
set improves performance of the previous one. Filter
methods might fail to select the right subset of features if
the used criterium deviates from the one used for training
the learning machine, whereas wrapper methods can be
computationally intensive due to the learning machine
has to be retrained for each new set of features. In this
paper, we evaluate the performance of SVMs for different
subsets of relevant features, which are selected using both
filter and wrapper approaches.

Correlation analysis and mutual information
A common practice to evaluate the (linear) relationship

between each of the n input features 

and output , or among pair-wise inputs (  and )

is the use of the correlation function. This is a good
method to remove redundant features and to evaluate
relationships, but fails when working with low number of
samples, or when the assumed linear relationship is not
present. When data is considered as the realization of ran-
dom processes, it is possible to compute the relevance of
variables with respect to each other by means of the
mutual information (MI) function, which is defined as

the difference between entropy of  and the conditional

entropy of  given . The MI function is suitable for

  ( { })= 1× × n

 i  j

i

i  j
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assessing the information content of features in tasks
where methods like the correlation are prone to mistakes.
In fact, the MI function measures a general dependence
between features, instead of a linear dependence offered
by the correlation function. In [39], an algorithm called
Mutual Information Feature Selection (MIFS) was success-
fully presented. The method greedily constructs the set of
features with high mutual information with the output
while trying to minimize the mutual information among

chosen features. Thus, the ith input feature  included in

the set, maximizes  over all

remaining features  for some parameter β ∈ (0,1]. The
feature selection procedure is performed iteratively until a
desired number of features is reached. We will use the cor-
relation function and the MIFS method as filter methods,
i.e. a feature ranking will be provided and only the most
important features will be accounted for modeling.

Support vector regressor (SVR)
Support Vector Machines are state-of-the-art tools for
nonlinear input-output knowledge discovery [40]. The
Support Vector Regressor (SVR) is its implementation for
regression and function approximation, which has been
used in time series prediction with good results [41]. Basi-
cally, the solution offered by the SVR takes the form

, where xi is an input example, φ is

a nonlinear mapping, w is a weight vector and b is the bias
of the regression function. In the SVR, a fixed desired accu-
racy ε is specified a priori and thus one tries to fit a "tube"
with radius ε to the training data. The standard SVR tries
to minimize two factors: the norm of the squared weight
vector, ||w||2, and the sum of permitted errors. These two
factors are traded-off by using a fixed penalization param-
eter, C. We can formally state the SVR method as follows:
given a labeled training data set {(xi, yi), i = 1,..., n}, where
xi ∈ �d and yi ∈ �, and a nonlinear mapping to a higher
dimensional space φ: �d → �H where d ≤ H, find the min-

imum of the following functional with respect to w, ξi, 
and b:

subject to:

where  and C are, respectively, positive slack variables

to deal training samples with a prediction error larger than
ε (ε > 0) and the penalization applied to these ones. These
two parameters are tuned by the user.

The usual procedure for solving the SVR introduces the
linear restrictions (2)-(4) into (1) by means of Lagrange

multipliers αi and  associated to each constraint. The
dual functional obtained has to be minimized with

respect to primal variables (w, ξi and ) and maximized
with respect to dual variables (αi). The optimization of the
obtained dual problem is usually solved through quad-
ratic programming procedures [40,42], and the final solu-
tion provided by the SVR for a test example x can be
expressed as

where only the non-zero Lagrange multipliers account in
the solution. The corresponding input examples are called
support vectors and represent the most critical samples in
the distribution.

An important characteristic of the SVR training methodol-
ogy is that one does not need to know explicitly the form
of the mapping φ (x) but only a kernel function, which
maps the samples into a high dimensional space. This ker-
nel function appears in the form of dot products in (5), K
(xi, xj) = φ(xi)·φ(xj) and can be viewed as a measure of
similarity between samples. Therefore, in order to train
the SVR model, one only has to select a kernel function,
its free parameters, the parameter C, and the size of the ε-
insensitivity zone. In this paper, we have only used the
Gaussian (or Radial Basis Function, RBF) kernel, given by:

K (xi, xj) = exp (-γ||xi - xj||2).  (6)

