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A multichannel statistical classifier for detecting prostate cancer was developed and validated by
combining information from three different magnetic resonance~MR! methodologies: T2-weighted,
T2-mapping, and line scan diffusion imaging~LSDI!. From these MR sequences, four different sets
of image intensities were obtained: T2-weighted~T2W! from T2-weighted imaging, Apparent Dif-
fusion Coefficient~ADC! from LSDI, and proton density~PD! and T2~T2 Map! from T2-mapping
imaging. Manually segmented tumor labels from a radiologist, which were validated by biopsy
results, served as tumor ‘‘ground truth.’’ Textural features were extracted from the images using
co-occurrence matrix~CM! and discrete cosine transform~DCT!. Anatomical location of voxels
was described by a cylindrical coordinate system. A statistical jack-knife approach was used to
evaluate our classifiers. Single-channel maximum likelihood~ML ! classifiers were based on 1 of the
4 basic image intensities. Our multichannel classifiers: support vector machine~SVM! and Fisher
linear discriminant~FLD!, utilized five different sets of derived features. Each classifier generated
a summary statistical map that indicated tumor likelihood in the peripheral zone~PZ! of the prostate
gland. To assess classifier accuracy, the average areas under the receiver operator characteristic
~ROC! curves over all subjects were compared. Our best FLD classifier achieved an average ROC
area of 0.839(60.064), and our best SVM classifier achieved an average ROC area of 0.761
(60.043). The T2W ML classifier, our best single-channel classifier, only achieved an average
ROC area of 0.599(60.146). Compared to the best single-channel ML classifier, our best multi-
channel FLD and SVM classifiers have statistically superior ROC performance (P50.0003 and
0.0017, respectively! from pairwise two-sidedt-test. By integrating the information from multiple
images and capturing the textural and anatomical features in tumor areas, summary statistical maps
can potentially aid in image-guided prostate biopsy and assist in guiding and controlling delivery of
localized therapy under image guidance. ©2003 American Association of Physicists in Medicine.
@DOI: 10.1118/1.1593633#
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INTRODUCTION
Prostate cancer is the most commonly diagnosed noncut
ous malignancy and the second-leading cause of death
2390 Med. Phys. 30 „9…, September 2003 0094-2405 Õ2003Õ3
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cancer in American men.1 Over 40 000 American men ar
diagnosed with prostate cancer each year and cancer is f
at autopsy in 30% of men at the age of 50.2 Evidence sug-
23900„9…Õ2390Õ9Õ$20.00 © 2003 Am. Assoc. Phys. Med.
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2391 Chan et al. : Detection of prostate cancer 2391
gested that 1.5 T axial T2-weighted MR prostate images w
an endorectal coil enables improved visualization and lo
ization of prostate substructure@central gland~CG! and pe-
ripheral zone~PZ!#, providing valuable pathologic and ana
tomical information.3–6 It is known that the majority of
prostate cancers develop in the PZ.7 While such diagnostic
T2-weighted MRI images are a sensitive noninvasive im
ing technique for detecting focal abnormalities in the pr
tate, they lack specificity distinguishing between tumor a
benign prostatic hyperplasia~BPH! and other abnormalities
It is reported that T2-weighted MR only has a specificity
43% for nonpalpable tumors but a sensitivity of 85% f
nonpalpable, posteriorly located tumors.8 Thus, there is a
need to improve the image-based specificity to diagnose
cer and to integrate information from other MR methodo
gies or imaging modalities. As it appears that no one imag
sequence or technique will be adequate, the developme
techniques which integrate multiple data sets for clinical
becomes important.

Recent advances in MR techniques have allowed u
obtain information based on water diffusion and T2 prop
ties to improve MR specificity for prostate cancer. Quanti
tive T2-mapping is motivated in part by some intriguing r
sults from Liney et al.,9–11 who suggested a positiv
correlation between the concentration of citrate, as de
mined by1H spectroscopy and the water T2 value obtain
from T2-mapping methods. Since citrate is the ‘‘good’’ m
tabolite of the prostate gland, presenting the strongest
tabolite signal in normal tissue and BPH,12 a decrease in the
citrate signal provides an indirect indication of potential ca
cer. If T2 maps indeed correlate with citrate concentratio
i.e., carry useful diagnostic data, the higher spatial resolu
of T2-mapping compared to MR spectroscopy would of
potentially greater utility in tumor localization in the pro
tate.

