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ABSTRACT

Currently there is no successful computational
approach for identification of genes encoding novel
functional RNAs (fRNAs) in genomic sequences. We
have developed a machine learning approach using
neural networks and support vector machines to
extract common features among known RNAs for
prediction of new RNA genes in the unannotated
regions of prokaryotic and archaeal genomes. The
Escherichia coli genome was used for development,
but we have applied this method to several other
bacterial and archaeal genomes. Networks based on
nucleotide composition were 80–90% accurate in
jackknife testing experiments for bacteria and 90–99%
for hyperthermophilic archaea. We also achieved a
significant improvement in accuracy by combining
these predictions with those obtained using a
second set of parameters consisting of known RNA
sequence motifs and the calculated free energy of
folding. Several known fRNAs not included in the
training datasets were identified as well as several
hundred predicted novel RNAs. These studies indicate
that there are many unidentified RNAs in simple
genomes that can be predicted computationally as a
precursor to experimental study. Public access to
our RNA gene predictions and an interface for user
predictions is available via the web.

INTRODUCTION

The value of genomic DNA sequence data is dependent on the
algorithms and software available for interpretation and analyses
of the nucleotide strings. For example, software packages such
as Glimmer, GeneMark and GeneScan (1,2) are widely used to
identify protein open reading frames (ORFs), while FASTA,
BLAST and PSI-BLAST infer protein function from sequence
homology. The ability to locate all or most protein ORFs in
genomic sequences has led to the entire field of proteomics and
the ability to monitor protein expression and function during
cellular processes.

In contrast to the numerous successful programs and algorithms
for identifying protein genes and coding sequences, virtually
no computational methods are available for identifying novel

genes for stable, functional RNAs (fRNAs) or regulatory
elements in mRNA that control translation or stability. The
major reason for this is that the signals used for finding protein
genes, start and stop codons, the triplet amino acid code and
ribosome-binding (Shine–Dalgarno) sequences, are not
present in RNA genes. Other signals, such as promoters, termi-
nators and processing sites, are not easily recognizable and
thereby are unreliable indicators.

Currently, RNA genes are found in genomic sequences by
their sequence or structural homology to known RNAs.
Programs such as tRNAscan-SE, FAStRNA and Snoscan (3–5)
utilize conserved elements of sequence and structure to identify
tRNAs and snoRNAs. Genes for other known RNAs can often
be located by sequence homology or motif searches (6).
Folding free energy has been used to predict structured RNA
elements as potential fRNAs (7,8). The Pol3scan (9) program
uses a combination of polymerase III binding and terminator
recognition sites together with base pairing motifs to find
eukaryotic tRNAs. Identification of consensus polymerase III
promoters has been used to guide an experimental search for
new RNAs in yeast (10) that was successful in identifying
several expressed RNAs. Recently, a comparative genomics
study of the intergenic regions of Escherichia coli and other
related genomes predicted the presence of 19 novel RNAs that
were confirmed by biochemical experiment (11). Finally, an
experimental study (12) has identified 201 potential new small
RNAs expressed in mouse brain.

There is, however, no general computational approach to
locating novel functional RNA sequences that lack sequence or
structure homology to one of the limited number of known
RNA types. Computational prediction of fRNAs in genomic
sequences would allow experimental testing of expression
levels, functional assay by deletion or mutagenesis, structural
analysis and identification of protein or nucleic acid interaction
partners. These untranslated fRNAs have also been referred to
as non-coding RNA (ncRNA), small RNAs (sRNA, smRNA),
untranslated and small non-messenger RNA (snmRNA). We
will continue to refer to them as fRNA throughout this paper.

Our working hypothesis is that characteristic signals exist in
the sequences of fRNAs that are distinguishable from, and in
contrast to, sequences of non-coding regions of the genome.
Non-coding regions are defined as those regions of the genome
excluding protein genes and RNA genes, along with their
promoters and terminators. We expect that the evolutionary
forces responsible for the diversity of sequences of non-coding
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regions will lead to a different sequence distribution than that
of either protein or RNA coding regions.

We propose to extract these signals from sequences of
known fRNAs and non-coding regions using machine learning
methods, specifically computational neural networks (NNs)
and support vector machines (SVMs), and to apply these
learned rules to the prediction of novel fRNAs among the
currently unannotated regions of the genome. We present here
our initial studies with prokaryotes and archaea, but the same
approach is applicable to eukaryotes, including the human
genome.

MATERIALS AND METHODS

Software

All neural network simulations and testing were done with the
locally developed BIOPROP program (13). We have used the
SVMlight program (14) for all support vector machine calcula-
tions. Large-scale calculations of the free energy of folding
were made using a local program based on the Vienna RNA
package (http://www.tbi.univie.ac.at/~ivo/RNA/) (15).

