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Abstract

Leave-one-out cross-validation has been shown to give an almost unbiased estimator of the generalisation properties of statistical models,

and therefore provides a sensible criterion for model selection and comparison. In this paper we show that exact leave-one-out cross-

validation of sparse Least-Squares Support Vector Machines (LS-SVMs) can be implemented with a computational complexity of only

Oð[n2Þ floating point operations, rather than the Oð[2n2Þ operations of a naı̈ve implementation, where [ is the number of training patterns and

n is the number of basis vectors. As a result, leave-one-out cross-validation becomes a practical proposition for model selection in large scale

applications. For clarity the exposition concentrates on sparse least-squares support vector machines in the context of non-linear regression,

but is equally applicable in a pattern recognition setting.

q 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

The generalisation properties of statistical models are

typically governed by a small set of parameters, for

instance regularisation parameters controlling the bias-

variance trade-off; finding the optimal values for these

parameters is an activity known as ‘model selection’.

Model selection frequently seeks to optimise a cross-

validation estimate of an appropriate statistic measuring

generalisation ability on unseen data, for instance mis-

classification rate in the case of pattern recognition or the

sum-of-squares error in a regression setting. A k-fold cross-

validation procedure partitions the available data into k

disjoint subsets. k models are then trained, each model

being trained on a different combination of kK1 of the k

subsets and the test statistic evaluated over the remaining

partition. The mean of the test statistic for each of the

k models is known as the cross-validation estimate of

the test statistic. The most extreme form of cross-

validation, such that k is given by the number of training
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patterns, [, is known as leave-one-out cross-validation.

Leave-one-out cross-validation provides a sensible model

selection criterion as it has been shown to provide an

almost unbiased estimate of the true generalisation ability

of the model (Lemma 1). Empirical studies have shown

that in some cases model selection based on k-fold cross-

validation out performs selection procedures based on the

leave-one-out estimator as the latter is known to exhibit a

comparatively high variance (e.g. Kohavi, 1995). However,

bounds on, or approximations to the leave-one-out

estimator have proved effective criteria for model selection

for conventional support vector machines, (e.g. Chapelle,

Vapnik, Bousquet, & Mukherjee, 2002; Keerthi, 2002;

Vapnik & Chapelle, 2000).

Lemma 1 (Luntz & Brailovsky, 1969). Given a sequence

of observations ZZ fzig
[
iZ1; forming an independent and

identically distributed (i.i.d.) sample from an underlying

distribution P(z), and a hypothesis class H; the empirical

risk can be written as

RempðH;ZÞ Z
1

[

X[

iZ1

Qðzi; hjZÞ; h2H; zi 2Z;
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where Qðz; hjZÞ measures the loss for pattern z of the

optimal hypothesis h2H formed on the basis on the set of

observations Z; denoted by hjZ: Let LðH;ZÞ be the

corresponding leave-one-out estimator

LðH;ZÞ Z
1

[

X[

iZ1

Qðzi; hijZnfzigÞ; hi 2H; zi 2Z;

then the leave-one-out cross-validation estimate of the risk

of the hypothesis class H on data Z; with respect to P(z)

RðH;ZÞ Z
Ð

Qðz; hjZÞdPðzÞ; h2H;

is almost unbiased in the sense that

EfLðH;ZÞg Z EfRðH;Z0Þg;

where the expectations, E{$}, are taken over i.i.d. samples

Z; Z0 wPðzÞ of size [ on the left hand side and [K1 on the

right (Luntz & Brailovsky, 1969; Vapnik, 1998).

Regularisation Machines (Poggio & Girosi, 1990),

Kernel Ridge-Regression (Saunders, Gammerman, &

Vovk, 1998) and the Least-Squares Support Vector

Machine (LS-SVM) (Suykens et al., 2000; Suykens, De

Brabanter, Lukas, & Vandewalle, 2002) comprise a family

of closely related techniques constructing a linear model in a

kernel-induced feature space minimising a regularised sum-

of-squares loss functional. These methods provide an

attractive approach for non-linear pattern recognition and

regression problems as the optimal model parameters are

given by the solution of a simple system of linear equations.

The use of formal regularisation (Tikhonov & Arsenin,

1977) also provides convenient control of the bias-variance

trade-off (Geman, Bienenstock, & Doursat, 1992) necessary

for adequate generalisation in non-trivial applications.