Diffusion-weighted and quantitative diffusion MR imag
ing ~ADC mapping! is used to obtain tissue contrast refle
ing water molecular diffusion. Diffusion MR has becom
essential for assessing acute stroke in the brain.13,14 More
recently, evidence has been presented which suggests
diffusion imaging may also play a role in the early detecti
of tumor response to therapy.15,16 However, diffusion studies
have largely been limited to the brain for a variety of reaso
including motion sensitivity and the chemical shift and su
ceptibility artifacts which plague single-shot echo planar i
aging~EPI! techniques used to overcome motion sensitiv
A diffusion technique with low motion sensitivity and re
duced susceptibility and chemical shift artifacts is the LS
technique recently developed and shown useful for brain
spine imaging.17–19 Its primary drawback is slower acquis
tion times compared to single-shot EPI methods, though
coverage of the rather small prostate gland at reasonable
tial resolutions~24 mm3 voxels! is readily attained in severa
minutes. Thus we have used LSDI methodology to obt
quantitative diffusion data from our patients, motivated
part by preliminary results of others which suggest reduct
of ADC values in tumor vs normal PZ.20

Early works on multichannel MRI classification fre
Medical Physics, Vol. 30, No. 9, September 2003
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quently used a maximum-likelihood approach.21,22There are
also many alternative statistical approaches to multichan
classification for image analysis and pattern recognition23

FLD24 is a traditional approach where thed-dimensional fea-
ture space is projected onto a line which results in the larg
variance of the data. That is,

y5wTx,

wherex is the data vector andy is the projected value on a
line. w is proportional to

waSw
21~mt2mn!,

where Sw 5 S tumor(x 2 mt)(x 2 mt)
T 1 Snormal(x 2 mn)(x

2mn)T is the pooled sample variance of the two classes
mt and mn are the mean of the tumor and normal sampl
respectively.

Introduced in 1995 by Vapnik,25 the SVM,26 is a classifi-
cation technique that has gained popularity in recent ye
for medical applications.27 The objective function that SVM
maximizes isLD5S ia20.5S i , ja ia jK(xi ,xj ), subject to 0
<a<C andS ia i yi50. x is the multidimensional data vec
tor andy is the corresponding class label~11 or 21 for our
2-class problem!. i , j 51,...,L whereL5number of training
samples.K(x,y) is the kernel function that maps the input
a higher dimensionality and gives the decision boundary
nonlinearity.C is a user-chosen optimization parameter a
describes the cost of classification error during SVM tra
ing. A largeC tells SVM to produce a decision boundary th
avoids making any classification errors with the traini
data. SVM training yields w, which is given by
S i 51

N a iK(yi ,xi), whereN is the number of support vectors
A data pointxi is a support vector when the correspondi
a i.0. Support vectors are sample data points that lie on
decision boundary. One can assign the class label base
y5xTw1b where b is the bias term obtained from SVM
training. The more positive the value ofy is, the fartherx is
away from the decision boundary and the more likely it is
be a member of class11. The case is similar for the21
labels wheny,0.

To enhance the feature space, many medical image c
sification applications have used machine vision techniq
including CM and various spatial-frequency filters that c
enhance image features. Haralick and Shanmugan28 pio-
neered the use of CM to capture image texture. A CM i
probability density distribution of two pixel intensities con
ditioned on distance and angle between the two pixels.
cent applications of CM in medical image analysis inclu
MR T2-weighted breast cancer,29 breast mammograms,30

MR imaging for tracking Alzheimer’s disease,31 and colo-
scopic images of cervix lesions.32 The textural features gen
erated by CM were reported to enhance classification po
in these studies.

We conducted a set of experiments to assess our hyp
esis that the SVM classifier will perform better than a FL
or a ML classifier. Also, we hypothesize that classifiers t
integrate anatomical and textural information can achiev
higher tumor detection performance than a classifier ba
on image intensities alone. Our objective is to construc
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2392 Chan et al. : Detection of prostate cancer 2392
summary statistical map based on multiparametric MR
ages that can improve tumor detection and localization.
proved tumor localization may be valuable for a variety
treatment strategies for prostate cancer including brac
therapy and newer more precise therapies such as foc
ultrasound.

