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A multichannel statistical classifier for detecting prostate cancer was developed and validated by
combining information from three different magnetic resonaiMd®) methodologies: T2-weighted,
T2-mapping, and line scan diffusion imagiigSDI). From these MR sequences, four different sets

of image intensities were obtained: T2-weightd@W) from T2-weighted imaging, Apparent Dif-
fusion Coefficienf ADC) from LSDI, and proton densityPD) and T2(T2 Map) from T2-mapping
imaging. Manually segmented tumor labels from a radiologist, which were validated by biopsy
results, served as tumor “ground truth.” Textural features were extracted from the images using
co-occurrence matriXCM) and discrete cosine transfor®@CT). Anatomical location of voxels

was described by a cylindrical coordinate system. A statistical jack-knife approach was used to
evaluate our classifiers. Single-channel maximum likelihddd) classifiers were based on 1 of the

4 basic image intensities. Our multichannel classifiers: support vector ma@¥é) and Fisher

linear discriminan{FLD), utilized five different sets of derived features. Each classifier generated

a summary statistical map that indicated tumor likelihood in the peripheral(@&ff the prostate

gland. To assess classifier accuracy, the average areas under the receiver operator characteristic
(ROQ) curves over all subjects were compared. Our best FLD classifier achieved an average ROC
area of 0.839¢0.064), and our best SVM classifier achieved an average ROC area of 0.761
(£0.043). The T2W ML classifier, our best single-channel classifier, only achieved an average
ROC area of 0.599¢0.146). Compared to the best single-channel ML classifier, our best multi-
channel FLD and SVM classifiers have statistically superior ROC performaPeed (0003 and
0.0017, respective)yfrom pairwise two-sided-test. By integrating the information from multiple
images and capturing the textural and anatomical features in tumor areas, summary statistical maps
can potentially aid in image-guided prostate biopsy and assist in guiding and controlling delivery of
localized therapy under image guidance. 2003 American Association of Physicists in Medicine.
[DOI: 10.1118/1.1593633
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INTRODUCTION cancer in American mehOver 40000 American men are