Genome sequences

Genome sequences and annotations were taken from their original
sources. The E.coli sequence was from the E.coli genome
project at the University of Wisconsin–Madison (http://
www.genome.wisc.edu/). The genome sequences of Mycoplasma
genitalium, Methanococcus jannaschii, Bacillus subtilis,
Haemophilus influenzae and Deinococcus radiodurans were
from the TIGR microbial database (http://www.tigr.org/tdb),
the Pyrococcus horikoshii genome sequence was from the
National Institute of Technology and Evaluation (NITE),

Tokyo, Japan (http://www.bio.nite.go.jp/ot3db_index.html)
and the Mycoplasma pneumoniae sequence from the Heidelberg
M.pneumoniae project (http://www.zmbh.uni-heidelberg.de/
M_pneumoniae/genome/Results.html).

Compilation of sequence databases

We chose to formulate and test our predictive methods on the
E.coli genome as the most well-studied bacterium in terms of
both genome structure and function. The M52 version of the
E.coli K-12 genome sequence (16) was used to compile a
database of fRNA and non-annotated sequences. The well-
characterized fRNA sequences of E.coli as compiled by
Wassarman et al. (17) are shown in Table 1. The sequences of
these RNA molecules served as positive examples from which
we derived parameters for machine learning. The ‘non-
coding’, or intergenic, sequences were obtained by removing
all protein and known fRNA coding regions from the genome
along with a buffer of 50 residues on both the 5′ and 3′ sides so
as to remove possible promoter, terminator and other untranslated
control elements. Sequences in both strands were removed
when there was a protein or RNA coding region on either
strand.

It is inherent in the nature of our problem, discovering
possible RNA genes in non-annotated genomic DNA, that the
‘non-coding’ data will actually contain some real RNA genes.
However, we assume that only a small fraction of the non-
annotated sequences correspond to ‘coding’ sequences of RNA
genes and we are therefore justified in using the non-annotated
sequence as negative examples of RNA genes in machine
learning. We make this assumption realizing that our non-
coding database is somewhat contaminated with currently
unknown RNA genes. After making our initial predictions, we
filter our database in an iterative manner, removing strongly

Table 1. fRNAs in E.coli

Total nucleotides of RNA 41 697.

RNA Gene Length Function

tRNA 86 genes ∼76 each Translation of proteins

5S rRNA 8 gene copies ∼120 each rRNA, translation

16S rRNA 7 gene copies ∼1540 each rRNA, translation

23S rRNA 7 gene copies ∼2900 each rRNA, translation

MicF micF 93 Antisense to ompF

DicF dicF 53 Antisense to ftsZ

M1 rnpB 377 RNase P, RNA processing

4.5S ffs 114 Protein translation, transport

DsrA dsr 85 HNS antagonist, activator of rpoS

OxyS oxyS 109 Activator/repressor, antimutator

10Sa ssrA 363 tmRNA, protein tagging and
degradation

CsrB csrB >360 CsrA antagonist

Spot 42 spf 109 Downstream of polA, inhibition of
DNA synthesis

6S ssrS 184 Regulator of RNA polymerase

RprA rprA 101 Regulator of rpoS
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predicted genes and retraining in order to ‘purify’ our non-
coding database.

The complete E.coli genome consists of 4 697 221 nt on each
strand (9 394 442 total). After removal of all protein coding
genes, RNA coding genes (Table 1) and flanking regions,
337 662 nt remained on each strand for a total of 675 324 non-
coding nucleotides. Our known RNA dataset consists of
41 697 nt. In order to remove bias from the database, duplicate
RNA sequences were removed, leaving one copy of each
rRNA and tRNA. This reduced the RNA database to 8400 nt.
Thus, the non-coding database is ∼80 times as large as the
number of unique RNA coding nucleotides in E.coli.

Each RNA and non-annotated intergenic sequence was then
divided into sequence windows of 80 residues with a 40 nt
overlap between windows (i.e. each window slides 40 residues
along the sequence). This window size was initially chosen to
correspond to the size of tRNAs. Testing with different sized
windows and overlaps showed that this choice was optimal for
both prediction accuracy and computational speed. A window
of <40 residues at the end of the sequence was omitted from
the calculations. A total of 7705 windows from each strand
(15 410 total) were partitioned from the non-coding sequences,
while 188 unique RNA sequence windows were available from
the known RNA sequences (after removing redundant RNAs).
Of these 188 windows, 38.3% were from 23S rRNA, 26.6%
from miscellaneous small RNAs, 20.2% from 16S rRNA,
13.3% from tRNA and 1.6% from 5S rRNA.

The large disparity in non-coding to RNA coding sequence
windows presented a problem for neural network training,
where the number of training examples of each type should be
similar. One answer to this problem is to compile multiple
datasets each having the same sequences from RNA genes, but
with different non-coding sequences. To test this approach we
made five datasets (E.coli 1–5) using the same 188 RNA
coding windows but with a different unique set of 188
windows extracted randomly from the non-coding sequences.
These five datasets were independently used to train and test
neural networks and support vector machines and to predict
novel RNA genes. An advantage of this approach is that
predictions can be checked for agreement between the
different networks, thus reducing false positives.