There are some reasons to select the RBF kernel a priori.
The RBF kernel maps samples into a higher dimensional
space so, unlike the linear kernel, it can handle efficiently
cases in which the relation between the dependent and
independent variables is non-linear. The RBF kernel has
less numerical difficulties than sigmoid or linear kernels.
In fact, sigmoid kernels behave like RBF for certain param-
eters [43,44] but unfortunately, they are non-positive
definite kernels in all situations, which precludes their
practical application [25]. Finally, for using the RBF ker-
nel, only the Gaussian width has to be tuned. For tutori-
als, publications, and software resources on SVM and
kernel-based methods, the reader can visit [45].
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Recursive feature elimination (SVM-RFE)
The SVM-RFE algorithm has been recently proposed in
[29] for selecting genes that are relevant for a cancer clas-
sification problem. The goal is to find a subset of size m
among n features (m <n) that maximizes the performance
of the predictor for a given measure of accuracy. This is a
wrapper method and involves high computational cost.
The method is based on a backward sequential selection.
One starts with all the features and removes one feature at
a time until m features are left. Basically, in each iteration,
one focuses on the weight vector, which constitutes the
solution provided by the SVR and therefore, its analysis is
of fundamental relevance to understand the importance
of each input feature. The removed feature is the one
whose removal minimizes the variation of ||W||2. Hence,
the ranking criterion Rc for a given feature i is:

where K(i) is the kernel matrix of training data when fea-

ture i is removed  and  are

the Lagrange multipliers corresponding to sample k when
the input feature i is removed. The idea underlying this
procedure is basically to evaluate at each iteration which
feature affects less the weight vector norm and, conse-
quently, to remove it.

Results
In this section, we present and discuss the results obtained
both regarding feature selection and prediction accuracy.
Filter and wrapper feature selection methods will provide
different subsets of representative features. SVMs are
trained for each subset and their performance is evaluated
in terms of robustness and accuracy.

Feature selection
The first approach to the FSP consisted of performing a
correlation analysis in order to identify redundant varia-
bles. We adopted a similar strategy followed in [21], i.e. to
remove features correlated to each other at >0.9 (p <
0.001), keeping the highest correlation to efficacy. This
analysis discarded 12 redundant features out of the 68
original ones, and additionally provided a ranking of the
most correlated features to efficacy. We finally selected the
14 top ranked features according to this criterion, ranging
in correlation from -0.35 (∆G) to -0.16 (# Adenine). We
selected this number of features for the purpose of a fair
comparison with the best subset in [21]. Table 1 shows
selected features in both cases. Note that some di'erences
are observed between the present work and [21] with

regards the value of the correlation coefficient,  (first

and last columns, respectively). They are due to the facts
that (1) we have included here very low efficacy oligos in
the calculation, and that (2) because more features were
added to the AO database, e.g. predicted secondary struc-
ture, oligos had to be discarded when the target RNA was
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Table 1: Feature ranking using (a) the correlation coefficient between input features and efficacy ( ), (b) mutual information feature 

selection (MIFS) with β = 0.75, (c) SVM-based Recursive Feature Elimination (SVM-RFE), and (d) best selection in [21] using the 
correlation coefficient.

FEATURE FEATURE MI (β = 0.75) FEATURE SVM-RFE ||W||2 FEATURE in [21]

1 ∆G -0.35 ∆G 0.094 ∆H 0.680 GGGA 0.26
2 # Cytosine 0.31 # Cytosine 0.089 ∆S 0.671 # Cytosine 0.23
3 TCCC 0.28 %GC content 0.077 ∆G 0.193 ∆H -0.19
4 5p∆G -0.26 ∆G/length 0.075 # Cytosine 0.045 ∆G -0.18
5 ∆H -0.24 ∆H 0.064 Hairpin quality 0.035 CAGT -0.18
6 ∆H/length -0.22 ∆H/length 0.061 # Adenine 0.024 AGAG 0.18
7 %GC content 0.22 ∆S 0.060 # Thymine 0.018 GTGG 0.17
8 CCCT 0.21 # Adenine 0.043 Hairpin length 0.014 # Guanine -0.15
9 CCAC 0.21 # Guanine 0.042 5p∆G 0.009 3p∆G 0.14
10 CCCC 0.21 5p∆G 0.040 3p∆G 0.005 ∆S -0.14
11 CTCT 0.20 Hairpin quality 0.027 Dimer 0.004 CCCC -0.13
12 CCCA 0.20 Hairpin length 0.024 Hairpin energy (Mfold) 0.003 Hairpin quality -0.11
13 ACAC -0.16 Hairpin Energy 0.022 # Guanine 0.001 %GC content 0.11
14 # Adenine -0.16 # Thymine 0.016 Hairpin energy (vienna) 0.000 TGGC -0.10

rx yi ,

rx yi , rx yi ,
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unavailable.