Prostate cancer is the most commonly diagnosed noncutandiagnosed with prostate cancer each year and cancer is found
ous malignancy and the second-leading cause of death froat autopsy in 30% of men at the age of 5Bvidence sug-
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gested that 1.5 T axial T2-weighted MR prostate images witlguently used a maximum-likelihood appro&¢i? There are
an endorectal coil enables improved visualization and localalso many alternative statistical approaches to multichannel
ization of prostate substructufeentral gland(CG) and pe- classification for image analysis and pattern recognition.
ripheral zone(P2)], providing valuable pathologic and ana- FLD?*is a traditional approach where tedimensional fea-
tomical informatior®=® It is known that the majority of ture space is projected onto a line which results in the largest
prostate cancers develop in the P¥hile such diagnostic variance of the data. That is,
T2-weighted MRI images are a sensitive noninvasive imag-
ing technique for detecting focal abnormalities in the pros-
tate, they lack specificity distinguishing between tumor andvherex is the data vector ang is the projected value on a
benign prostatic hyperplasi@PH) and other abnormalities. line. w is proportional to
It is reported that T2-weighted MR only has a specificity of Wa%l(m —m,)
43% for nonpalpable tumors but a sensitivity of 85% for vtk
nonpalpable, posteriorly located tum8rdhus, there is a where S, = 3 umolX — M) (X — M) T + = omalX — My) (X
need to improve the image-based specificity to diagnose can-m,)" is the pooled sample variance of the two classes and
cer and to integrate information from other MR methodolo-m,; and m, are the mean of the tumor and normal samples,
gies or imaging modalities. As it appears that no one imagingespectively.
sequence or technique will be adequate, the development of Introduced in 1995 by Vapnik, the SVM?® is a classifi-
techniques which integrate multiple data sets for clinical useation technique that has gained popularity in recent years
becomes important. for medical application$’ The objective function that SVM
Recent advances in MR techniques have allowed us tmaximizes isLp=2;a—0.5%; ja;a;K(X; ,X;), subject to O
obtain information based on water diffusion and T2 proper<a<C and,q;y;=0. x is the multidimensional data vec-
ties to improve MR specificity for prostate cancer. Quantita-tor andy is the corresponding class laket1 or —1 for our
tive T2-mapping is motivated in part by some intriguing re- 2-class problem i,j=1,...L whereL=number of training
sults from Liney etal,® ' who suggested a positive samplesK(x,y) is the kernel function that maps the input to
correlation between the concentration of citrate, as deter higher dimensionality and gives the decision boundary its
mined by'H spectroscopy and the water T2 value obtainednonlinearity.C is a user-chosen optimization parameter and
from T2-mapping methods. Since citrate is the “good” me- describes the cost of classification error during SVM train-
tabolite of the prostate gland, presenting the strongest méng. A largeC tells SVM to produce a decision boundary that
tabolite signal in normal tissue and BPHa decrease in the avoids making any classification errors with the training
citrate signal provides an indirect indication of potential can-data. SVM training vyields w, which is given by
cer. If T2 maps indeed correlate with citrate concentrationszi'\LlaiK(yi ,X), whereN is the number of support vectors.
i.e., carry useful diagnostic data, the higher spatial resolutio\ data pointx; is a support vector when the corresponding
of T2-mapping compared to MR spectroscopy would offera;>0. Support vectors are sample data points that lie on the
potentially greater utility in tumor localization in the pros- decision boundary. One can assign the class label based on
tate. y=x"w+b whereb is the bias term obtained from SVM
Diffusion-weighted and quantitative diffusion MR imag- training. The more positive the value pfis, the fartheix is
ing (ADC mapping is used to obtain tissue contrast reflect- away from the decision boundary and the more likely it is to
ing water molecular diffusion. Diffusion MR has become be a member of class-1. The case is similar for the-1
essential for assessing acute stroke in the BraifiMore  labels wheny<O.
recently, evidence has been presented which suggests thatTo enhance the feature space, many medical image clas-
diffusion imaging may also play a role in the early detectionsification applications have used machine vision techniques
of tumor response to therapy® However, diffusion studies including CM and various spatial-frequency filters that can
have largely been limited to the brain for a variety of reasonenhance image features. Haralick and Shanmiigpio-
including motion sensitivity and the chemical shift and sus-neered the use of CM to capture image texture. A CM is a
ceptibility artifacts which plague single-shot echo planar im-probability density distribution of two pixel intensities con-
aging (EPI) techniques used to overcome motion sensitivity.ditioned on distance and angle between the two pixels. Re-
A diffusion technique with low motion sensitivity and re- cent applications of CM in medical image analysis include
duced susceptibility and chemical shift artifacts is the LSDIMR T2-weighted breast canc&t,breast mammogranis,
technique recently developed and shown useful for brain ant¥iR imaging for tracking Alzheimer’s diseaskand colo-
spine imagind’~*°Its primary drawback is slower acquisi- scopic images of cervix lesioi$ The textural features gen-
tion times compared to single-shot EPI methods, though fulerated by CM were reported to enhance classification power
coverage of the rather small prostate gland at reasonable spa-these studies.
tial resolutiong24 mn? voxels is readily attained in several We conducted a set of experiments to assess our hypoth-
minutes. Thus we have used LSDI methodology to obtairesis that the SVM classifier will perform better than a FLD
guantitative diffusion data from our patients, motivated inor a ML classifier. Also, we hypothesize that classifiers that
part by preliminary results of others which suggest reductiorintegrate anatomical and textural information can achieve a
of ADC values in tumor vs normal P2, higher tumor detection performance than a classifier based
Early works on multichannel MRI classification fre- on image intensities alone. Our objective is to construct a