MATERIALS AND METHODS

Patient selection and imaging protocols

Fifteen patients were enrolled in the study. The eligibil
criteria were men with

~1! abnormal prostate specific antigen~PSA! levels~.4 ng/
ml! and

~2! either have had at least two prior negative/normal pr
tate biopsies performed bytrans-rectal ultrasound
~TRUS! or cannot undergo TRUS biopsies because
prior rectal surgery.

For our analysis, these patients were further stratified
two groups based on whether they had undergone a bra
therapy procedure or not. This is because post-brachythe
patients tended to have altered T2W intensities due to
induction of radiation fibrosis. We restricted our multicha
nel classifiers to the nonbrachytherapy group because
majority of patients belonged to that group. The nonbrac
therapy group had no confirmed cancer, whereas the bra
therapy group had biopsy-confirmed cancer. Sextant bio
~samples collected from apex left, apex right, mid-gland le
mid-gland right, base left, and base right of the gland! was
performed on each patient.

The 1.5 T MR~Signa LX, GE Medical Systems, Milwau
kee WI! imaging was performed in a clinical system using
endorectal coil with an integrated pelvic-phased multicoil
ray. The endorectal coil is a receive-only coil mounted ins
a latex balloon, and assumes a diameter of 4–6 cm o
inflated in the patient’s rectum. The patient was placed
pine in the closed-bore magnet for the examination. T
axial T2W images were fast spin echo~FSE! images using
12 echoes and a repetition time~TR!/effective echo time
(ETE)56050 ms/105 ms, field of view of 12 cm, sectio
thickness of 3 mm, section gap of 0 mm, matrix of 2
3256, three signal averages!. Typical acquisition times are
5–6 min.

Diffusion-weighted images were acquired with LSDI
an oblique coronal orientation to provide maximal gla
coverage with a minimal number of slices. LSDI involve
the use of a pair of slice selective RF pulses to elicit
appropriately diffusion weighted spin–echo signal from
single column~loosely referred to as ‘‘line’’ in the LSDI
acronym! of tissue. The LSDI sequence employed 64 c
umns per slice with each column being 16 mm2 in cross
section and with an along-column resolution of 1.5 mm
sulting in approximately 24 mm3 voxel sizes. Twob-factors,
5 and 750 s/mm2 were employed along with three separa
diffusion sensitization directions~1,21,21/2!, ~1/2,1,21!,
and ~1,1/2,1!. Though individual columns were sampled e
Medical Physics, Vol. 30, No. 9, September 2003
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ery 0.12 s, the effective TR was greater than 4 s so
minimal T1-weighting occurred. A TE of 70 ms accomm
dated the highb-factor of 750 s/mm2 using our available
gradient strengths~maxima of 2.3 Gauss/cm!. Using two
point monoexponential analyses along each diffusion se
tization direction, high quality trace ADC maps are obtaine
as discussed in detail in the original LSDI article by Gud
jartssonet al.A total of 5 to 12 slices at 4 mm slice thicknes
and no gap were used to cover the entire gland with 434
31.5 mm3 voxel dimensions in total scan times between
and 10 minutes~50 s/slice!.