A feature ranking according to the correlation coefficient
can be useful to analyze input-output linear dependen-
cies, but it is not good practice to rely only on this decision
to build a model. As a second approach, we ran the MIFS
method and selected a desired subset of best 14 features.
We selected β = 0.75, which yielded a balanced estimation
of both the MI with the output (AO efficacy), and the
already-selected features. The more important features
match the ones selected using the correlation function,
but MIFS also included hairpin measurements. This is due
to the fact that MIFS is not based on correlatedness but on
mutual dependence criteria.

A third approach was the use of SVMs based on the RFE
method. In this task, we trained an SVM to predict AO effi-
cacy using all available features. It should be noted here
that RFE is a wrapper method that involves a very high
computational burden since the SVM must be retrained in
each iteration with the selected features. The best model
was selected by evaluating the RMSE (accuracy of the esti-
mations) in the validation set through the 8-fold cross-
validation method, which splits the data into eight parts,
and uses seven parts for training and the eighth one for
validation. The procedure is then repeated eight times. In
our implementation, we included the possibility sug-
gested in [29] by which it is possible to remove chunks of
features at each iteration –a maximum value around 10
was a suitable option. In our application, only ten itera-
tions were necessary to achieve the best 14 features (see
Table 1). In [20,21], a surprising lack of correlation was
observed between dimer energy and efficacy, which was
attributed to some kind of bias in the databases. In the
present work, nevertheless, SVM-RFE includes dimer
energy as the 11th most relevant feature. In conclusion,
SVM-RFE selects a combination of highly correlated but
also mutually informative features.

We can also conclude that noticeable differences are
observed between the obtained rankings. A possible
explanation for discrepancies of this sort is the non-linear
mapping that SVR methods perform. Explaining those
input-output relationships is often difficult and biased
conclusions are usually obtained. Different families of
methods (SVM, neurofuzzy, decision trees, or neural net-
works) perform different mappings due to their specific
guiding principles (structural risk minimization, member-
ship optimization, entropy-based criteria, or empirical
risk minimization, respectively) and thus, the interpreta-
tion of these methods is quite diffcult. In addition, differ-
ent models (topologies, structures, kernels, membership
functions) in a family would surely yield different results.

Model development
A greedy search was carried out for the free parameters (C,
ε, γ) As regards the penalization parameter, it is a common
practice trying exponentially increase sequences of C (C =
10-2, 10-1,..., 103). In our case study, we achieved good
results in the range of C ∈ [1,1000]. The insensitivity zone
was varied linearly in the range [0.001, 0.3]. The γ param-
eter was exponentially varied in the range γ = 10-7,...,10-1.
For each free parameter combination, we evaluated the
performance of the predictors through several measure-
ments: the correlation coefficient between actual and pre-
dicted efficacies (r), the mean error (ME), and the root-
mean-square-error (RMSE). Additionally, we computed
the rate of observed efficacies above a defined predicted
threshold of 0.75 (SR>0.75) and below 0.25 (SR<0.25).
These prediction ranges are of particular interest, since
they stand for high and low AO efficacies, respectively. In
fact, it is not only important to identify high efficacy oli-
gos but also factors causing AOs to be completely ineffec-
tive ([0,0.25]). However, care must be taken as more noise
can be present in the low efficacy region.

Model comparison
At the first stage of the work, we trained SVMs using the 8-
fold cross-validation method for RFE-based feature selec-
tion. However, this training methodology can lead to
overoptimistic results because AOs on the same gene are
not always independent data points. Hence, we also fol-
lowed a different strategy, which entails removing all AOs
targeting one gene for training, training the model, and
then testing performance on predicting the efficacy of
these oligos. This is a common method [22] and we refer
to it as minus-one-RNA cross-validation (-RNA). It safely
removes any overlap between training and test data, and
thus ensures the generality of the model.

In AO prediction, we are most interested in predicting
good oligos (high efficacy, > 0.75), and those that are bad
(low efficacy, < 0.25). This previous knowledge about the
problem can be introduced in the SVM formulation by tai-
loring specific confidence functions for the adaptation of the
penalization factor C, and the ε-insensitive zone of each
sample. The so-called Profiled SVR (P-SVR) [46] obvi-
ously implies making some changes in the original SVR
formulation since now C and ε become sample-depend-
ent. In [46,47], we designed profiles for the variation of C
and ε in complex pharmacokinetic problems. In this
paper, our intention relaxing or tightening ε and C
depending on the observed AO efficacy value. A proposal
for this variation is illustrated in figure 1. Note that we
increase the penalization of errors committed in the high
or low AO efficacy ranges since we are more interested in
obtaining good results in these regions.
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Additionally, the ε-insensitivity zone is reduced in these
regions thus forcing a reduced error there. Some other
profiles could be introduced in the training methodology
without loss of generality.