y=w'x,
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summary statistical map based on multiparametric MR im-ery 0.12 s, the effective TR was greater than 4 s so that
ages that can improve tumor detection and localization. Imminimal T1-weighting occurred. A TE of 70 ms accommo-
proved tumor localization may be valuable for a variety ofdated the highb-factor of 750 s/mrfi using our available
treatment strategies for prostate cancer including brachygradient strengthgmaxima of 2.3 Gauss/cm Using two
therapy and newer more precise therapies such as focusedint monoexponential analyses along each diffusion sensi-
ultrasound. tization direction, high quality trace ADC maps are obtained,
as discussed in detail in the original LSDI article by Gudb-
jartssonret al. A total of 5 to 12 slices at 4 mm slice thickness
MATERIALS AND METHODS and no gap were used to cover the entire gland wikd4
x 1.5 mn? voxel dimensions in total scan times between 5
and 10 minutes50 s/slice.
Fifteen patients were enrolled in the study. The eligibility A FSE sequence utilizing eight echoes with an echo

Patient selection and imaging protocols

criteria were men with spacing of 13.5 ms was employed to make maps of the spin—
(1) abnormal prostate specific antigé®SA) levels (>4 ng/ spin relaxation tim&T2) throughout the entire prostate gland
ml) and at a 3<0.7x 0.8 mn? spatial resolution with slices acquired

(2) either have had at least two prior negative/normal prosin oblique coronal planes, as with LSDI. The signal intensity
tate biopsies performed byransrectal ultrasound (S has the approximate fornB=p(1—exp(-~TR/T1))

(TRUS) or cannot undergo TRUS biopsies because of<eXP(—~T2/TE), wherep is the PD intensity, T1 the spin-
prior rectal surgery. lattice relaxation time. A 258 192 (frequency by phasen-

plane matrix was used with a 2.5 s TR to gather 5 to 12

For our analysis, these patients were further stratified int@-mm-thick contiguous images of the gland in 60 s. The
two groups based on whether they had undergone a brachgequence is repeated four times with four different values of
therapy procedure or not. This is because post-brachytheratige effective echo time ranging from 27 ms to 108 ms at 27
patients tended to have altered T2W intensities due to th&s intervals. Thus in approximately 4 minutes a complete
induction of radiation fibrosis. We restricted our multichan-data set is collected allowing for mapping of the T2 value
nel classifiers to the nonbrachytherapy group because tHBroughout the gland by performing monoexponential fits of
majority of patients belonged to that group. The nonbrachysignal intensity vs echo time for each voxel. We interpret the
therapy group had no confirmed cancer, whereas the brachy-intercept of the fits as the effective proton densi8D)
therapy group had biopsy-confirmed cancer. Sextant biopsintensity and the negative inverse of the slope as the effective
(samples collected from apex left, apex right, mid-gland left,T2 value used for the T2 Map intensities. The accuracy and
mid-gland right, base left, and base right of the glandis  precision of this T2 Map methodology was tested with five
performed on each patient. small (10 mm OD vials of water doped with the gadolinium

The 1.5 T MR(Signa LX, GE Medical Systems, Milwau- (Gd) based MR contrast agent ProHar{@acco Diagnos-
kee W) imaging was performed in a clinical system using antics Inc., Princeton, NJto levels of 1, 1.5, 2, 2.5, and
endorectal coil with an integrated pelvic-phased multicoil ar-3 mM Gd in the form of 102-hydroxy-propyl-1,4,7,10-
ray. The endorectal coil is a receive-only coil mounted insiddgetraazacyclododecane-1,4,7-triacetic acid. The five vials
a latex balloon, and assumes a diameter of 4—6 cm onceere bundled togethenia 3 cmring roughly the size of the
inflated in the patient’s rectum. The patient was placed suprostate and were scanned with the same coil configuration
pine in the closed-bore magnet for the examination. Theused for prostate imaging. The+ o T2 values(in ms) cal-
axial T2W images were fast spin eckiBSE images using culated from a X 3 region of interestROI) within each vial
12 echoes and a repetition tim@R)/effective echo time of the T2 Map were, from lowest to highest Gd concentra-
(ETE)=6050 ms/105 ms, field of view of 12 cm, section tions, 255-18, 155¢9, 111+4, 84+7, and 68 3. The
thickness of 3 mm, section gap of 0 mm, matrix of 256 mean coefficient of variation for T2 over this range of T2
X 256, three signal averagedypical acquisition times are values encountered in the prostétide infra) is thus 5.8%
5-6 min. which we assessed as our T2 Map precision. The relaxivity