An FSE sequence utilizing eight echoes with an ec
spacing of 13.5 ms was employed to make maps of the sp
spin relaxation time~T2! throughout the entire prostate glan
at a 330.730.8 mm3 spatial resolution with slices acquire
in oblique coronal planes, as with LSDI. The signal intens
~S! has the approximate formS5r(12exp(2TR/T1))
3exp(2T2/TE), wherer is the PD intensity, T1 the spin
lattice relaxation time. A 2563192 ~frequency by phase! in-
plane matrix was used with a 2.5 s TR to gather 5 to
3-mm-thick contiguous images of the gland in 60 s. T
sequence is repeated four times with four different values
the effective echo time ranging from 27 ms to 108 ms at
ms intervals. Thus in approximately 4 minutes a compl
data set is collected allowing for mapping of the T2 val
throughout the gland by performing monoexponential fits
signal intensity vs echo time for each voxel. We interpret
y intercept of the fits as the effective proton density~PD!
intensity and the negative inverse of the slope as the effec
T2 value used for the T2 Map intensities. The accuracy a
precision of this T2 Map methodology was tested with fi
small ~10 mm OD! vials of water doped with the gadolinium
~Gd! based MR contrast agent ProHance~Bracco Diagnos-
tics Inc., Princeton, NJ! to levels of 1, 1.5, 2, 2.5, and
3 mM Gd in the form of 10-~2-hydroxy-propyl!-1,4,7,10-
tetraazacyclododecane-1,4,7-triacetic acid. The five v
were bundled together in a 3 cmring roughly the size of the
prostate and were scanned with the same coil configura
used for prostate imaging. Them6s T2 values~in ms! cal-
culated from a 333 region of interest~ROI! within each vial
of the T2 Map were, from lowest to highest Gd concent
tions, 255618, 15569, 11164, 8467, and 6863. The
mean coefficient of variation for T2 over this range of T
values encountered in the prostate~vide infra! is thus 5.8%
which we assessed as our T2 Map precision. The relaxi
curve~1/T2 vs mM Gd! generated from this data was high
linear with a correlation coefficient above 0.999 and a slo
of 5.40 s21/mM. This value for the relaxivity is typical of T2
relaxivities reported for common Gd chelates contr
agents. Reichenbachet al.,33 for example, reported a relax
ivity of 5.2 s21/mM Gd for a similar contrast agent at 1.5 T
Thus, our T2 Map methodology has an inherent precision
the order of 6% and is reasonably accurate over the rang
T2 values encountered in the prostate.

Tumor ‘‘ground-truth’’ labels

A radiologist manually outlined suspected tumor~TU!,
PZ, and total gland~TG! on axial T2W images. We com
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2393 Chan et al. : Detection of prostate cancer 2393
bined the tumor label along with the biopsy pathology
ports to form biopsy validated tumor labels for classifi
training. In a typical biopsy, the PZ is divided into six r
gions: left/right3base/mid/apex. Only regions marked po
tive for cancer in both the biopsy report and the radiologis
label are included in the validated ‘‘ground truth’’ tumor la
bels.

Textural features

We eliminated the angle dependence in the CM based
the observation that tumor textures in the prostate pos
radial symmetry. Our CM covered a 939 pixel window and
had 14 distinct distances. We scaled image intensities to
range between 0–255 by mapping the 256 levels line
onto the image intensity range of max$0,(m23"s)% to (m
13"s). For each center pixel, we considered itsn neighbors
that were equidistant from the center pixel. To model
‘‘texture’’ differences of tumor vs normal tissues, we co
structed log likelihood ratios@ log(P(tumor)/P(normal)# for
each of thesen pairs and took the median of then log like-
lihoods as the feature statistic.P(tumor) andP(normal) are
the conditional probabilities of tumor and normal pixel, r
spectively, obtained from the CM entries that correspond
the pair of pixel intensities and distance between pixels.
cause radiologists often considered the slice above or be
the current image slice for confirmation of a lesion/tumor,
extended the CM method to 3-dimension by construct
CM one slice above and below the current slice. Thus,
features for the CM from the same slice and 15 features f
the CM one slice above or below the center pixel resulted
29 CM features total for each of the four basic MR imag

To capture the frequency characteristics of tumor,
computed 2D–DCT34 of a 7 pixel37 pixel window centered
at each pixel in the images. DCT is used in JPEG ima
compression35 which retains the lower frequencies of an im
age. In general, these lower frequencies are able to cap
the general visual features of images. The 49 DCT coe
cients formed our feature statistics for each of the four ba
MR images.

Anatomical features

We used the cylindrical coordinate system (r ,u,z) to de-
scribe each anatomical location and set the origin at the
troid of the gland. The coordinatesr andz are rescaled to fit
the range of21 to 1 for each gland.u is in the range of 0 to
p with anterior set to 0 and we assume left/right symmetry
the gland. Thez coordinate could help distinguish the ape
mid-gland, and base, which had observably different im
and anatomical features. Empirical observations pointed
common occurrences of prostate tumors in the axial 5:00
7:00 o’clock positions of the PZ and theu coordinate could
potentially distinguish these anatomical areas.