In this paper, we demonstrate that the computational

complexity of leave-one-out cross-validation of a sparse

formulation of the least squares support vector machine is of

the same order as that of the basic training algorithm, i.e.

Oð[3Þ: Exact leave-one-out cross-validation therefore pro-

vides a feasible criterion for model selection in large scale

applications.

The remainder of this paper is structured as follows.

Section 2 introduces the sparse least-squares support vector

machine and describes a computationally efficient method

for performing leave-one-out cross-validation for this class

of kernel machines. Section 3 presents results obtained

using the proposed method on two real-world non-linear

regression tasks, based on well known, public domain

benchmark datasets. Section 4 discusses the origins of the

proposed procedure and suggests some possible extensions.

Finally, the work is summarised in Section 5.
2. Method

In this section, we first describe the least-squares

support vector machine as a kernel form of ridge regression
(Hoerl & Kennard, 1970), before introducing a sparse

formulation with an efficient training algorithm for large

scale applications. A computationally efficient algorithm for

leave-one-out cross-validation is then proposed, based on a

corollary of the familiar Sherman–Woodbury–Morrison

formula.

2.1. Ridge regression

Ridge regression (Hoerl & Kennard, 1970) is a method

from classical statistics that implements a regularised form

of least-squares regression. Given training data

D Z fxi; tig
[
iZ1; x2c3R

d; ti 2T3R;

ridge regression determines the weight vector, w2R
d; and

bias, b, of a linear model, f ðxÞZw$xCb; via minimisation

of the following objective function:

Lðw; bÞ Z
1

2
kwk2 Cg

X[

iZ1

ðti Kw$xi KbÞ2: (1)

The objective function used in ridge regression (1)

implements a form of Tikhonov regularisation (Tikhonov

& Arsenin, 1977) of a sum-of-squares error metric, where g

is a regularisation parameter controlling the bias-variance

trade-off (Geman et al., 1992; Hoerl & Kennard, 1970). This

corresponds to penalised maximum likelihood estimation of

w, assuming the targets have been corrupted by an

independent and identically distributed (i.i.d.) sample

drawn from a Gaussian noise process, with zero mean and

fixed variance a s2

ti Z w$xi Cb C3i; 3wNð0; s2Þ:
2.2. The least-squares support vector machine

A non-linear form of ridge regression (Saunders et al.,

1998), known as the Least-Squares Support Vector Machine

(LS-SVM) (Suykens et al., 2000, 2002), can be obtained via

the so-called ‘kernel trick’, whereby a linear ridge

regression model is constructed in a feature space, Fðf :
c/FÞ; induced by a Mercer kernel defining the inner

product Kðx; x0ÞZfðxÞ$fðx0Þ: The kernel function, K :
c!c/R may be any positive definite kernel. For an

introduction to kernel methods in machine learning see

Cristianini and Shawe-Taylor (2000). The objective func-

tion minimised in constructing a least-squares support

vector machine is given by

Lðw; bÞ Z
1

2
kwk2 Cg

X[

iZ1

ðti Kw$fðxiÞKbÞ2:

The representer theorem (Kimeldorf & Wahba, 1971)

indicates that the solution of an optimisation problem

of this nature can be written in the form of an expansion

over training patterns, i.e. wZ
P[

iZ1 aifðxiÞ: The output of

the least-squares support vector machine is then given by
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the kernel expansion

f ðxÞ Z
X[

iZ1

aiKðxi; xÞCb:

It can easily be shown (Saunders et al., 1998; Suykens,

Lukas, & Vandewalle, 2000) that the optimal coefficients of

this expansion are given by the solution of a set of linear

equations

K CgK1I 1

1T 0

" #
a

b

" #
Z

t

0

" #
;

where KZ ½kij ZKðxi; xjÞ

[
i;jZ1; tZ ðt1; t2;.; t[Þ

T; aZ ða1;

a2;.;a[Þ
T and 1Z(1,1,.,1)T.
2.3. The sparse least-squares support vector machine