Diffusion-weighted images were acquired with LSDI in curve(1/T2 vs mM Gd generated from this data was highly
an oblique coronal orientation to provide maximal glandlinear with a correlation coefficient above 0.999 and a slope
coverage with a minimal number of slices. LSDI involved of 5.40 s /mM. This value for the relaxivity is typical of T2
the use of a pair of slice selective RF pulses to elicit arvelaxivities reported for common Gd chelates contrast
appropriately diffusion weighted spin—echo signal from aagents. Reichenbaat al,®® for example, reported a relax-
single column(loosely referred to as “line” in the LSDI ivity of 5.2 s Y/mM Gd for a similar contrast agent at 1.5 T.
acronym) of tissue. The LSDI sequence employed 64 col-Thus, our T2 Map methodology has an inherent precision on
umns per slice with each column being 16 fmin cross the order of 6% and is reasonably accurate over the range of
section and with an along-column resolution of 1.5 mm re-T2 values encountered in the prostate.
sulting in approximately 24 minvoxel sizes. Twdb-factors,
5 and 750 s/mfhwere employed along with three separate
diffusion sensitization direction$l,—1,—1/2), (1/2,1-1), A radiologist manually outlined suspected tum@rJ),
and(1,1/2,3. Though individual columns were sampled ev- PZ, and total glandTG) on axial T2W images. We com-

Tumor “ground-truth” labels
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bined the tumor label along with the biopsy pathology re-PD, and T2 Mapbasic4-anatomyincludes the four signal
ports to form biopsy validated tumor labels for classifierintensities and the three cylindrical coordinates from ana-
training. In a typical biopsy, the PZ is divided into six re- tomical features. Besides the seven featuresbasic4
gions: left/right< base/mid/apex. Only regions marked posi- +anatomyall CM also includes 29 CM entries for each MR
tive for cancer in both the biopsy report and the radiologist'ssequence, generating an additionat 29 featuresall DCT
label are included in the validated “ground truth” tumor la- includes all thebasic4+anatomyfeatures plus the DCT fea-
bels. tures from all four types of MR images. ACM+DCT is

the union of all the features iall CM andall DCT.

Textural features

L . Statistical classifiers
We eliminated the angle dependence in the CM based on

the observation that tumor textures in the prostate possess For FLD training, we randomly sampled 10% of the PZ
radial symmetry. Our CM covered ax® pixel window and data and retained all the tumor data because we had about 20
had 14 distinct distances. We scaled image intensities to fit imes more PZ data than tumor data. All features were stan-
range between 0-255 by mapping the 256 levels linearl@ardized tou=0 ando =1 prior to training. After obtaining
onto the image intensity range of m@xu—3-0)} to (u the FLD vectorw, we constructed a ML classifier using the
+3-0). For each center pixel, we consideredritseighbors  training dataset.
that were equidistant from the center pixel. To model the For SVM training, we randomly sampled 10% of the PZ
“texture” differences of tumor vs normal tissues, we con- data and retained all the tumor data to confine the training
structed log likelihood ratioflog(P(tumor)/P(normal)] for ~ dataset to a manageable size for SVM training convergence.
each of these pairs and took the median of telog like-  All features are standardized {@=0 and o=1 prior to
lihoods as the feature statistie(tumor) andP(normal) are training. We chose the radial basis function kerKék,y)
the conditional probabilities of tumor and normal pixel, re- =exp{—|x—yJ?c} with parametersr=2 andC= 100. In this
spectively, obtained from the CM entries that correspond ttudy, we used the MATLAB support vector toolibxlevel-
the pair of pixel intensities and distance between pixels. Beoped by Crawley, which used Platt’s sequential minimization
cause radiologists often considered the slice above or belo@gorithm for optimizatiort”
the current image slice for confirmation of a lesion/tumor, we
extended the CM method to 3-dimension by constructingSoftware
CM one slice above and below the current slice. Thus, 14
features for the CM from the same slice and 15 features fro
the CM one slice above or below the center pixel resulted it%5
29 CM features total for each of the four basic MR images
To capture the frequency characteristics of tumor, w
computed 2D-DC¥ of a 7 pixelx 7 pixel window centered
at each pixel in the images. DCT is used in JPEG imag
compressiofr which retains the lower frequencies of an im-
age. In general, these lower frequencies are able to capture To compare the accuracy of classifiers, we performed
the general visual features of images. The 49 DCT coeffistandard RO analysis on each of the 11 nonbrachytherapy
cients formed our feature statistics for each of the four basipatients. We chose the area under the ROC curve as our

