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ABSTRACT The support vector machine (SVM)
method is used to predict the bonding states of cys-
teines. Besides using local descriptors such as the
local sequences, we include global information, such
as amino acid compositions and the patterns of the
states of cysteines (bonded or nonbonded), or cysteine
state sequences, of the proteins. We found that SVM
based on local sequences or global amino acid compo-
sitions yielded similar prediction accuracies for the
data set comprising 4136 cysteine-containing seg-
ments extracted from 969 nonhomologous proteins.
However, the SVM method based on multiple feature
vectors (combining local sequences and global amino
acid compositions) significantly improves the predic-
tion accuracy, from 80% to 86%. If coupled with cys-
teine state sequences, SVM based on multiple feature
vectors yields 90% in overall prediction accuracy and
a 0.77 Matthews correlation coefficient, around 10%
and 22% higher than the corresponding values ob-
tained by SVM based on local sequence information.
Proteins 2004;55:1036-1042. © 2004 Wiley-Liss, Inc.
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INTRODUCTION

The oxidation states of cysteines play a key role in both
protein structure and function.'~® Cysteines form disulfide
bridges to stabilize folded states by increasing favorable
enthalpy interactions in the folded states and by lowering
the entropy of the unfolded states.® The capability to
accurately predict the disulfide bonding states in proteins
will be useful in the study of protein stability'® or func-
tions,'* and in the prediction of three-dimensional (3D)
protein structures.!> A number of computational ap-
proaches'® 17 were developed to predict the bonding states
of cysteines. Muskal et al.'® obtained 81% prediction
accuracy by using neural networks based on the sliding
windows that include the flanking amino acids of the
centered cysteines. Fiser et al.,'* exploiting the difference
between the sequential environments of free cysteine and
bonded cystine, developed a statistical approach that
yielded a much lower 71% prediction accuracy, though
using a data set four times bigger. Fariselli et al.'®
included evolutionary information in the form of multiple
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sequence alignment and used a jury of neural networks to
obtain 81% prediction accuracy. Later, Fiser and Simon,'®
observing that cysteines of a protein tend to occur in the
same oxidation states, developed a method based on
multiple sequence alignments and achieved 82% predic-
tion accuracy. Martelli et al.'®'® used the hidden neural
networks (HNNs) developed by Krogh and Riis,?® and
obtained an overall prediction accuracy of 88%. Mucchielli-
Giorgi et al.'” found that the amino acid content of the
whole protein appears to be more informative about the
disulfide bonding state than the local sequence window
does. Using a combination of logistic functions learned
with subsets of proteins homogeneous in terms of their
amino acid content, they were able to obtain prediction
accuracy close to 84% for 869 chains. The support vector
machine (SVM) method?! has recently become popular in
computational biology.?>~2® We have previously success-
fully applied the SVM based on multiple feature vectors to
protein fold assignment®® and subcellular localization
prediction.?” In this work, we developed an approach to
predict the bonding states of cysteines using SVM based on
multiple feature vectors and the cysteine state sequences.

METHODS
The Support Vector Machine

Let x; be a local sequence window centered on the
interested cysteine or other sequence coding vectors (see
the next section), and let y, denote the state of the cysteine,
either bonded (y; = 1) or nonbonded (y; = —1). The SVM
technique tries to find the separating hyperplane w? x; +
b = 0 with the largest distance between two classes,
measured along a line perpendicular to this hyperplane.
However, it happens that these data to be classified may
not be linearly separable. To overcome this difficulty, the
SVM nonlinearly transforms the original input space into
a higher dimensional feature space by ¢(x) = [db;(x),bs(x),...]
and tries to minimize % wTw+C L_, & with respect to w, b
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and ¢ under the constraint that y,[w” ¢(x;) + b] =1 — &,
where & = 0. To solve the above equations, we need a
closed form of K(x;,x;) = )" &(x;), which is usually called
the kernel function. In this work, we use the radial basis
function (RBF) kernel: e’””’”’xf”z, where v is a parameter.
It should be noted that only some of the x,’s are used to
construct w and b, and these data are called support
vectors.