Unfortunately, unlike the original support vector

machine (Boser, Guyon, & Vapnik, 1992; Cortes & Vapnik,

1995), the kernel expansions defining least-squares support

vector machines are typically fully dense, i.e. ais0,

c i2{1,2,.,[}. This severely limits the utility of the LS-

SVM in large scale applications as the complexity of the

basic training algorithm is of order Oð[3Þ (although more

efficient methods have been proposed, e.g. Suykens, Lukas,

Van Dooren, De Moor, & Vandewalle 1999). Fortunately a

range of methods for obtaining sparse least-squares support

vector machines are available, see e.g. Cawley & Talbot,

2002a,b; Williams & Seeger, 2001. The sparsity of the

original support vector machine is perhaps best viewed as a

convenient consequence of the use of the hinge loss, instead

of the least-squares loss, in defining the primal optimisation

problem, rather than as a deliberate design aim of the

algorithm. As a result, the kernel expansions for support

vector machine in general are not maximally sparse either

and so several algorithms have been proposed for simplify-

ing existing support vector expansions (Burges, 1996;

Burges & Schölkopf, 1997; Downs, Gates, & Masters,

2001), or for training support vector machines using

a reduced set of candidate support vectors (Lee &

Mangasarian, 2001). The latter is similar in spirit to the

sparse least-squares support vector machine used here.

In order to construct a sparse least-squares support vector

machine, it is assumed that the weight vector, w, can be

represented as a weighted sum of a limited number of basis

vectors ffðziÞg
n
iZ1; z2c3R

d; n/[; such that

w Z
Xn

iZ1

bifðziÞ:

The objective function minimised by the sparse least-

squares support vector machine then becomes

Lðb;bÞZ
1

2

Xn

iZ1

Xn

jZ1

bibjkijCg
X[

iZ1

tiK
Xn

jZ1

bjk̂ijKb

 !2

; (2)
where kij ZKðzi; zjÞ and k̂ij ZKðxi; zjÞ: It is straightforward

to show that this optimisation problem can again be

expressed in the form of a system of linear equations

(see Appendix A.3)

ðR CZTZÞp Z ZTt (3)

where pZ(b, b)T is the vector of model parameters, ZZ
½K̂; 1
; K̂Z ½k̂ij


iZ[;jZn
iZ1;jZ1; K̂Z ½kij


n
i;jZ1 and 1Z ½1
[iZ1 R corre-

sponds to the regularisation Fast Leave-One-Out Cross-

Validation of Sparse LS-SVMs term in (2)

R Z
1

2
gK1K 0

0T 0

2
4

3
5:

Note that the computational complexity of the resulting

training algorithm is of order Oð[n2Þ; being dominated by

construction of the (nC1)!(nC1) matrix (RCZTZ), and

therefore is far better suited to large scale application.
2.4. Selection of reference vectors

There are a number of viable approaches to the problem

of selecting a set of reference vectors: Baudat and Anouar

(2001) propose selection of a minimal set of training

vectors forming a basis for the subspace of F populated by

the data (for alternative approaches, see Cawley & Talbot,

2002a, 2002b; Smola & Schölkopf, 2000; Williams &

Seeger, 2001). Suykens et al. (2000, 2002) iteratively

prune patterns having a small error from the kernel

expansion (note however that this involves starting with a

fully dense least-squares support vector machine, which is

computationally demanding for large [). Alternatively, one

could simply select a random subsample of the training

data, or even the entire training set. For this study, we

adopt the method of Baudat and Anouar, as summarised in

Section 2.4.1.
2.4.1. Feature vector selection

The normalised Euclidean distance between the image

of a datum, x, in feature space, f(x), and f̂SðxÞ; its

optimal reconstruction using a sub-set of the training vectors

ffðxiÞgi2S; is given by

diðSÞ Z
kfðxiÞK f̂SðxiÞk

2

kfðxiÞk
2

: (4)

This distance can be expressed in terms of inner products,

and so via the ‘kernel trick’

diðSÞ Z 1 K
KT

SiK
K1
SSKSi

kii

:

where KSS is a square sub-matrix of the kernel matrix

KZ ½kij ZKðxi; xjÞ

[
i;jZ1; such that KSS Z fkijÞi;j2S and KSi

ZðkjiÞ
T
j2S is a column vector of inner products in F: To form

a basis for the subspace in F populated by the data, it is

sufficient to minimise the mean reconstruction error di over
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all patterns in the training set (Baudat & Anouar, 2001), i.e.

maximize

JðSÞ Z
1

[

X[

iZ1

KT
SiK

K1
SSKSi

kii

: (5)

Starting with SZ:; a basis is constructed in a greedy

manner, at each step adding the training vector maximis-

ing JðSÞ: Note that provided the feature vectors currently

selected are linearly independent KSS will be invertible.