Selection and calculation of input parameters for machine
learning

We have previously demonstrated that machine learning
methods based on the composition, transition frequency and
sequence distribution of amino acids can be used successfully
in the prediction (18) of protein folding class from sequence
alone. We therefore tested these parameters for their ability to
discriminate sequence windows extracted from fRNAs from
those arising from non-coding regions. Composition was
represented as percent nucleotide composition, %A, %G, %C
and %T (%U). Transition, represented in proteins as the alter-
nation between hydrophobic and hydrophilic amino acids, was
parameterized for RNA simply as the percentage of each
dinucleotide present in the sequence window (i.e. %AA, %AG,
etc.). Since we are using sequence windows rather than
complete gene sequences as our prediction unit, the use of
sequence distribution parameters does not apply.

As a supplement and complement to these compositional
parameters we considered an additional set of parameters

describing the occurrence frequency of sequence motifs
commonly found as RNA structural elements. These included
the well-known sequence motifs UNCG (19), GNRA (20) and
CUYG (R, purine; Y, pyrimidine) found in RNA tetraloops
(21,22) and the AAR (23) subsequence of the tetraloop receptor
motif. In addition, the DNA sequence CTAG (RNA = CUAG)
that occurs rarely in bacterial protein genes and non-coding
regions compared to RNA genes (16,24) was included. Despite
many studies and hypotheses regarding the basis of this
sequence anomaly (25,26), the reasons for this bias are unclear,
although it may have some structural basis (27). The final
parameter of this set was the calculated free energy of folding
for the RNA sequence window. This parameter was chosen
based on calculations showing the average calculated free
energy of folding (28) of the sequence windows corresponding
to known RNAs (E.coli, –2.70 ± 0.52 kcal/80 nt; M.jannaschii,
–3.68 ± 0.72) to be lower than that calculated from the non-
coding sequence windows (E.coli, –2.06 ± 0.85; M.jannaschii,
–1.34 ± 0.66).

The twenty ‘compositional’ parameters (four for percent
nucleotide composition, 16 for percent dinucleotide composi-
tion or transition) and the six ‘structural motif’ parameters
described above were calculated for all sequence windows and
used in training and testing of neural networks and support
vector machines and for prediction of novel RNA genes by the
trained computational machines.

Neural network architecture

All neural networks used in training, testing and prediction
were of the back-propagation, feed-forward type with a single
hidden layer. The 20 input ‘composition’ parameters were used
for testing and training of a neural network with three hidden
nodes, while a separate neural network of similar architecture
was trained and tested using the six ‘structural motif’ parameters.

In order to optimize prediction, the predictions (output
activities) from the composition and structural motif networks
were used as input to a third neural network (voting network),
which is trained to make a final decision as to whether a
sequence window belongs to a RNA gene. The overall network
architecture is shown in Figure 1.

RESULTS AND DISCUSSION

Neural networks for RNA gene prediction in E.coli

Networks were tested by a full jackknife procedure (removing
one example at a time, retraining, testing on the single
example, then averaging over all examples). The results of the
jackknife testing experiments for E.coli (dataset 1) are shown
in Table 2. These results are evaluated in terms of the
contingency matrix (true and false positives and negatives), the
correlation coefficient and Qα (average of the percentage of
correctly predicted positive windows and the percentage of
correctly predicted negative windows) (29).

The composition network has a prediction accuracy, Qα, of
>85%, while the structural motif network alone predicts RNA
genes with slightly over 81% accuracy. However, the voting
network, which takes into account both composition and
structural parameters, performs best, with 92% accuracy over
all examples, rising to 93.5% for the strongest predictions.
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Notably, at least one window of every RNA in our dataset was
predicted in testing experiments.

We also tested a further four E.coli datasets (each with the
same RNA examples and a different set of non-coding
examples) using the same jackknife procedure. The average Qα

for the composition network was 82.9%, whilst that for the
structural motif network was 75.7%. The voting network has
an average Qα of 89.4%. The same pattern is seen in the
correlation coefficients (Table 3), with the voting network
having the highest correlation (average over five datasets,
0.789), followed by the composition network (correlation
coefficient 0.658), with the weakest correlation for the network
based on structural motifs (correlation 0.522).

To evaluate the effect of dataset contamination (RNA
sequences within the non-coding data) in the E.coli datasets,

any negative windows that were strongly predicted to be posi-
tive in both the structural and compositional nets were
removed and the networks retrained. Removal of 10 examples
from E.coli dataset 1 and 14 examples from dataset 3 led to
improvements in the final testing accuracy of ∼2.2 and 1.6%,
respectively. These examples were then tested by both
retrained networks from which they had been omitted and all
24 examples were predicted to be RNA genes by both
networks.