Feature sets

Five feature sets were chosen to test our classifiers.ba-
sic4 includes only the four signal intensities: T2W, ADC
Medical Physics, Vol. 30, No. 9, September 2003
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PD, and T2 Map.basic41anatomyincludes the four signa
intensities and the three cylindrical coordinates from a
tomical features. Besides the seven features inbasic4
1anatomy, all CM also includes 29 CM entries for each M
sequence, generating an additional 4329 features.all DCT
includes all thebasic41anatomyfeatures plus the DCT fea
tures from all four types of MR images. AllCM1DCT is
the union of all the features inall CM andall DCT.

Statistical classifiers

For FLD training, we randomly sampled 10% of the P
data and retained all the tumor data because we had abo
times more PZ data than tumor data. All features were s
dardized tom50 ands51 prior to training. After obtaining
the FLD vectorw, we constructed a ML classifier using th
training dataset.

For SVM training, we randomly sampled 10% of the P
data and retained all the tumor data to confine the train
dataset to a manageable size for SVM training converge
All features are standardized tom50 and s51 prior to
training. We chose the radial basis function kernelK(x,y)
5exp$2ux2yu2/s% with parameterss52 andC5100. In this
study, we used the MATLAB support vector toolbox36 devel-
oped by Crawley, which used Platt’s sequential minimizat
algorithm for optimization.37

Software

All feature generation and classifier training were co
puted using the MATLAB38 software package. The softwar
for manual segmentation by the radiologist, volume calcu
tion, and image interpolation was developed in-house for
project with the Java39 language.

Classifier accuracy

To compare the accuracy of classifiers, we perform
standard ROC40 analysis on each of the 11 nonbrachythera
patients. We chose the area under the ROC curve as
benchmark for classifier performance. We adopted a ja
knife strategy where we trained the classifier withn21 cases
and applied the trained classifier on the remaining case.
m6s of the n leave-one-out ROC areas were reported.
determine the significance in the difference in mean R
areas of two classifiers, we utilized pairwise 2-sided s
dents’t-test ata50.05.

RESULTS

Pathology summary

We divided the patients into two groups.

~1! Post-brachytherapy group: had confirmed cancer
prior brachytherapy treatment.

~2! Nonbrachytherapy group: had no prior treatment.

Of the 11 nonbrachytherapy patients in this study, n
had confirmed adenocarcinoma and one had prostatic
traepithelial neoplasm~PIN!, a precursor to cancer, from th
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2394 Chan et al. : Detection of prostate cancer 2394
biopsy reports. The average recurrent tumor volume w
1.0360.56 cm3 and the average total gland volume w
43.03619.26 cm3. The mean percentage of TU volume/P
volume was 6.8063.99 %. Patients in this group had sma
to medium size tumors, with minimal seminal vesicle a
extra-capsule invasion. The average Gleason score for t
with confirmed cancer was 6.2 and had a range of 6–7,
dicating that most of the nonbrachytherapy patients had
dium grade adenocarcinoma. Of the four post-brachyther
patients in this study, the average recurrent tumor volu
was 1.7261.50 cm3 and the average total gland volume w
33.3667.26 cm3. The mean percentage of TU volume/P
volume was 17.62618.16 %. The average Gleason score
this group was 6.5 and had a range of 6–8, indicating
the patients in this study had more aggressive tumors w
medium to high grade adenocarcinoma and larger volu
tumors. This is not surprising as their tumors had failed
respond to the initial therapy and had recurred.

Signal intensity statistics

From the 11 nonbrachytherapy patients, 9325 PZ d
points were collected and out of this, 507 were TU d
points. From the four post-brachytherapy patients, 2490
data points were collected and out of this, 308 were TU d
points. Them6s of the signal intensities for each MR imag
parameter in this study is shown in Tables I and II. For ea
patient, PZ intensities were standardized tom50 ands51
and TU intensities were standardized using the mean
standard deviation of the PZ for comparison.~See Fig. 1.!

TABLE I. Signal intensity summary for 11 nonbrachytherapy patients.
signals are standardized tom50 ands51. Tumor signals are normalize
with the mean and standard deviation of the PZ for comparison.m ands of
nonstandardized ADC and T2 Map values are also presented.