This will always be the case; clearly one would not select

a linearly dependent feature vector as this would not result

in a reduction in the mean reconstruction error. The

algorithm therefore terminates when KSS is no longer

invertible, indicating that a complete basis has been

identified, or when an upper bound on the number of basis

vectors is reached, or when the mean relative reconstruc-

tion error falls below a given threshold. An efficient

implementation of the feature vector selection algorithm is

given in Cawley and Talbot (2002). The computational

complexity of the standard feature vector selection is

Oð[2jSj2Þ; where jSj is the number of feature vectors

extracted. The computational complexity of the improved

algorithm is only OðjSj3Þ; however this is achieved at the

expense of introducing a stochastic element, such that

there is no guarantee that the same set of feature vectors

will be extracted each time the algorithm is executed.

However, provided the feature vectors extracted (approxi-

mately) span the subspace in F occupied by the training

data, the mapping implemented by the sparse LS-SVM

will be (approximately) the same as that of the full

LS-SVM. The storage complexity of both algorithms is

OðjSj2Þ; being dominated by storage of KSS:
2.5. Fast exact leave-one-out cross-validation

At each step of the leave-one-out cross-validation

procedure, a sparse least-squares support vector machine

is constructed excluding a single training pattern from the

data. The vector of model parameters, p(i) at the ith iteration

is then given by the solution of the following system of

linear equations

pðiÞ Z
bðiÞ

bðiÞ

" #
Z ½R CZT

ðiÞZðiÞ

K1ZT

ðiÞt

where Z(i) is the sub-matrix formed by omitting the ith row

of Z. Normally the most computationally expensive step is

the inversion of the matrix CðiÞZ ½RCZT
ðiÞZðiÞ
; with a

complexity of Oðn3Þ operations. Fortunately C(i) can be

written as a rank one modification of a matrix C

CðiÞ Z ½R CZTZ Kziz
T
i 
 Z ½C Kziz

T
i 
;

where zi is the ith row of Z and CZRCZTZ. The following

matrix inversion lemma, a corollary of the familiar

Sherman–Woodbury–Morrison formula, can then be used
to find CK1
ðiÞ in only Oðn2Þ operations, given that CK1 is

already known.

Lemma 2 (Bartlett, 1951). Given an invertible matrix A

and column vector v, then assuming 1CvTAK1vs0

ðA CvvTÞK1 Z AK1 K
AK1vvTAK1

1 CvTAK1v
:

This can be obtained straight-forwardly as a special case

of the familiar Sherman–Woodbury–Morrison formula

(see Appendix A.2).

The solution to the matrix inversion problem can then be

written as

CK1
ðiÞ Z ½C Kziz

T
i 


K1 Z CK1 C
CK1ziz

T
i CK1

1 KzT
i CK1zi

:

The computational complexity of the leave-one-out cross-

validation process is thus reduced to only Oð[n2Þ operations,

which is the same as that of the basic training algorithm for

the sparse least-squares support vector machine.
2.6. A further refinement

For the purposes of model selection based on leave-one-

out cross-validation, we are not generally interested in the

values of the model parameters themselves, but only in the

predicted output of the model for the training pattern

excluded during each trial. For instance we might adopt

Allen’s PRESS (predicted residual sum of squares) statistic

(Allen, 1974)

PRESS Z
X[

iZ1

feðiÞg
2
i ;

where {e(i)}iZtiK{y(i)}i is the residual for the ith training

pattern during the ith iteration of the leave-one-out cross-

validation procedure. Fortunately, it is possible to compute

these residuals without explicitly evaluating the model

parameters in each trial. It is relatively straight-forward to

show that

feðiÞgi Z
ei

1 Khii

;