To further examine the effect of contamination, two addi-
tional experiments were undertaken. In the first, any window
that was predicted positive by any of the trained networks was
removed from the negative set. Retraining using the same posi-
tives and a random set of these ‘absolute negatives’ gave a
significant improvement in Qα (96.8% compared to the

Figure 1. Architecture of computational neural networks used for the prediction of fRNAs. Input parameters are supplied to structural motif (six input nodes) and
compositional (20 input nodes) neural networks as described in the text. Each of these networks utilizes a middle layer of hidden nodes (three hidden nodes in each
network). The output activities from the structural and compositional networks are used as input to the voting network (one hidden node) that makes the ultimate
prediction as to whether the sequence window is part of a fRNA. The strength of the links between nodes are the weights (Wij) indicated in the figure.

Table 2. Testing of neural networks for prediction of RNA genes in E.coli

TP, true positive; FP, false positive; FN, false negative; TN, true negative; Qα, average percent correct as defined in Baldi et al. (29); CC, correlation coefficient
(29).

Threshold Structural motif network Compositional network Voting network

TP FP FN TN Qα CC TP FP FN TN Qα CC TP FP FN TN Qα CC

0.5 163 45 26 142 81.1 0.625 157 23 32 165 85.4 0.709 171 13 17 176 92.0 0.841

0.6 154 38 20 132 83.1 0.666 154 22 27 163 86.6 0.732 171 11 17 173 92.5 0.850

0.7 136 31 15 126 85.2 0.706 154 21 23 160 87.7 0.754 171 11 17 173 92.5 0.850

0.8 87 17 14 114 86.6 0.729 149 17 19 149 89.2 0.784 171 11 17 171 92.5 0.849

0.9 24 4 7 101 86.8 0.764 132 15 13 140 90.7 0.813 168 11 11 148 93.5 0.869
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previous 92.0%) and, as expected, there were no false posi-
tives.

In the second experiment all of the negative windows used in
training sets 1–5 were searched for homology using BLAST

(30). Any window that showed any homology to any other
sequence in the NR database was removed from the negative
set (homology was determined as any window that had a
BLAST expectation value <10–3). When this network was

Table 3. Compiled neural network results for all organisms

Data Training net No. of input
windows

TP FP FN TN Qα Correlation
coefficient

E.coli 1 4 376 171 13 17 176 92.0 0.841

6 163 45 26 142 81.1 0.625

20 157 23 32 165 85.4 0.709

E.coli 2 4 376 161 15 27 173 88.8 0.778

6 157 75 31 112 71.7 0.447

20 144 33 44 153 79.4 0.589

E.coli 3 4 376 169 18 19 170 90.2 0.803

6 160 58 28 130 77.1 0.550

20 376 158 28 31 160 84.4 0.687

E.coli 4 4 376 160 18 28 171 87.8 0.757

6 151 56 37 132 75.3 0.508

20 153 35 35 153 81.4 0.628

E.coli 5 4 376 176 33 12 155 88.0 0.765

6 160 72 28 116 73.4 0.482

20 153 26 35 161 83.7 0.675

B.subtilis 4 324 153 0 9 162 97.2 0.946

6 140 30 22 132 84.0 0.680

20 150 14 12 148 92.5 0.840

M.genitalium 4 312 147 23 9 133 89.7 0.798

6 126 41 31 114 76.9 0.539

20 131 31 24 125 82.3 0.647

M.pneumoniae 4 318 145 11 14 148 92.1 0.843

6 128 48 31 111 75.2 0.506

20 133 25 26 134 84.0 0.679

H.influenzae 4 270 133 3 2 132 98.1 0.963

6 118 27 17 109 83.8 0.677

20 124 9 11 127 92.6 0.852

D.radiodurans 4 224 105 18 7 94 88.8 0.781

6 83 46 29 66 66.5 0.334

20 91 21 21 91 81.2 0.625

M.jannaschii 4 278 139 1 0 138 99.6 0.993

6 133 8 6 131 95.0 0.899

20 138 2 1 137 98.9 0.978

P.horikoshii 4 322 148 5 13 156 94.4 0.889

6 138 16 23 146 87.9 0.759

20 140 15 20 146 89.1 0.782

Bacteria 4 1500 657 86 94 664 88.0 0.760

Bacteria except D.radiodurans 4 1276 574 77 63 561 89.0 0.781

Archeae 4 600 285 11 15 289 95.7 0.913
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retrained again an improvement in Qα was seen (95.5%) and a
reduction in the number of false positives was noticed
(8 compared to 15).

The high prediction accuracy for each of the networks and
datasets illustrates that neural networks are able to learn to
distinguish between RNA genes and non-coding regions with
high accuracy using either structural or compositional parameters
as input. It is also apparent that a voting network incorporating
output from both structural and global composition networks is
the most accurate and predicts the greatest percent of the data
at all threshold levels. We thus feel justified in using a voting
network trained with the architecture and parameters described
above to search the intergenic regions of E.coli for novel
fRNAs.