All feature generation and classifier training were com-
uted using the MATLAB® software package. The software
or manual segmentation by the radiologist, volume calcula-
tion, and image interpolation was developed in-house for this
Sroject with the Jav¥ language.

%Iassifier accuracy

MR images. benchmark for classifier performance. We adopted a jack-
knife strategy where we trained the classifier with 1 cases
Anatomical features and applied the trained classifier on the remaining case. The

p+ o of the n leave-one-out ROC areas were reported. To

We used the cylindrical coordinate systemé,z) to de-  getermine the significance in the difference in mean ROC
scribe each anatomical location and set the origin at the celyeas of two classifiers. we utilized pairwise 2-sided stu-
troid of the gland. The coordinatesandz are rescaled to fit  §onts't-test ata=0.05.

the range of-1 to 1 for each gland@ is in the range of 0 to
7 with anterior set to 0 and we assume left/right symmetry o
the gland. Thez coordinate could help distinguish the apex,
mid-gland, and base, which had observably different imagéathology summary

and anatomical features. Empirical obse_rvations_ pointed to We divided the patients into two groups.

common occurrences of prostate tumors in the axial 5:00 and

7:00 o’clock positions of the PZ and thecoordinate could (1) Post-brachytherapy group: had confirmed cancer and

potentially distinguish these anatomical areas. prior brachytherapy treatment.
(2) Nonbrachytherapy group: had no prior treatment.

fRESULTS

Feature sets Of the 11 nonbrachytherapy patients in this study, nine

Five feature sets were chosen to test our classifidta-  had confirmed adenocarcinoma and one had prostatic in-
sic4 includes only the four signal intensities: T2W, ADC, traepithelial neoplasrtPIN), a precursor to cancer, from the
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TasLE |. Signal intensity summary for 11 nonbrachytherapy patients. PZClassifier accuracy
signals are standardized po=0 ando=1. Tumor signals are normalized

with the mean and standard deviation of the PZ for comparigand o of Figure 2 shows two sample summary statistical maps gen-

nonstandardized ADC and T2 Map values are also presented.

erated by FLD and SVM classifier and Fig. 3 shows several
ROC curves from our best single-channel ML classifier and

Image type PZk=) Tumor (u= o) our best multichannel classifier. The results for the single-
T2W 0+1 —0.58+0.48 channel ML classifiers, multichannel FLD classifiers, and
ADC 0=l —0.60:-0.96 SVM classifiers are shown in Table IIl. Pairwise two-sided
$2DMap 8;1 :8:22&{8:33 t-tests witha=0.05 among the four single-channel classifi-

ers supported the hypothesis that all single-channel classifi-
ADC (in p?ms) 1.611+0.366 1.4320.349 ers based on intensity alone had statistically equivalent ROC
T2 Map (in ms) 128.3+42.9 102.%27.5

performance P>0.05).