(see Appendix A.4) where eiZtiKyi is the residual for the

ith training pattern for a sparse least-squares support vector

machine trained on the entire dataset, HZZCK1ZT is the

hat, or smoother, matrix (Hastie, Tibshirani, & Friedman,

2001; Weisberg, 1985) of which hii the ith element of the

leading diagonal (Cook & Weisberg, 1982). Allen’s PRESS

statistic can therefore be evaluated in closed form without

explicit inversion of C(i), again with a computational

complexity of only Oð[n2Þ:



Fig. 2. Leave-one-out cross-validation behaviour of a sparse least-squares

support vector model of the Motorcycle benchmark dataset, using

conventional and fast leave-one-out cross-validation algorithms.
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3. Results

This section presents results obtained using conventional

and fast leave-one-out cross-validation procedures for two

well-studied non-linear regression bench-mark tasks: the

Motorcycle and Boston Housing data sets. The Motorcycle

data set, being a univariate regression task is easily

visualised, whereas the Boston Housing data set is used to

illustrate the scaling properties of the proposed procedure.

All experiments were performed using the MATLAB

programming environment on a personal computer with

dual 1.7 GHz Xeon processors and 4 Gb of RDRAM

(400 MHz bus) running under the Linux operating system.

3.1. The motorcycle dataset

The Motorcycle benchmark consists of a sequence of

accelerometer readings through time following a simulated

motor-cycle crash during an experiment to determine the

efficacy of crash-helmets (Silverman, 1985). Fig. 1 shows

conventional and sparse support vector machine models of

the motorcycle dataset, using a Gaussian radial basis

function (RBF) kernel

Kðx; x0Þ Z expfKsK2jjx Kx0j2g:

The hyper-parameters were selected to minimise a 10-fold

cross-validation estimate of the test sum-of-squares error

using a straight-forward Nelder–Mead simplex algorithm

(Nelder & Mead, 1965) (gZ1.2055!10K3 and sK2Z13.1).

Note that the sparse model is functionally identical to the full

least-squares support vector machine model with only 15

basis vectors comprising the sparse kernel expansion.

The Gram matrix for an RBF kernel is offull-rank (Micchelli,

1986), and so it is not generally possible to form a complete

sparse basis for the subspace of F inhabited by the training

data D: In this case however, only 15 basis vectors can be
Fig. 1. Dense and sparse least-squares support vector machine models of the

motorcycle data set; note the standard and sparse models are essentially

identical.
extracted before the condition of KSS deteriorates to the

point at which it is no longer invertible, indicating that these

vectors form an extremely close approximation to a

complete basis.

Fig. 2 illustrates the leave-one-out cross-validation

behaviour of the sparse least-squares support vector

machine, i.e. the predicted value for each datapoint

comprising the training data using a model trained only on

the remaining datapoints. Note that the behaviour computed

using the proposed fast algorithm (depicted by the

diamonds) is essentially identical to that obtained by

explicit leave-one-out cross-validation (depicted by

crosses). The fast leave-one-out cross-validation algorithm

is however more than two orders of magnitude faster than

the conventional approach for this dataset, as shown in

Table 1. Let the relative sum-of-squares error be defined as

Er Z
ke K êk

kejj
; (6)

where e is the vector of predicted (leave-one-out) residuals

computed explicitly and ê is the vector of predicted

residuals computed via the proposed efficient method. The

relative sum-of-squares error for the Motorcycle data set is

negligible (ErZ7.6!10K6).

3.2. The Boston housing dataset

The Boston housing dataset describes the relationship

between the median value of owner occupied homes in
Table 1

Mean run-time of standard and fast leave-one-out cross-validation

algorithms for the Motorcycle benchmark dataset, over 100 trials

Algorithm Mean run time (s) Standard error

Explicit 0.396950 1.212448!10K3

Fast 0.003072 1.479775!10K5



Fig. 3. Mean relative reconstruction error as a function of the number of

basis vectors identified by the efficient feature vector selection algorithm

for the Boston Housing data set.
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the suburbs of Boston and 13 attributes representing

environmental and social factors believed to be relevant

(Harrison & Rubinfeld, 1978) The input patterns, fxig
[
iZ1;

were first standardised, such that each element of the input

vector has a zero mean and unit variance, allowing an

isotropic Gaussian radial basis kernel (6) to be used. Again

the hyper-parameters were chosen so as to minimise a

10-fold cross-validation estimate of the test sum-of-squares

error (gZ2.89!104 and sK2Z4.36). Fig. 3 shows the

mean relative reconstruction error (4) as a function of the

number of basis vectors identified by the feature vector

selection algorithm. The mean relative reconstruction error

is negligible if more than z200 basis vectors are used.

