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Abstract

Short interfering RNAs are used in functional genomics studies to knockdown a single gene in a reversible manner. The results of

siRNA experiments are highly dependent on the choice of siRNA sequence. In order to evaluate siRNA design rules, we collected a

database of 398 siRNAs of known efficacy from 92 genes. We used this database to evaluate previously proposed rules from smaller

datasets, and to find a new set of rules that are optimal for the entire database. We also trained a regression tree with full cross-

validation. It was however difficult to obtain the same precision as methods previously tested on small datasets from one or two

genes. We show that those methods are overfitting as they work poorly on independent validation datasets from multiple genes. Our

new design rules can predict siRNAs with efficacy P50% in 91% of cases, and with efficacy P90% in 52% of cases, which is more

than a twofold improvement over random selection. Software for designing siRNAs is available online via a web server at http://

sisearch.cgb.ki.se/ or as a standalone version for high-throughput applications.

� 2004 Elsevier Inc. All rights reserved.
RNAi is a recently discovered biological phenome-

non whereby a single gene may be inhibited at the RNA

stage of synthesis. short interfering RNAs (siRNAs) are

duplexes of two RNA molecules, typically 21-mers with
a 2nt 30 overhang [1]. One strand is loaded into the RISC

complex [2] after which a sequence specific cleavage of

the target takes place. The strength of the principle be-

hind any form of RNA targeting (siRNA and antisense)

is that the molecule can be used to inhibit expression of

any mRNA, and thus the protein it encodes. This effect

can be demonstrated without affecting related proteins,

making it an invaluable tool for functional genomics.
siRNAs have been found to be effective in Arabidopsis

thaliana, Drosophila melanogaster, Caenorhabditis ele-

gans, and mammals [3]. Many reviews of the biological

processes behind siRNA inhibition exist, see for example

[3,4].

Efficient reliable design of high efficacy siRNA mol-

ecules is essential to meet the needs for cost-effective

high-throughput functional genomics projects. To meet
these needs the siRNAs designed should at least con-

form to the following criteria: (a) be predicted with high
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accuracy, (b) be sequence specific, and (c) be produced

in a form that facilitates high-throughput production. In

this paper we address these criteria, focusing primarily

on a and b.
Despite the apparent ease of designing siRNAs

(compared to a popular DNA-based knockdown tech-

nique: antisense oligonucleotides (AOs)), a number of

problems still remain. Randomly selected siRNAs pro-

duce knockdown P50% with 58–78% success rate, while

very effective siRNAs (P90/95%) are found by chance

11–18% of the time [5,6].

Initial design paradigms for siRNAs were based on
motif rules, such as AAN(19)TT, with 30 TT overhangs

on both strands. These evolved into motifs to match

siRNAs with strong binding at one end (the sense 50

end). Recent studies have demonstrated that binding

energy is a key factor in siRNA design. The more so-

phisticated methods compare binding energies along the

siRNA molecule. In brief, findings indicate that relative

and absolute binding energies of the 50 antisense and 50

sense strands determine which strand enters the RISC

complex [7]. The energy values for positions 9–15 have

also been shown to be important in siRNA design [6].

Other studies have indicated that low GC content is

correlated with high efficacy [8,9].

http://sisearch.cgb.ki.se/
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Further studies stress the importance of 50 terminal
nucleotides for determining siRNA efficacy. Antisense 50

AU-rich, sense 50 GC-rich, and antisense positions 1–7

AU-rich are criteria introduced by [10]. Point specific

nucleotide preferences for positions 6, 11, 13, 16, and 19

have also been indicated [11]. A recent study uses a rule-

based approach, incorporating positional rules with

criteria such as %GC content and hairpin formation

potential [5]. Additional common design guidelines in-
Fig. 1. Distribution of siRNAs in each efficacy category for the given property

siRNAs with efficacy high (P90%), moderate (P50%,<90%), and low (<50%

hairpin energy (sense + antisense strands). (D) Difference between antisense a

energies as calculated as in [7].
clude avoiding the following types of motifs: AAAA/
TTTT, GGG/CCC, and long stretches of GCs (e.g.,

CCGCGGC, GCGCGGCG).