Results for all approaches are shown in Table 2 for the val-
idation set. We observe that RFE is the best method for
selecting features. The choice of cross-validation method
does not make much difference; the RMSE is the same
while the goodness-of-fit (r) is almost unchanged. Using
the P-SVR method (with features selected by the 8-fold
crossvalidated RFE) we gained substantially in RMSE, and

also obtained a better balance between the success rates of
high and low predictions. This indicates that the P-SVR
improves the performance of standard SVR even without
a dedicated feature selection method, and suggests that
even better results could be obtained if P-SVR were
embedded in the RFE feature selection procedure.

These outcomes are worth analyzing because one could
expect worse results when using -RNA cross-validation
since this method removes the possibility of cross-talk in
the training phase between overlapping oligos. However,
we have to stress here that, by training the SVR with -RNA

Illustration of Gaussian-like profiles for the penalization factor and the ε-insensitive region in the P-SVR approachFigure 1
Illustration of Gaussian-like profiles for the penalization factor and the ε-insensitive region in the P-SVR approach. In this case, 
we penalize harder the committed errors in the higher and lower efficacy regions. Additionally, the insensitive region becomes 
wider in medium AO efficacies, and thus few AOs will contribute to the cost function and, consequently, become support vec-
tors. Only one additional parameter is introduced in the formulation, i.e. the width of the Gaussian profile, σP.
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cross-validation, one only improves the r indicator, which
is a biased estimator of the accuracy. In fact, accuracy
(RMSE) remains basically the same, and bias (ME)
becomes positive and higher, which could induce some
distrust for the model. When analyzing results from the P-
SVR, we can observe a general improvement in all indica-
tors, which is basically due to the fact that by tightening
the "tube" around the interesting ranges, a higher number
of support vectors is selected there (but lower in the over-
all domain), which induces a richer solution in the inter-
esting zones. In addition, the profiled C parameter
penalizes higher the committed errors in these zones,
which is particularly interesting to deal with outlying sam-
ples in the distribution and to provide a smoother solu-
tion in these particular zones. The designed profile,
nevertheless, could lead to an overfitted solution in the
interesting zone if εi and Ci were not well-controlled.
However, by using the-RNA cross-validation method, this
threat is avoided and better results are finally obtained.
Therefore, the combined strategy of P-SVR and -RNA
cross-validation results in a balanced and robust predic-
tor. Additional consequences can be extracted: (1) the cor-
relation coefficient is relatively low for all methods but
superior to the ones obtained in [21]; (2) differences
among the models are neither numerically (see Table 2)
nor statistically significant as tested with One Way Analy-
sis-Of-Variance (ANOVA) in bias (F = 0.01, p = 0.811) or
accuracy (F = 0.06, p = 0.567); (3) prediction is more accu-
rate, in general terms, for the higher efficacy levels
(SR>0.75, > SR<0.25), as also noted in [22]; and (4) SVM-RFE
can deal efficiently with high input spaces and produces
robust results (compare results with those from the "All
features" subset). Additionally, we can conclude that the
P-SVR improved results in terms of accuracy of the predic-
tions compared to the standard SVR.

Conclusions
In this paper, we have used standard and state-of-the-art
methods for knowledge discovery in a relevant bioinfor-

matics problem: the analysis and prediction of AO effi-
cacy. We have engineered robust and accurate SVMs, and
used filter and wrapper feature selection methods in order
to build representative subsets of input features. Com-
pared to [21], our results represent a significant
improvement. In that work, SR>0.8 was reported to be
50%, and r = 0.30. The success of the P-SVR for the AO
prediction problem suggests that it could be successfully
applied to other prediction problems. A web server for AO
prediction is available online at [48].

Our future work is concentrated to improving results with
more careful design of profiles by the inclusion of fuzzy
and rough sets. Additionally, we are exploring the possi-
bility of providing confidence values for the predictions in
the form of p-values from the Lagrange multipliers. This
way, the user could get a set of best predictions back, then
a second set that is more likely to be less accurate, and so
on. This would allow the lab-user to choose the best ones
first, but if they fail specificity controls they would have
another set to work with.
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