Explicit and fast leave-one-out cross-validation pro-

cedures were then evaluated for sparse least-squares
Fig. 4. Mean run-time for explicit and fast leave-one-out cross-validation

procedures as a function of the number of training patterns (averaged over

20 trials).
regression networks based on the first 200 basis vectors

identified by the feature vector selection algorithm. Fig. 4

shows the mean run-time in seconds for both algorithms as a

function of the number of training patterns, [, over 20 trials.

The fast leave-one-out cross-validation procedure is in all

cases considerably faster than explicit evaluation, and has

better scaling properties.
4. Discussion

The application of the Bartlett correction formula to the

efficient evaluation of the leave-one-out cross-validation

error of linear models minimising a least-squares criterion

has been known for some time in the field of statistics (Cook

& Weisberg, 1982). The ‘kernel trick’ allows this method to

be extended to non-linear models formed via construction of

a linear model in a feature space defined by a Mercer kernel.

In principal it should be possible to apply a similar procedure

to related kernel models, such as least-squares support

vector classification networks (Suykens & Vandewalle,

1999), Kernel Fisher Discriminant (KFD) analysis (Mika,

Rätsch, Weston, Schölkopf, & Müller, 1999; Xu et al., 2001)

and 2-norm support vector machines (Boser et al., 1992;

Cortes & Vapnik, 1995; Vapnik, 1998), where the Lagrange

multipliers associated with the support vectors are given by

the solution of a system of linear equations corresponding to

the Karush–Kuhn–Tucker (KKT) conditions.
5. Summary

In this paper we have shown that the Bartlett correction

formula can be used to implement exact leave-one-out

cross-validation of sparse least-squares support vector

regression networks with a computational complexity of

only Oð[n2Þ; rather than the Oð[2n2Þ of a naı̈ve direct

implementation. Since the computational complexity of the

basic training algorithm is also Oð[n2Þ; leave-one-out cross-

validation becomes a practical criterion for model selection

for this class of kernel machines, as demonstrated by

experiments on the Motorcycle and Boston Housing

benchmark data sets.
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Appendix A. Proofs and derivations
A.1. Proof of Lemma 1 (Luntz & Brailovsky, 1969)

Following the approach of Vapnik (1998), the expectation

of the leave-one-out estimator is simply the integral over all

datasets, Z; constituting an i.i.d sample from P(z) of size [:

EfLðH;ZÞg Z

ð
1

[

X[

iZ1

Qðzi; hijZnfzigÞdPðz1Þ/dPðz[Þ:

Since the dataset is formed by an i.i.d. sample from P(z),

the ith integral may be moved inside the summation:

Z

ð
1

[

X[

iZ1

Ð
Qðzi; hijZnfzigdPðziÞ

 �
dPðz1Þ

/dPðziK1 dPðziC1Þ/dPðz[Þ:

Let Z0 represent an i.i.d. sample from P(z) of size [K1

Z E
1

[

X[

iZ1

RðH;Z0Þ

( )
;

and so

EfLðH;ZÞg Z EfRðH;Z0Þg;

and the lemma is proven.
A.2. Proof of Lemma 2 (Bartlett, 1951)

The inverse of a block matrix

M Z
A B

C D

" #
;

can be found through block Gauss–Jordan elimination;

beginning by manipulating the matrix into upper echelon

form, we get

MK1 Z
AK1 CAK1BSK1CAK1 KAK1BSK1

KSK1CAK1 SK1

" #
;

where SZDKCAK1B. Equivalently, one could begin by

manipulating the matrix into lower echelon form, giving

MK1 Z
TK1 KTK1BDK1

KDK1CTK1DK1 CDK1CTK1BDK1

" #
;

where TZAKBDK1C. Equating the upper left element of

the matrices on the right hand sides of the two preceding

expressions gives

TK1 Z AK1 CAK1BSK1CAK1;

i.e.