Neural network prediction results for E.coli

Using the trained voting network from each E.coli network and
compiling the results we found that 285 sequence windows
were predicted in all networks to belong to RNA genes in
strand 1 and 277 windows to RNA genes in strand 2, out of the
15 410 intergenic sequence windows in each strand of E.coli
(1.8%). Since many of these predicted windows are consecutive,
the actual number of RNA genes predicted is smaller. If
consecutive windows and cross-strand predictions are taken
into account, approximately 370 novel fRNAs are predicted in
the E.coli genome.

It was also noted that a number of the predicted RNA genes
have strong sequence homology to regions in the E.coli
O157:H7 genome (31) as determined using a BLAST search
(homology was determined as any window that had a BLAST
expectation value <10–5). The non-coding sequence between
bases 2151201 and 2151760 is analogous to a region of the
O157:H7 genome over 523 of 546 bases and is strongly
predicted over four windows in this region. Many predicted
genes were also homologous to regions of Salmonella typh-
imurium and other bacterial genomes closely related to E.coli.
The putative gene between bases 4177162 and 4177523, which
is strongly predicted over three windows, is identical for a
50 nt section to a region of the O157:H7 genome; it is also
conserved for 55 of 56 nt in Citrobacter freundii and 52 of 54 nt
of S.typhimurium. It is part of a ribosomal protein operon in
both E.coli and C.freundii.

Of the putative E.coli RNA genes predicted by the trained
networks, many clustered either together or with known
RNAs. A striking example is observed in the spacer regions
between tRNA genes found in several tRNA operons. In one
operon consisting of lysine and valine tRNA genes, each of
five intergenic regions is predicted as an RNA gene. These
spacers are similar in sequence, as shown by multiple sequence
alignment, can fold into a similar secondary structure and have
homologs in other E.coli tRNA operons and in related organisms
such as S.typhimurium.

A search of the literature revealed a number of fRNAs that
were not included in the original training set. These are
summarized in Table 4. A small RNA of 171 nt from the tyrT
operon of E.coli has been experimentally identified (32) and
proposed to have a modulatory effect on stringent response.
The sequence windows corresponding to this RNA were
strongly predicted by all E.coli networks to be a fRNA. A
number of the known DNA repeat sequences in the E.coli
genome are also predicted by the neural networks to be RNA
genes. The predictions included the TRIP repeat, a 266 nt
sequence, and the QUAD repeat, a 165 nt sequence, both
previously speculated to be RNA genes (33).

The crp divergent RNA gene (34), which regulates expres-
sion, was identified as a 94 nt RNA and was successfully
predicted. RQ120, a 120 nt RNA that was identified as a
recombinant RNA produced in E.coli in the presence of Qβ
replicase (35) was successfully identified. Finally, a small
RNA that inhibits expression of the RepI gene (36) of plasmid
R1162 was also successfully identified by our networks.
Further examples of successfully predicted known fRNAs are
indicated in Table 4. In future iterations of RNAGENiE these
examples can be used in the training set to improve accuracy.

Using comparative genomics to identify conserved intergenic
sequences between E.coli and related genomes, Wassarman et
al. (11) have postulated the presence of 26 potential new RNA
genes. Twenty-five expressed RNAs corresponding to these
sequences were verified by northern blot and microarray
analysis to be present in E.coli. Nineteen of these RNAs appear
to be non-messenger while the remaining six appeared to code
for putative ORFs. Using RNAGENiE we correctly predicted
17 of these 19 novel RNA genes (∼90%) with at least one
sequence window. One site of disagreement corresponds to a

Table 4. Known fRNAs in E.coli predicted with RNAGENiE

Gene (size) Reference Prediction Function

crp (94 nt) (34) Predicted (1/2 windows) Expression regulation

RQ120 (120 nt) (35) Predicted (1/2 windows) Recombinant RNA

029A small RNA (101 nt) (44) Predicted (1/2 windows) Unknown

029B small RNA (118 nt) (44) Not predicted Unknown

CopA (91 nt) (45) Not predicted Expression inhibition

Plasmid 1162 (115 nt) (36) Predicted (2/2 windows) Expression inhibition

gcvB RNA (265 nt) (46) Not predicted Gene repression

tyrT (32) Predicted Modulator

QUAD (33) Predicted (5/5 windows) Unknown

PAIR (33) Predicted (2/3 windows) Unknown
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region in which RNAs were predicted and found to be partially
overlapping on opposite strands of the genome. While we
correctly predict an RNA coding region on the Watson strand
we do not find any signal on the Crick strand. Finally, another
intergenic region was found by Wassarman et al. (11) to
contain two adjacent RNA genes, while we predict only the
first one. It is possible that in this case there is only a single
larger expressed RNA that appears as two sequences after
processing.

Training and testing neural networks in other genomes

We have applied the prediction scheme described above to and
tested it on several other organisms, including the bacteria
B.subtilis (Bs), M.genitalium (Mg), M.pneumoniae (Mp)
D.radiodurans (Dr) and H.influenzae (Hi) and the hyperther-
mophilic archaea M.jannaschii (Mj) and P.horikoshii (Ph)
(Table 3).