Synthetic synthesis of siRNAs is not cost-effective for

large-scale screening projects. This problem has been

addressed by using expression vectors as delivery

method. These vectors produce stable amounts of

siRNA utilizing the cell’s own machinery. Mammalian

expression vectors synthesizing siRNA-like transcripts
. The column coloring of black (j) dotted ( ), and white (�) represents

), respectively. (A) %GC content. (B) Middle energy (7–12). (C) Total

nd sense 50 energy. (E) Antisense 50 energy. (F) Sense 50 energy. All 50
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are able to cause gene knockdown [12]. Short hairpin
(shRNAs) are another example of a similar technique

[13].

There are currently a number of computational tools

available for siRNA design. The tools almost exclusively

look at base composition and position relative to the

start codon [14–16]. Most allow user-defined motifs, but

do not allow constraints on binding energy. Other fea-

tures commonly present are screening for non-specific
siRNAs using BLAST [17] and the removal of siRNAs

spanning SNP sites.
Fig. 1. (cont
In this paper, we evaluate current design paradigms
using a newly assembled siRNA database. We then

evaluate the potential parameter space and describe a

novel classification method based on rules applied to a

subset of these parameters. Using our new method,

which is based primarily on thermodynamic properties,

we achieved an improved success rate. We present

software implementing our method for designing spe-

cific high efficacy siRNAs. On the Web server the
method is integrated with common alternative design

methods and graphical display of the results.
inued)
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Materials and methods

Databases. The database used for this work was derived from a

literature search for articles containing functional siRNAs. The data-

base consists of 30 studies and contains 398 siRNAs targeting 92 genes.

For the analysis only siRNAs of length 19 (duplex region) were used

(287 siRNAs—17 studies, 30 genes) [6,18–33]. Expression levels are

either at the RNA or protein level. For this analysis we use the same

system as [6] for efficacy classification: high, moderate, and low

(P 90%, 90%< xP 50% and <50%, respectively). The 287 siRNAs

were distributed in these categories the following way: high: 25%,

moderate: 49%, and low: 26%.

Calculations. siRNA nomenclature: base-numbering is referred to

by the sense strand (same as target mRNA). The first nucleotide of
Fig. 1. (cont
the 50 end of the sense strand is position 1; this corresponds to

position 19 of the antisense strand. Thermodynamic properties for

siRNAs were calculated at 39 �C using free energy tables [34], except

for energy profiles from [6] where the method is described. Sense

and antisense 50 end energy comparisons were calculated using

methods described in [7]. Hairpin energy is calculated using the

Vienna RNA package at 39 �C [35]. All energy values are given as

absolute values in units of kcal/mol. GC content is calculated using

the 19-mer double-stranded region of the siRNA. Tm calculations for

predicting the melting temperature of the hairpin loop were calcu-

lated based on the nearest neighbor model [36] using the Oligo 6.0

software package.

Statistical analysis. Statistical tools from Excel (Microsoft) were

used for scatter plot data presentations and p value calculations. Re-
inued)
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gression trees were produced using the R statistical package, using the

rpart library (http://www.r-project.org).

Software. Summary data for siRNAs were generated using si-

Search, an application written in Java to support siRNA design. The

application requires BioJava 1.3.1 (http://www.biojava.org) and Java

Runtime Environment 1.4.2. A website interface to this software is

available at http://sisearch.cgb.ki.se/ and a command line version of

the software is available on request.
Fig. 2. Antisense vs. sense end binding energy. High, moderate, and

low efficacies are represented by solid circles, hollow circles, and plus

signs, respectively.

Table 1

Significant (p < 0:001) measures for differentiating between high and

low efficacy siRNAs

Parameter Start

base

End

base

p value

(high vs. low)

Energy� 18 19 <0.00001

Energy 17 19 <0.00001

Energy� 4 8 0.00005

Energy 4 7 0.00005

Energy� 4 6 0.00006

Energy 16 19 0.00009

Energy� 5 8 0.00009

Energy� 6 7 0.00011

Energy 3 8 0.00012

Energy 3 7 0.00021

Energy 1 7 0.00022

S 50 energy 0.00032

Energy 2 7 0.00052

%GC content 0.00064

Energy 15 19 0.00091

Student’s t test was performed comparing the high and low efficacy

siRNA sets for each parameter.
* Indicates also significant (p < 0:001) for low vs. moderate.
Results and discussion

In order to evaluate existing design methods and

develop novel methods we compiled a database of siR-

NAs (see Materials and methods). Evaluation using a

database of siRNAs from many sources allows the val-

idation of models on a number of genes from different

experimental groups. This allows better generalization,

as using a small number of genes may bias the results if

those genes are more or less susceptible to certain siR-
NA features than the average gene. The distribution of

efficacy in the database of 287 siRNAs is 25%, 49%, and

26% (high, moderate, and low, respectively).