Image type PZ (m6s) Tumor (m6s)

T2W 061 20.5860.48
ADC 061 20.6060.96
PD 061 20.3260.83
T2 Map 061 20.5560.79

ADC ~in m2/ms! 1.61160.366 1.43260.349
T2 Map ~in ms! 128.3642.9 102.7627.5

TABLE II. Signal intensity summary for four post-brachytherapy patients.
signals are standardized tom50 ands51. Tumor signals are normalize
with the mean and standard deviation of the PZ for comparison.m ands of
nonstandardized ADC and T2 Map values are also presented.

Image type PZ (m6s) Tumor (m6s)

T2W 061 20.0460.89
ADC 061 20.6060.83
PD 061 0.3061.19
T2 Map 061 20.4960.71

ADC ~in m2/ms! 1.52460.306 1.25060.314
T2 Map ~in ms! 88.0620.7 76.6615.9
Medical Physics, Vol. 30, No. 9, September 2003
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Classifier accuracy

Figure 2 shows two sample summary statistical maps g
erated by FLD and SVM classifier and Fig. 3 shows seve
ROC curves from our best single-channel ML classifier a
our best multichannel classifier. The results for the sing
channel ML classifiers, multichannel FLD classifiers, a
SVM classifiers are shown in Table III. Pairwise two-sid
t-tests witha50.05 among the four single-channel classi
ers supported the hypothesis that all single-channel clas
ers based on intensity alone had statistically equivalent R
performance (P.0.05).

The comparison between the multichannel FLD classifi
with T2W axial ML classifier, the best of the four single
channel classifiers indicated the following: pairwise tw
sided t-tests witha50.05 supported that FLD withbasic4
1anatomy(P-value50.0024),all CM (P-value50.0004),
all DCT (P-value50.002), andall CM1DCT (P-value
50.0003) offered greater classification power than ML cla
sifier based on T2W axial intensity alone. However, pairw
two-sidedt-tests witha50.05 did not support that FLD with
basic4classifier performed better than single-channel T2
axial ML classifier (P value50.355). Similarly, we com-
pared the multichannel SVM classifiers with T2W axial M
classifier. Pairwise two-sidedt-tests witha50.05 supported
that SVM with basic41anatomy~P value50.0017! offered
greater classification power than ML classifier based on T
axial intensity alone. However, pairwise two-sidedt-tests
with a50.05 did not support that SVM withbasic4classifier
performed better than single-channel T2W axial ML clas
fier (P value50.483).

The training time for FLD classifiers is between 1 to
hours and for SVM classifiers that converged numerica
between 2 to 60 hours. We failed to get SVM convergen
for the feature setsall CM, all DCT, and all CM1DCT
after 72 hours of simulation. For the other three feature s
basic4andbasic41anatomythat we managed to get conve
gence, we compared the average area under ROC of S
classifier with FLD classifier using two-sided pairwiset-test
at a50.05. SVM performs better than FLD forbasic4
1anatomy (P value50.0003) while SVM and FLD have
equal performance statistically forbasic4(P value50.29).

DISCUSSION

The study demonstrates that it is possible to create s
mary statistical maps that combine multiparametric da
Furthermore, the information from the data sets in combi
tion can be more powerful than any one alone, supporting
need to increase the number of tools and methods to test
approach further.

Students’t-test comparisons of ROC areas suggested
SVM produced greater detection power than FLD classifi
for the feature setsall CM andbasic41anatomyand statis-
tically equivalent detection power for thebasic4feature set.
The merits of the nonlinear decision boundary of the SV
classifier become noticeable when the number of featu
increases. Although SVM achieved a better performa

Z
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FIG. 1. A sample set of multiparametric MR images in the oblique coronal plane. Top left is a T2W image, resampled from the axial planes to th
coronal planes of the other images. Top right is an ADC Map from LSDI. Bottom left and bottom right are T2 Map and proton density imag
T2-mapping. The green label is total gland, the yellow label is PZ, and the blue label is biopsy validated tumor label.
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than FLD, classifier training convergence and simulat
time are two issues to consider.