The best performance on jackknife testing of the prokaryotes
was for Bs and Hi, which had Qα scores of 97.2 and 98.1%,
respectively. These two genomes have a relatively high G+C
content in their RNA gene sequences compared to the overall
G+C content in their genomes, 1.26 and 1.34, respectively. The
Dr genome, which performed least well on testing (88.8%
correct), had the lowest G+C ratio of all genomes tested, 0.85.

Mg and Mp have small and highly related genomes, with the
Mg genome almost a subset of Mp. Testing of neural networks
for RNA prediction in Mg gave a Qα of 90% and for Mp 92%.
When the network trained on Mg was used to predict Mp
RNAs, it was 89.3% accurate, while the Mp networks were
89.7% accurate in predicting Mg RNAs. This cross-prediction
between organisms suggests that we may be able to predict

RNA genes in many organisms from related species rather than
having to make individual networks for each organism.

The prediction of RNAs in Mj and Ph, both hyperthermophilic
archaeal organisms, was extremely accurate, with Qα values of
99.6 and 94.4%, respectively. As observed for prokaryotes,
this accuracy may partly arise from the relatively high overall
G+C content of RNAs (37) in these hyperthermophiles relative
to the rest of the genome. The ratio of G+C content in the RNA
genes to overall genomic G+C content for Mj is 2.05 and for
Ph 1.58. To further examine this relationship, we show in Figure 2
a plot of Qα versus G+C ratio for all genomes we have studied.
As can be seen, there is a high degree of correlation for most
organisms, indicating, as suggested by Rivas and Eddy (37),
that high G+C content is a key indicator of RNA genes.
However, three genomes are well off the line, with Bs and Hi
having a higher prediction correlation than expected and Mg
lower than expected based strictly on G+C content. Clearly,
other factors than composition must be taken into account to
successfully discriminate between RNA genes and non-coding
DNA in these organisms.

RNA gene prediction in other prokaryotes and archaea

After verification of neural network performance, predictions
are made for all intergenic sequence windows of each genome
as to whether they code for a fRNA. Each prediction is associated
with an activity or strength of prediction that is related to the
likelihood that the prediction is correct. Thus some sequences
are more confidently predicted than other sequences. Consecu-
tive predicted sequences define an RNA that is larger than the
sequence window of 80 residues. We have applied this proce-
dure for the prediction of fRNAs for each of the genomes listed

Figure 2. Qα plotted against the ratio of G+C content in the fRNAs to the overall genomic G+C content. The trend line and correlation coefficient are shown for
D.radiodurans (Dr), E.coli (Ec), M.pneumoniae (Mp), P.horikoshii (Ph) and M.jannaschii (Mj). There is a strong correlation between the G+C content for these
organisms and the ability of RNAGENiE to predict fRNA. For the three remaining organisms that were examined, B.subtilis (Bs), H.influenzae (Hi) and M.genitalium
(Mg), the correlation is not so strong. In the majority of cases RNAGENiE performs better than expected due to the influence of additional parameters to composition.
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and identified many putative fRNAs. These predicted RNAs
are stored in a database on our web site. As in E.coli, several
predicted RNAs not included in our original database have
been identified and characterized in the literature. These are
summarized in Table 5 and described below.

A new small RNA gene (200 bp) was recently discovered in
Mp, along with a homolog in Mg (38). These RNAs were not
included in our training set. The RNAs are expressed with high
copy number and due to its conservation between Mp and Mg,
the authors speculate that it is likely to be a fRNA. The trained
neural networks for each organism successfully predicted the
corresponding gene, with each network strongly predicting the
most highly conserved region of the putative RNA sequences.

Four small RNAs, also not included in our database, were
found to be expressed from the Dr genome in response to UV
radiation (39). These RNAs bind to the product of the rsr gene
(Ro autoantigen ortholog) from D.radiodurans. One of these
RNAs was identified as having structural and sequence simi-
larities to eukaryotic YRNAs. When these sequences were
tested, it was found that three of the four RNAs had at least one
sequence window predicted as a fRNA.

snoRNAs have recently been identified in Mj and other
archaea (40) using the Snoscan program. Our program fared
reasonably well with these predicted guide RNAs that anneal
to rRNA. Each snoRNA is only ∼56 nt in length and so is just
a single sequence window. Out of a total of 59 snoRNAs in Mj
and Ph our program predicted 35. Their small size and the fact
that snoRNAs require rRNA as a template to fold into their
functional form suggests that special paramaterization may be
necessary to predict these types of RNAs.

Support vector machines

An alternative approach to classification problems by machine
learning uses the so-called support vector machine (SVM)
(41). Using the structural motif-based and compositional
parameters described above as input, we created a combined
input pattern file from which we have calculated SVMs to classify
the sequence windows as to whether they are part of fRNAs or
not. The results of this classification are shown in Table 6 for
all organisms. These results were obtained using either a third
degree polynomial or a radial basal kernel function and are all
comparable to, although somewhat less accurate than, the
neural network results.