We used the database to analyze the effect of siRNA

efficacy-determining features proposed in the literature.

As expected, regions exist for most features where the

number of low efficacy siRNAs is overrepresented

(Fig. 1). For example, siRNAswith highGCcontent (53%
or above) are low efficacy in 22/44 of cases (Fig. 1A). Also,

siRNAs with GC content less than 36% appear enriched

in low efficacy cases. High binding energy (>13 kcal/mol)

in the middle region of the siRNA (positions 7–12) re-

sults in a higher proportion of low efficacy siRNAs

(Fig. 1B), and siRNAs with total hairpin energy of one or

more are less likely to be effective siRNAs (Fig. 1C).

It has been suggested by Schwarz et al. [7] that one of
the most important factors of siRNA efficacy is the

binding energy difference between the antisense 50 and

sense 50 ends. If the binding energy is stronger at the

antisense 50, the incorrect strand is supposed to be loa-

ded into the RISC complex, and no RNA interference

will result. However, when we investigated this energy

difference in isolation, we found no strong correlation

with siRNA efficacy (Fig. 1D), although a trend towards
low efficacy is visible for differences above 2 kcal/mol.

The antisense 50 and sense 50 end binding energies are

shown alone in Figs. 1E and F, and here a trend is

visible for low energy to correlate with high efficacy. To

investigate this further we plotted antisense 50 energy vs.

sense 50 energy (Fig. 2). The majority of high efficacy

siRNAs have a sense 50 end binding energy stronger

than the antisense 50 end. Low efficacy siRNAs are
broadly spread across all energy differences except for

extreme values (6 � 4, >3) where 10/30 siRNAs had

low efficacy. In both Figs. 1D and 2 there is a pro-

nounced bias for high efficacy siRNAs in the region )1
and 0 kcal/mol antisense 50–sense 50 energy difference (just
above the diagonal in Fig. 2). This may be due to some

bias in our database, although the 18 high efficacy (out of

44) siRNAs in this region came from five different studies.

Most of them came from the two genes studied by
Khvorova et al. [6] but these were screening studies with

nopreselectionof target sites. Still, because this rulemight

not be entirely general we have only included it in our

design scheme as an addition to themore general rule that

the energy difference should be <0.

A thorough statistical analysis was performed using a

comprehensive set of potential energy parameters.

http://www.r-project.org
http://www.biojava.org
http://sisearch.cgb.ki.se/


Fig. 3. Distribution of siRNAs in each efficacy category for properties with highest statistical significance. The column coloring of black, dotted, and

white represents siRNAs with efficacy high (P90%), moderate (P50%, <90%), and low (<50%), respectively. (A) 18–19 energy, (B) 4–7 energy, (C) 4–

8 energy, and (D) 4–7 energy using Khvorova et al. [6] method.
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We analyzed binding energy parameters covering all

1–6-mer regions of the antisense strand of the siRNA,

plus previously discussed parameters and energy pa-

rameters described by Khvorova et al. [6]. In total 129

parameters (120 energy parameters, three bond count

parameters, three hairpin energy parameters, and three

GC content parameters) were tested and the most sig-

nificant (p < 0:001) parameters for high vs. low efficacy
siRNAs are shown in Table 1. The regions where the

binding energy was statistically significant overlap con-

siderably, falling into two main categories. The first

describes positions in the region 15–19, the second
describing positions 1–9 (with the strongest signal in

the region 4–9). The effects of these significant pa-

rameters are shown in Fig. 3. Analysis of low vs.

moderate data produced five significant (p < 0:001)
parameters that overlapped with the 15 significant

parameters in the low vs. high analysis. However,

when comparing moderate vs. high efficacy siRNAs

none of the parameters produced a significant p value
(<0.001). Single factors are thus not sufficient to sep-

arate moderate from high efficacy siRNAs.