The training time for FLD classifiers is between 1 to
hours and for the converged SVM classifiers between 2 to
hours, depending on number of classification channels
the number of samples. We included all tumor samples fr
the nine cases for training~507 voxels! and 10% of healthy
PZ samples~933 voxels!. We failed to get convergence o
SVM training after 72 hours for the larger feature setsall
CM1DCT andall DCT. This is because both of these fe
ture sets include over 150 channels. The FLD results sug
that feature setsall CM andall CM1DCT have statistically
equivalent performance and therefore, we expected sim
findings for SVM had theall CM1DCT training converged.
To include both frequency and CM features, we could ha
randomly selected a smaller number of CM entries and D
frequencies to reduce the dimensionality of the problem
many CM entries and DCT frequencies contain high mut
information.

Utilization of CM and DCT significantly enhanced tumo
Medical Physics, Vol. 30, No. 9, September 2003
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features in the images as supported byt-test analysis. For
both FLD and SVM classifiers, we noticed thatall CM, all
DCT and all CM1DCT performed better thanbasic4and
basic41anatomy feature sets according to the ROC ar
analysis, which proved the effectiveness of these mach
vision techniques for prostate cancer detection with MRI

We found as expected that the group of patients who
undergone prostate brachytherapy had different T2W sig
intensity properties compared to the group without brac
therapy. The results in Tables I and II showed that the po
brachytherapy patients almost had no difference in m
T2W signal intensity between PZ and tumor tissues while
the nonbrachytherapy patients, the difference in standard
means of T2W signal intensities between PZ and tumor
sues is 0.58. From the T2W images of post-brachyther
patients, one can observe that the PZ intensity is darkene
a result of brachytherapy and therefore, it is difficult to d
ferentiate between tumor and PZ tissues based on T2W
tensity level. This finding is consistent with the quantitati
shortening of T2 observed in the post-brachytherapy patie



on identi
One can

2396 Chan et al. : Detection of prostate cancer 2396
FIG. 2. Summary statistical maps of~a! Fisher linear discriminant~FLD! classifier and~b! support vector machine~SVM! classifier. The FLD classifier utilizes
all co-occurrence, DCT, anatomical and signal intensity features and the SVM classifier utilizes signal intensity and anatomical features only. Thestatistical
maps of the PZ are superimposed on the T2W axial images of the patient in Fig. 1 and the magenta label indicates the biopsy-validated tumor regical
to Fig. 1. The statistical maps use a rainbow color scheme with red indicating high tumor likelihood and green indicating low tumor likelihood.
observe that both statistical maps correctly pick out the tumor area by shading it with red and most of the nontumor areas with green.
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compared to the nonbrachytherapy groups~Tables I and II!.
Specifically, the radiation damage to tissue results in
roughly 27% decrease in T2 regardless of whether the tis
has been characterized as normal PZ or TU. We attribute
to radiation induced fibrosis which causes T2 shortening

Regarding the trace ADC values obtained in our study
decrease-between cancerous PZ and noncancerous PZ

FIG. 3. ROC curves for five patients. The circle series of curves are from
single-channel T2W maximum likelihood~ML ! classifier and the triangle
series of curves are from theall CM1DCT Fisher linear discriminant
~FLD! classifier. Although ROC curves can be processed to be convex
above the diagonal by randomized decisions, these sets of ROCs are d
from empirical data without processing. From the ROC curves, we no
that theall CM1DCT FLD classifier outperforms the T2W ML classifie
in these five cases.
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found for both groups. The noncancerous mean PZ A
values we found were 1.6mm2/ms, somewhat smaller tha
the 1.8 mm2/ms mean ADC reported by Issa.17 The mean
cancerous ADC values in the PZ we found were 1.
mm2/ms, which were very similar to the 1.38mm2/ms mean
ADC reported by Issa.