Contributions of neural network input parameters to
prediction

The weights linking nodes in the computational neural
networks can be analyzed to assess which input parameters are
most important in making a prediction of a sequence window
as belonging to an RNA gene or not. In this manner, a physical
basis for the predictions may be discovered and less informa-
tive parameters can be removed. In order to simplify this anal-
ysis, the networks were retrained as perceptrons, with no
hidden nodes. We have conducted such an analysis for two
E.coli training sets using the known RNA dataset and two
different negative datasets (E.coli 1 and E.coli 2).

For the composition network, the nucleotide compositions of
G and T are most significant, as indicated by the weights, with

Table 5. Other known fRNAs predicted with RNAGENiE

Organism Gene (size) Reference Prediction Function

M.pnuemoniae Mp200 (212 nt) (38) Predicted (2/5 windows) Reducing agent?

M.genitalium Mg170 (170 nt) (38) Predicted (2/4 windows) Reducing agent?

D.radiodurans Ro gene a (146 nt) (39) Predicted (1/3 windows) UV repair

Ro gene b (145 nt) (39) Not predicted UV repair

Ro gene c (126 nt) (39) Predicted (1/3 windows) YRNA

Ro gene d (96 nt) (39) Predicted (1/3 windows) UV repair

M.jannnaschii SnoRNA (∼56 nt each) (40) Not predicted (1 of 8 predicted) rRNA modification

Table 6. SVM results

aKernel function used in SVM: RBE, radial basal equation; 3°, third degree
polynomial.
bSimilar to neural network jackknife testing, in which selected examples are
removed, the SVM retrained and a prediction made for the removed example.
Estimated error is the average of all of these tests.
cRecall is the probability that a known example (training example) is classified
correctly.
dPrecision is the probability that an unknown example (testing example) is
classified correctly.

Organism Kernela L-O-O
estimate of
errorb

Recallc Precisiond

E.coli 1 RBE 12.0 89.9 86.7

E.coli 2 RBE 16.8 86.7 81.1

E.coli 3 3° 13.1 90.9 84.1

E.coli 4 RBE 14.6 87.2 84.1

E.coli 5 RBE 14.4 88.8 83.5

B.subtilis 3° 6.5 95.7 91.7

M.genitalium RBE 12.8 87.2 87.2

M.pneumoniae 3° 12.6 88.7 86.0

H.influenzae RBE 5.9 98.5 90.5

D.radiodurans RBE 16.3 87.5 81.0

M.jannaschii 3° 0.7 100.0 98.6

P.horikoshii RBE 8.1 87.6 95.9
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%G favoring and %T disfavoring prediction as an RNA gene.
Likewise, the dinucleotide compositions most important are
%CT, %GT and %GG, which support RNA gene prediction,
and %GC and %AT, which oppose it.

Analysis of the structural motif network showed that the
largest weights were for links corresponding to the GNRA and
CUAG occurrence frequency and the calculated free energy of
folding. Increases in each of these parameters (more negative
free energy of folding) favors prediction as an RNA gene. The
UNCG, AAR (tetraloop receptor) and CUYG sequence
frequencies are associated with low weights and are therefore
less important for prediction.

Finally, the voting net, in agreement with the accuracy of the
individual structure net and composition net, much more
strongly weights the composition network (greater than 2:1)
relative to the structure network.

To further analyze the effect of individual parameters, the
networks were retrained leaving out each parameter in turn
from both the structural motif and compositional networks.
The results from these modified networks were fed forward
into a voting net that was also retrained. The most significant
observation was that removal of the free energy term had a
major effect on predictive accuracy of the structural motif
network alone, lowering Qα by >5%. However, this omission did
not affect the results of the voting network significantly,
reflecting the robustness of the parameters.

To ensure that the neural networks were not being trained to
recognize just tRNA or rRNA (the majority of the training set)
but were instead recognizing some broad general parameters of
all RNA genes, cross-prediction experiments were undertaken.
In three experiments, either all the tRNA windows, all the
windows from 23S rRNA or all the windows from the small
fRNA genes were excluded from training and then the trained
weights were used to predict the excluded windows. In all
three cases the results supported generalization of the trained
networks. In the case of tRNA, 21 tRNAs were excluded
(corresponding to 25 windows). At the lowest threshold 18 of
the 21 tRNAs were predicted (21 of 25 windows, 84% correct).
For the 23S rRNA, 72 windows were excluded and from the
trained set 62 windows were predicted to code for RNA (86%
correct).

Analysis of the predictions with the other small RNAs
excluded showed that six of 11 excluded RNAs (26 of the
50 windows) were predicted. This shows that there is cross-
prediction between different classes of fRNAs. However,
including all the known small RNAs in the input data trains the
neural nets on as diverse a dataset as possible, allowing it to
recognize new members of the fRNA family. This is shown by
an increase in the prediction level from 50% when all small
RNAs are excluded up to the 88% seen in the full input set.