To evaluate existing methods for siRNA design

we used the siRNA database. The scoring method of



Fig. 3. (continued)

Table 2

Current rules and parameters with highly significant p values

Rule siRNAs

conforming

Ratio

high/low

p value

18–19 energy 102 2.57 <0.00001

4–7 energy 50 2.00 0.00005

4–8 energy 172 1.77 0.00005

AS 50 energy 133 1.69 0.74463

Energy difference 58 1.38 0.03096

%GC content 241 1.31 0.00064

Middle energy 189 1.22 0.45277

S 50 energy 214 1.19 0.00032

Hairpin 199 1.16 0.18639

Khvorova 4–7 energy 220 0.96 0.00195

Whole dataset N/A 0.41 N/A

Ratio high/low is the number of high efficacy siRNAs divided by

the number low efficacy siRNAs remaining after removing non-con-

forming siRNAs.
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Reynolds et al. [5] was tested using a split dataset to

remove bias (indicating which siRNAs the method

used for training). Their method performs significantly

better on their training set (33/65 correctly predicted

high) than on an independent test set (5/16), which

can be caused by overfitting to the training data. This

type of result is typical of strategies using a small

number of genes for training, and shows the need for
verification of strategies on larger and more varied

test sets.

Based on our analysis we created a scoring scheme for

evaluating siRNAs. For each of the parameters in Fig. 1

we chose cutoffs that define regions that maximize the

ratio of high/low efficacy siRNAs. The derived rules

(termed ‘Stockholm rules’) are:
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(a) Total hairpin energy < 1.
(b) Antisense 50 end binding energy < 9.

(c) Sense 50 end binding energy in range 5–9 exclusive.

(d) GC between 36% and 53%.

(e) Middle (7–12) binding energy < 13.

(f) Energy difference < 0.

(g) Energy difference within )1 and 0.

The score of an siRNA is incremented by one for

each rule fulfilled, giving a score range of (0,7). The ef-
fect of each parameter on the ratio of high/low efficacy

siRNAs is shown in Table 2. The result of applying the

Stockholm scoring scheme to the database is shown in

Fig. 4. There is a clear relationship between the score

and the relative percentages of low, moderate, and high

efficacy siRNAs. Using this scoring scheme and a cutoff

score of 6, the proportion of high efficacy siRNAs is

52%, which is a twofold enrichment compared to the
entire database.

To further explore the parameter space we utilized

the regression (classification) tree technique [37]. Re-

gression trees were designed based on the total pa-

rameter set to classify siRNAs into the classes low,

moderate, and high. To avoid overfitting, we gener-

ated the trees using the Khvorova et al. [6] dataset

and tested the resulting trees on the remainder of the
database. The best results were obtained for trees with

low efficacy examples up-weighted by a factor of 2,

which had a 44% (48/108) success rate of classifying

high efficacy siRNAs (Fig. 5, right panel). This is less

than the best rule-based methods, but on the other

hand none of them were cross-validated. However, the

tree method performs better than the other methods
Fig. 4. Classifying the siRNA db using the Stockholm rules. Numbe
when predicting low efficacy siRNAs (Fig. 5, left
panel). Surprisingly, the energy parameters previously

found as most statistically significant were not chosen

by the tree method. This may be due to the stronger

classification power of the base rules (e.g., A or U at

position 19), modeling moderate data points, or sim-

ply that the ‘old’ energy rules do not hold up under

cross-validation.

An assessment of the performance of different siRNA
prediction methods applied to the siRNA database is

shown in Fig. 5. The methods can be split into two

classes: (a) low-performance methods [10,38], with a

success rate of 25–30% on high efficacy siRNAs, and (b)

high-performance methods ([5,6], Stockholm rules, Tree)

with a success rate of 44–52% on high efficacy siRNAs.

The same trend is found when excluding the Khvorova

data from the database, although that leaves too few
datapoints (106) to interpret reliably. In practice, a user

would want to combine the results of different high-

performing methods when selecting siRNAs. In order to

test this technique one would need more data however.