The comparison between the multichannel FLD classifiers
with T2W axial ML classifier, the best of the four single-
bionsy reports. The average recurrent tumor volume Waghannel classifiers indicated the following: pairwise two-

Sy repors. 9 Sidedt-tests witha=0.05 supported that FLD withasic4
1.03+0.56 cn? and the average total gland volume was

+anatomy(P-value=0.0024), all CM (P-value=0.0004),
43.03+19.26 cm. The mean percentage of TU volume/PZ
X L2 all DCT (P-value=0.002), andall CM+DCT (P-value
volume was 6.8 3.99 %. Patients in this group had small ~ P
. ) . - i ) =0.0003) offered greater classification power than ML clas-
to medium size tumors, with minimal seminal vesicle and_... L . L
extra-capsule invasion. The average Gleason score for thoscgcler based on T2W axial intensity alone. However, pairwise
b ) 9 RWo-sidedt-tests wither=0.05 did not support that FLD with

with confirmed cancer was 6.2 and had a range of 67, InBasic4classifier performed better than single-channel T2W

dicating that most of the nonbrachytherapy patients had Me ol ML classifier @ value=0.355). Similarly, we com-

d|u_m graple aqlenocarclnoma. Of the four post-brachytherap ared the multichannel SVM classifiers with T2W axial ML
patients in this study, the average recurrent tumor volum o L . o
was 1.72- 1,50 ci? and the average total gland volume Wasclassmer. Pe}lrvvlse.two—mdetdtests witha=0.05 supported

' ' that SVM with basic4+anatomy(P value=0.0017% offered

\3/§I.3r?127wzaiclnjl6; T; %e;n ﬁﬁécz\?é?gee%Igssgﬁggféigrgreater classification power than ML classifier based on T2W
' 0 9 xial intensity alone. However, pairwise two-sidéedests

this group was 6.5 and had a range of 6-8, indicating tha\?vi'[h a=0.05 did not support that SVM withasic4classifier

the patlents n this study had more aggressive tumors with erformed better than single-channel T2W axial ML classi-
medium to high grade adenocarcinoma and larger volum
ier (P value=0.483).

tumors. This is not surprising as their tumors had failed to The training time for FLD classifiers is between 1 to 6

respond to the initial therapy and had recurred. hours and for SVM classifiers that converged numerically,

between 2 to 60 hours. We failed to get SVM convergence

for the feature setsll CM, all DCT, andall CM+DCT

) after 72 hours of simulation. For the other three feature sets
From the 11 nonbrachytherapy patients, 9325 PZ dat@jsijc4andbasic4+anatomythat we managed to get conver-

points were collected and out of this, 507 were TU dat ence, we compared the average area under ROC of SVM

points. From the four post-brachytherapy patients, 2490 Pg|assifier with FLD classifier using two-sided pairwistest

data points were collected and out of this, 308 were TU datat ,—0.05. SVM performs better than FLD fdbasic4

points. Thew = o of the signal intensities for each MR image +anatomy (P value=0.0003) while SVM and FLD have

parameter in this study is shown in Tables | and Il. For eacrbqua| performance statistically fbasic4(P value=0.29).

patient, PZ intensities were standardizedute 0 ando=1

and TU intensities were standardized using the mean and

standard deviation of the PZ for comparisé8ee Fig. 1. DISCUSSION

The study demonstrates that it is possible to create sum-
TasLE II. Signal intensity summary for four post-brachytherapy patients. Pzmary statistical maps that combine multiparametric data.
signals are standardized fo=0 ando=1. Tumor signals are normalized Furthermore, the information from the data sets in combina-
with the mean and standard deviation of the PZ for comparigand o of tion can be more powerful than any one alone supporting the
nonstandardized ADC and T2 Map values are aiso presented. need to increase the number of tools and methods to test this

Signal intensity statistics

Image type PZ = o) Tumor (u* o) approach further.