From the results of the single-channel ML classifiers
Table III, one may draw the conclusion that the T2W ax
images are most informative about differentiating prost
tumor out of the four signal intensities, with the largest a
erage ROC area of 0.599. Yet, we found that the four ima
intensities are equally informative about tumor statistica
Another explanation for the slightly larger ROC area w
T2W is that we obtained ‘‘ground truth’’ tumor label with
radiologist contouring axial T2W images. This could lead
additional bias even though the ‘‘ground truth’’ label is co
firmed by biopsy reports. Furthermore, the radiologist exa
ined the axial T2W images, which have a higher spatial re
lution than the LSDI and T2 Map images. Therefore, it c
be self-serving that we found the T2W images to be m
informative about tumor when we defined the ‘‘groun
truth’’ tumor regions by expert examination of these imag
However, this limitation is difficult to avoid because we ha
no access to the ‘‘ground truth.’’ Confirming the radiologis
‘‘ground truth’’ label with biopsy reports only partially rem
edied this bias.

The average ROC results show that both SVM and F
classifiers withbasic4feature set did not perform better tha
the best single-channel ML classifier based on T2W inten
ties according tot-test analysis. However, it is not valid t
conclude that LSDI and T2 Map did not add any useful
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formation. Although not statistically significant, we notic
that the average ROC area for the ML T2W classifier
0.599, which is less than 0.620 and 0.635 of the FLDbasic4
and SVM basic4, respectively. Further studies need to
done to compare the textural information in PD, ADC, a
T2 Map images and their mutual information with the te
tural features in T2W images.

T2W intensities in the PZ near the rectum were corrup
by sharp near-field endorectal coil artifacts. This largely li
ited the tumor detection ability of the T2W images for P
tissues near the coil. The locations of the coil artifacts of
coincide with PZ where tumors often develop. Advances
intensity correction methodologies may remove the coil a
facts, which can dramatically improve the quality of T2
images and boost classifier performance.

We adopted a jack-knife strategy when performing clas
fier assessment because we only had 10 patients with pa
logically confirmed tumor in the nonbrachytherapy group.
we collect more multiparametric cases, we could divide
tients into two separate groups for classifier training and v
dation. A larger number of patients would provide ima
samples that covered a broader spectrum of focal abnorm
ties and cancer.

In general, we found that adding textural and anatom
information increases the accuracy of all three classifi
used in this study. We also found that SVM is the best of
three classification techniques provided that we achie
SVM training convergence. Both observations are consis
with our hypotheses.

TABLE III. Summary of maximum likelihood~ML !, Fisher linear discrimi-
nant ~FLD!, and support vector machine~SVM! classifiers results of 10
nonbrachytherapy patients. Mean~std dev! of area under ROC of each clas
sifier are presented. T2W axial, ADC Map, proton density and T2 Map
the four basic image intensities and the classifiers for these single-cha
cases are based on maximum likelihood. ‘‘basic4’’ consists of the four basic
image intensities. ‘‘basic41anatomy’’ consists of the four basic image in
tensities and the three cylindrical coordinates that describe anatomical
tion relative to the centroid of the prostate. ‘‘all DCT’’ consists of all four
basic intensities, anatomical information, and discrete cosine transform
quency statistics for all four basic images. ‘‘all CM’’ consists of all four
basic intensities, anatomical information, and co-occurrence statistics fo
four basic images. ‘‘all CM1DCT’’ consists of all intensity, co-occurrence
anatomical, and frequency features.

Classifier Features ROC area:m ~s!

ML T2W axial 0.599~0.146!
ADC Map 0.533~0.114!
Proton density 0.521~0.165!
T2 Map 0.562~0.058!

FLD basic4 0.620~0.089!
basic41anatomy 0.729~0.058!
all CM 0.825~0.056!
all DCT 0.791~0.043!
all CM1DCT 0.839~0.064!

SVM basic4 0.635~0.079!
basic41anatomy 0.761~0.043!
all CM
all DCT
all CM1DCT

no training
convergence
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CONCLUSIONS

Integrating information from multiple images and enhan
ing prostate tumor features in these images were the
main objectives of this study. We have demonstrated the u
ity of two multichannel classifiers with feature enhanceme
using machine vision techniques for prostate cancer de
tion. We have also shown that our classifiers have stat
cally superior performance over single-channel intens
based classifiers. The summary statistical map generate
our classifiers allows radiologists to visualize the high v
ume of image data and provides summarized preopera
information for intraoperative procedures. The summary s
tistical map has the potential of improving biopsy accura
and enhancing tumor target identification for the delivery
localized therapies.
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