Rivas and Eddy (37) state that the calculated stability of
most fRNA secondary structures is not sufficiently different
from the predicted stability of a random sequence of the same
composition to be useful as an RNA gene finding approach.
However, if tRNAs are excluded, these authors also show that
fRNAs generally do have higher thermodynamic stabilities
compared to random sequences, but that this difference is
small. Our approach does not compare calculated stability of
fRNAs to random sequences, but rather to non-coding
sequences that have biases of their own. Our results indicate
that together with sequence motifs known to occur commonly

in RNA molecules, the calculated free energy of folding can
improve prediction of known RNAs when compared to the use
of composition alone. We agree with Rivas and Eddy that base
composition is the key factor in distinguishing RNA genes
from non-coding sequences, but our results suggest that in
some cases RNAs can be identified using structural parameters,
including free energy of folding.

Combined species prediction

To test the species-specific bias of our predictive approach, a
number of networks were trained using combined data from
different organisms. The results are shown in Table 3. One set
consisting of both sets of archaeal data (Mj + Ph) performed
very well upon jackknife testing, having a Qα of 96%. The two
trials using combined sets of bacterial data performed less
well, with Qα < 90%. This indicates that common features may
describe and distinguish RNA genes for the hyperthermophilic
archaea, but distantly related bacteria may encode RNA genes
with different characteristics that require species-specific
networks for discrimination. Further experiments with more
genomes are necessary to definitively answer this question.

Prediction of fRNA regions in mRNA

The success discussed above in predicting RNA genes
suggested the possibility that the same or similar algorithms
could be used to predict other fRNA regions, such as the
untranslated control regions (UTRs) of some mRNAs that are
also generally highly structured. We tested this idea on an
evolutionarily conserved RNA stem–loop in the 5′-UTR of
RNase E mRNA (42). This regulatory element was strongly
predicted by our method, with the boundaries well defined by
the prediction.

We have also tested the cis-acting mRNA element called the
selenocysteine insertion sequence (SECIS) occurring in the
E.coli fdhF gene mRNA (43). This 42 nt sequence, which
forms a stem–loop structure, was strongly predicted as a fRNA
region by our program.

Clearly, extensive testing remains to be done to determine
whether the same or related prediction methods can be used to
identify all fRNAs, be they individual genes or control regions
of mRNA.

CONCLUSIONS

The results described above clearly show that RNA genes can
be identified with high confidence in bacterial and archaeal
genomes using a machine learning approach based on differences
in compositional and structural parameters present in known
RNAs compared to non-coding sequences. In addition to cross-
validation testing, strongly predicted sequences in E.coli,
M.genitalium, M.pnuemoniae and D.radiodurans, not included
in the training datasets, have been experimentally characterized
and reported in the literature as expressed fRNAs. Further
credibility is given to our predictions by the observation that
these sequences are highly conserved among closely related
genomes, whereas non-coding sequences are not. We also
make the preliminary observation that control regions in
untranslated mRNA can be identified as fRNAs. Further
studies are necessary to characterize the extent of these
elements and the accuracy of their prediction.
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Although many parameters are important in assignment of a
sequence as part of an RNA gene, one major discriminator of
genes appears to be the local G+C ratio. Thus, prediction
accuracy is greater in genomes, such as the hyperthermophiles
Mj and Ph, which have a much higher G+C composition in the
RNA genes than in the overall genome. This bias is likely due
to their requirement for heat-stable structures in their fRNAs.

Analysis of the input patterns from the fRNA using cluster
analysis showed that the patterns did not contain any discern-
ible clusters. This indicates that we have not produced a
machine learning method that mimics certain classes or
families of fRNAs but rather that we have trained our learning
machines to recognize certain characteristics that are inherent
in all fRNAs. However, our experience with the archeal
snoRNAs shows that there are still some classes which contain
signals sufficiently different from the general class that they
are not consistently recognized. However, as more fRNAs are
identified the learning machines will be trained on a wider
variety of fRNAs and will thus be able to recognize broader
parameters in fRNAs and so better encompass outliers.

We have begun studies with a variety of other parameters to
optimize RNA gene prediction in prokaryotes and archaea.
We are also extending this approach to the identification of
novel fRNAs in eukaryotic organisms such as yeast,
Caenorhabditis elegans and human. Although these organisms
will have a larger database of known RNAs for machine
learning, additional complications such as the intron/exon
structure of genes must be considered.

Availability

These programs are implemented and accessible on the World
Wide Web through the RNAGENiE interface (http://
rnagene.lbl.gov/). Here users type or paste a sequence of
interest into a text window. The program then divides the data
into windows of the appropriate size, converts them to the
proper input parameters and performs a prediction using the
stored neural network weights. The results from RNAGENiE
are then emailed to the users giving scores corresponding to
the likelihood of any window being part of an RNA gene.
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