Studentst-test comparisons of ROC areas suggested that
2w 0+t ~0.04%089 SVM produced greater detection power than FLD classifiers
ADC 0+1 ~0.60+0.83 produced g p :

PD 0+1 0.30+1.19 for the feature setall CM and basic4+anatomyand statis-

T2 Map 0+1 —0.49+0.71 tically equivalent detection power for thmsic4feature set.
ADC (in s2Ims) 1504+ 0.306 1.256-0.314 The r_n_erlts of the non_llnear decision boundary of the SVM
T2 Map (in ms) 88.0+20.7 76.6-15.9 classifier become noticeable when the number of features

increases. Although SVM achieved a better performance

Medical Physics, Vol. 30, No. 9, September 2003
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Fic. 1. A sample set of multiparametric MR images in the oblique coronal plane. Top left is a T2W image, resampled from the axial planes to the oblique
coronal planes of the other images. Top right is an ADC Map from LSDI. Bottom left and bottom right are T2 Map and proton density images from
T2-mapping. The green label is total gland, the yellow label is PZ, and the blue label is biopsy validated tumor label.

than FLD, classifier training convergence and simulationfeatures in the images as supportedtkgst analysis. For
time are two issues to consider. both FLD and SVM classifiers, we noticed tret CM, all

The training time for FLD classifiers is between 1 to 6 DCT andall CM +DCT performed better thabasic4 and
hours and for the converged SVM classifiers between 2 to 60asic4-anatomy feature sets according to the ROC area
hours, depending on number of classification channels andnalysis, which proved the effectiveness of these machine
the number of samples. We included all tumor samples fronvision techniques for prostate cancer detection with MRI.
the nine cases for training07 voxel$ and 10% of healthy We found as expected that the group of patients who had
PZ sampleq933 voxel$. We failed to get convergence on undergone prostate brachytherapy had different T2W signal
SVM training after 72 hours for the larger feature sals  intensity properties compared to the group without brachy-
CM+DCT andall DCT. This is because both of these fea- therapy. The results in Tables | and Il showed that the post-
ture sets include over 150 channels. The FLD results suggebtachytherapy patients almost had no difference in mean
that feature setall CM andall CM + DCT have statistically T2W signal intensity between PZ and tumor tissues while for
equivalent performance and therefore, we expected similahe nonbrachytherapy patients, the difference in standardized
findings for SVM had thall CM + DCT training converged. means of T2W signal intensities between PZ and tumor tis-
To include both frequency and CM features, we could havesues is 0.58. From the T2W images of post-brachytherapy
randomly selected a smaller number of CM entries and DCpatients, one can observe that the PZ intensity is darkened as
frequencies to reduce the dimensionality of the problem aa result of brachytherapy and therefore, it is difficult to dif-
many CM entries and DCT frequencies contain high mutuaferentiate between tumor and PZ tissues based on T2W in-
information. tensity level. This finding is consistent with the quantitative

Utilization of CM and DCT significantly enhanced tumor shortening of T2 observed in the post-brachytherapy patients

Medical Physics, Vol. 30, No. 9, September 2003
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a) Fisher Linear Discriminant = allCM+DCT b} Support Vector Machine - basicd + anatomy

Fic. 2. Summary statistical maps @) Fisher linear discriminar(FLD) classifier andb) support vector machingVM) classifier. The FLD classifier utilizes

all co-occurrence, DCT, anatomical and signal intensity features and the SVM classifier utilizes signal intensity and anatomical featurestatistiGete

maps of the PZ are superimposed on the T2W axial images of the patient in Fig. 1 and the magenta label indicates the biopsy-validated tumoraagion identi
to Fig. 1. The statistical maps use a rainbow color scheme with red indicating high tumor likelihood and green indicating low tumor likelihood. One can
observe that both statistical maps correctly pick out the tumor area by shading it with red and most of the nontumor areas with green.

compared to the nonbrachytherapy grogpables | and Il. ~ found for both groups. The noncancerous mean PZ ADC

Specifically, the radiation damage to tissue results in aalues we found were 1.6m%ms, somewhat smaller than

roughly 27% decrease in T2 regardless of whether the tissugie 1.8 um%ms mean ADC reported by Is$4The mean

has been characterized as normal PZ or TU. We attribute thisancerous ADC values in the PZ we found were 1.43

to radiation induced fibrosis which causes T2 shortening. ,umzlms, which were very similar to the 1.3an2/ms mean
Regarding the trace ADC values obtained in our study, aznDC reported by Issa.