ðA KBDK1CÞK1 Z AK1 CAK1BðD KCAK1BÞK1CAK1:

(A.1)
Eq. (A.1) is known as the Sherman–Woodbury–Morrison

formula (Golub & Van Loan, 1996; Hager, 1989; Sherman

& Morrison, 1949, 1950; Woodbury, 1950). An important

special case results from the assumption that D is the

identity matrix, I, and B and C are column vectors, u and v,

respectively (Bartlett, 1951):

ðA KuvTÞK1 Z AK1 C
AK1uvTAK1

1 KvTAK1u
:

A.3. Derivation of training procedure for

the sparse LS-SVM

The objective function minimised by the sparse least-

squares support vector machine is given by

Lðb; bÞ Z
1

2

Xn

iZ1

Xn

jZ1

bibjkij Cg
X[

iZ1

ti K
Xn

jZ1

bjk̂ij Kb

 !2

;

where kij ZKðzi; zjÞ and k̂ij ZKðxi; zjÞ: Setting the partial

derivatives of the objective function with respect to b and b

to zero, and dividing through by 2g, yields

Xn

iZ1

bi

X[

jZ1

k̂ji Cb Z
X[

jZ1

tj

and cr2{1,2,.,n}

Xn

iZ1

bi

1

2
gK1kir C

X[

jZ1

k̂jr k̂ji

 !
Cb

X[

iZ1

k̂ir Z
X[

iZ1

tik̂ir;

These equations can be expressed as a system of nC1 linear

equations in nC1 unknowns

U F

FT 1

" #
b

b

" #
Z

c

X[

kZ1

tk

2
664

3
775; (A.2)

where the (i, j)th element of the sub-matrix U is

uij Z
1

2
gK1kij C

X[

lZ1

k̂ljk̂li; 1% i; j%n;

the jth element of the vector F is

fj Z
X[

iZ1

k̂ij; 1% j%n;

and the jth element of the vector c is:

cj Z
X[

iZ1

tik̂ij; 1% j%n:

This matrix equation can be simplified by referring to the

vector consisting of all the model parameters as pZ(b,b)T,
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and by defining the matrices R and Z as

R Z
1

2g
K 0

0T 0

2
4

3
5; Z Z K̂ 1

� �

where the (i, j)th element of K is kij, and the (i, j)th element

of K̂ is k̂ij: Eq. (A.2) can then be written as:

ðR CZTZÞp Z ZTt: (A.3)
A.4. Derivation of closed form expression for predicted

residuals

From Eq. (A.3) we know that the vector of model

parameters pZ(b,b) is given by

p Z ðR CZTZÞK1ZTt

where ZZ ½ K̂ 1 
: For convenience, let CZRCZTZ and

dZZTt; such that pZC-1d. Furthermore, let Z(i) and t(i)

represent the data with the ith observation deleted, then

CðiÞ Z C Kziz
T
i ;

and

dðiÞ Z d K tizi:

The Bartlett matrix inversion formula then gives

CK1
ðiÞ Z C C

CK1ziz
T
i CK1

1 KzT
i CK1zi

;

such that the vector of model parameters during the ith

iteration of the leave-one-out cross-validation procedure

becomes

pðiÞ Z C C
CK1ziz

T
i CK1

1 KzT
i CK1zi

� �
ðd K tiziÞ:

Let HZZCK1ZT represent the hat matrix; note that

the ith element of the leading diagonal can be written

hii ZzT
i CK1zi; so expanding the brackets we have

pðiÞ Z CK1d KCK1tizi C
CK1ziz

T
i CK1

1 KzT
i CK1zi

d K
CK1ziz

T
i CK1

1 KzT
i CK1zi

tizi

Z p C
zT

i p K ti

1 Khii

� �
CK1zi:

The residual error for the ith training pattern is eiZ ti KzT
i p

and so

pðiÞ Z p K
ei

1 Khii

CK1zi:

Noting that yZZp, the output of the model during the ith

iteration of the leave-one-out cross-validation procedure can

be written as

yðiÞ Z ZpðiÞ Z y K
ei

1 Khii

hi
where hi is the ith column of H. The vector of residuals for

the training patterns during the leave-one-out cross-

validation procedure can then be written in closed form as

eðiÞ Z t KyðiÞ Z e Cei

1

1 Khii

hi:

The ith element of e(i) is given by

feðiÞgi Z
1

1 Khii

ei:
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