The specificity of the siRNA is an important aspect

of the design process. siRNAs can potentially hy-

bridize with multiple RNA target genes and produce

misleading experimental results [39]. To identify po-
tential cross-hybridization we run BLAST against

cDNA databases such as Unigene [40] or Ensembl [41]

without any filtering. As a guideline, 19 bp siRNA

sequences with identical matches of length P16 to

other genes should be discarded. A search for poten-

tial miRNAs is also recommended; however, BLAST

has limited sensitivity for this type of search and
rs in brackets indicate number of examples in each score class.



Fig. 5. Performance of methods on siRNA database. Score based methods are split as follows (notation low, moderate, and high): Reynolds

et al. (0–2, 3–4, and 5+), Amarzguioui and Prydz ()4 to )2, )1 to 2, and 3 to 5), Ui-tei et al. (II and III, Ib, Ia), and Stockholm rules (0–2,

3–5, and 6–7).
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should only be used for a quick analysis where a more

exact search is not feasible.

siSearch

The siSearch software tool is a flexible siRNA design

program implemented in Java. Through a web or com-

mand line interface (http://www.sisearch.cgb.ki.se) the

user can select the following combinations of design

rules for selecting siRNAs:
1. %GC content of the siRNA.

2. Stockholm rules score.

3. Regression tree classification—trained on the Khvor-

ova et al. dataset.

4. Reynolds et al. rules score (without the oligo 6.0 Tm
calculation).

5. Ui-tei et al. rules score.

6. Amarzguioui and Prydz rules score.
7. Special motifs (AAN19, AAN19TT, NARN17YNN,

and custom motifs).

http://www.sisearch.cgb.ki.se


Fig. 6. siSearch output viewed in Sfixem. The curves directly under the siRNA (216–234) segment show di-nucleotide binding energy (dG) values,

calculated according to Mathews et al. [34]. The binding energy of each end calculated by the Schwarz et al. method is shown as horizontal lines.

Positions 6, 7, and 19 are considered the most important parts of the curve for siRNA design and are shown in red. The lower set of curves are the

free energy profiles as calculated by Khvorova et al. [6]. Averaged reference energy curves from their sets of best (green) and worst (red) siRNAs are

displayed, which can be compared to the measured curve for this siRNA. At position 230, the measured energy is the lowest curve, while the ‘worst

siRNA’ curve is the highest. All curves are calculated from antisense 50 ! 30, which is right! left in the Sfixem display. (For interpretation of the

references to colour in this figure legend, the reader is referred to the web version of this paper.)
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8. Disallow certain motifs (AAAA/TTTT, CCC/GGG,

and long stretches of consecutive GC).

9. Schwarz et al. energy difference between sense and
antisense ends.

Additional built-in resources include BLAST search-

ing in order to ensure that the siRNA is specific to the

target gene. The user may specify the stringency required

for a match. It is also possible to siRNAs that are valid

both in the target organism and a corresponding model

organism. The user provides a homologous sequence to

screen against, providing a search for siRNAsvalid across
multiple species.

Output options include ordering data for the siR-

NAs and vector models described previously. The

output is in html or the more graphically oriented SFS

format [42], viewable with Sfixem [43] (see Fig. 6). The

graphical representation displays the binding energy

profile of the siRNAs, in addition to diagnostic mea-

sures used for the siRNA design. Using the SFS
format allows additional data from other sources (such

as repeat regions, homology results) to be added if

desired.

Design of siRNAs is a fast-changing field; design

rules will continually change as our knowledge of the

field increases. Our software allows the combination
of a number of approaches described previously; by

using this strategy siRNAs that agree with many

known design rules can be found. The system is
easily extendable to include new rules as they are

discovered.
Conclusions

We have evaluated siRNA design by analyzing

individual parameters and known design methods
using a database of siRNAs. Following statistical

analysis we developed a novel scoring scheme and

trained a regression tree classification mechanism,

improving the theoretical success rate of rationally

designed siRNAs. Using the new design rules would

have produced inhibition P50% in 91% of the cases

predicted as highly effective, and an inhibition P90%

in 52% of the same cases.
We have developed software for selecting siRNAs

that is flexible and allows the user to choose between or

combine a number of methods for siRNA design. The

software is available online for single gene siRNA design

and is also available as a standalone application suitable

for high-throughput requirements.
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