decrease-between cancerous PZ and noncancerous PZ wassrom the results of the single-channel ML classifiers in

Table Ill, one may draw the conclusion that the T2W axial
images are most informative about differentiating prostate
tumor out of the four signal intensities, with the largest av-
erage ROC area of 0.599. Yet, we found that the four image
intensities are equally informative about tumor statistically.
Another explanation for the slightly larger ROC area with
T2W is that we obtained “ground truth” tumor label with a
radiologist contouring axial T2W images. This could lead to
additional bias even though the “ground truth” label is con-
firmed by biopsy reports. Furthermore, the radiologist exam-
ined the axial T2W images, which have a higher spatial reso-
lution than the LSDI and T2 Map images. Therefore, it can

————
Am==— =

Q" "
¥

True Positive
o
[4.]

0.2 R be self-serving that we found the T2W images to be most
o1 T fien SICMEDCTRLD informative about tumor when we defined the “ground
4 ——e— T2WML truth” tumor regions by expert examination of these images.
0 2 0a 05 08 7 However, this limitation is difficult to avoid because we had
False Positive no access to the “ground truth.” Confirming the radiologist’s

_ , _ _ “ground truth” label with biopsy reports only partially rem-
Fic. 3. ROC curves for five patients. The circle series of curves are from the

single-channel T2W maximum likelihoo@ML) classifier and the triangle edied this bias.
series of curves are from thell CM+DCT Fisher linear discriminant The average ROC results show that both SVM and FLD
(FLD) classifier. Although ROC curves can be processed to be convex anglassifiers withbasic4feature set did not perform better than

above the diagonal by randomized decisions, these sets of ROCs are derivaqe best single-channel ML classifier based on T2W intensi-
from empirical data without processing. From the ROC curves, we notice . . . .
that theall CM +DCT FLD classifier outperforms the T2W ML classifier €S according td-test analysis. However, it is not valid to

in these five cases. conclude that LSDI and T2 Map did not add any useful in-
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TasLE Ill. Summary of maximum likelihoodML), Fisher linear discrimi- ~ CONCLUSIONS

nant (FLD), and support vector machin&VM) classifiers results of 10

nonbrachytherapy patients. Méatd dey of area under ROC of each clas- Integrating information from multiple images and enhanc-
sifier are presented. T2W axial, ADC Map, proton density and T2 Map are . .

the four basic image intensities and the classifiers for these single-channtu.?g_ pros_tate_ tumor features in these Images were the tvyo
cases are based on maximum likelihoobiasic4 consists of the four basic  Main objectives of this study. We have demonstrated the util-
image intensities. basic4+anatomy consists of the four basic image in- ity of two multichannel classifiers with feature enhancements
tensities and the three cylindrical coordinates that describe anatomical IOCQJSing machine vision techniques for prostate cancer detec-

tion relative to the centroid of the prostateall' DCT” consists of all four . ie .
basic intensities, anatomical information, and discrete cosine transform fret-lon' We have also shown that our classifiers have statisti-

quency statistics for all four basic imagesalF CM” consists of all four ~ Cally superior performance over single-channel intensity-
basic intensities, anatomical information, and co-occurrence statistics for athased classifiers. The summary statistical map generated by

four basic images. dll CM +DCT" consists of all intensity, co-occurrence, gyr classifiers allows radiologists to visualize the high vol-

anatomical, and frequency features. ume of image data and provides summarized preoperative
Classifier Features ROC area:(o) information for intraoperative procedures. The summary sta-

tistical map has the potential of improving biopsy accuracy

ML ;%vg ijf;' g'gzzggiﬁz and enhancing tumor target identification for the delivery of
Proton density 0.5210.165 localized therapies.
T2 Map 0.562(0.058
FLD basic4 0.620(0.089
basic4t+anatomy 0.729(0.058
all CM 0.825(0.056
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