The Feature Vectors
Sequence input vector

The sequence input vector is defined by n flanking
residues of the interested cysteine. Each residue in the
sequence is encoded as a vector of 20 binary elements. It is
easy to extend this coding scheme to include evolutionary
information such as the homologous sequence profiles.?%2°
We use the notation x,(w) to denote the sequence input
vector enclosing a window of size w. The binary coding
scheme does not give an explicit description of the physico-
chemical properties of the amino acids. To take these
properties into consideration, we follow the approach
recently developed by Meiler et al.,?° which describes the
amino acids in terms of five parameters: graph shape
index, polarizability, volume, hydrophobicity, and isoelec-
tric point. The graph shape index is calculated directly
from the graph structure of the amino acid side-chain,
which contains information about complexity, branching,
and symmetry of the group; the hydrophobicity is defined
as log P (amino acid) — log P (glycine), where P is the
partition coefficient of the amino acid in octanol/water. The
volume parameter is defined as the ratio of the van der
Waals volume of the side-chain to that of CH, group. The
polarizability is related to the molar refractivity. We use
the notation x,(w) to denote this type of sequence represen-
tation.

Composition input vector

The composition input vector is composed of 20 ele-
ments, each of which corresponds to the compositional
percentage of an amino acid of type a in a sequence
window. The amino acid composition is given by x, = n%w,
where n® is the number of occurrences of the amino acid of
type a in the sequence widow of size w. It is easy to
implement evolutionary information from the homologous
sequence profiles®®; For N multiple sequence alignments,
the composition of the amino acid of type a is computed by
SNn2/>Nw,, where w; is the size of the ith sequence window
and n{ is the number of amino acids of type a of the ith
sequence. We use the notation x_(w) to denote the composi-
tion-coding scheme and x, for the full-length sequence
composition. We ignore gaps in the multiple sequence
alignment.

Data Sets

We use the data set of Martelli et al.,'° which comprises
4136 cysteine-containing segments (1446 are in the disul-
fide-bonded states, and 2690 are in the non-disulfide-
bonded states). These segments are extracted from 969
nonhomologous proteins (sequence identity < 25% and
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without chain breaks) from the Protein Data Bank (PDB).?!
In this data set, the cysteines involved in interchain
disulfide bonding are treated as “free” cysteines.

The Cysteine State Sequence

Each cysteine has two possible states: the bonding state
and the nonbonding state. Since the bonding cysteines
have to appear in pairs (we exclude the interchain disul-
fide bridges), the number of combinations is actually 27~ 1.
For example, for proteins with 3 cysteines, there are 23! =
4 cysteine state sequences (CSSs) [i.e., (OOR), (ORO),
(ROO), and (RRR)], where O and R designate the bonding
and nonbonding states of the cysteine, respectively. Each
CSS provides a transition path of a particular type of the
bonding states of all cysteines in a chain. If the probabili-
ties of the related states (O or R) and the transition
probabilities from one state to another are known, the
probability of the particular transition path can be easily
computed. Comparison of the probabilities of the transi-
tions paths allows one to predict the most probable CSS.
Thus, CSS description provides global information about
the bonding states of the cysteines, which is complemen-
tary to local information of cysteines provided by the
sequence input vector. Formally, for a protein with n
cysteines, we describe the CSS by the vector s, =
(09,01,09,...0,,,0,+1), where o; € {O,R}, 0, =S,and o,,,; =
F, denoting the initial and the final state>2 of the sequence,
respectively. For each s,,, there is an associated transition
probability vector (ty,74,...,7,)), where T; is the state-to-
state transition probability from o; to o, . Let m, be the
state probability of the ith cysteine in state o;; then the
transition probability of the CSS vector s, is given by
7o 717, 7;. The state probability of the ith cysteine state
m,, in state o, is evaluated by normalizing the decision
value x obtained from SVM by the arctan transfer function
given by

f(x) = {[a tan"Y(bx)] + w2}/,

where a and b are parameters, and 0 =< a < 1. In this work,
all SVM calculations are performed using LIBSVM,33 a
general library for support vector classification and regres-
sion.

Optimization of CSS by the Branch-and-Bound
Method

We use the branch-and-bound algorithm to optimize the
probability of CSS, that is, max{r, [I7m, 1;}. The procedures
proceed as follows: We set an initial candidate CSS, s,,;,,
which is obtained from SVM. If the number of the bonded
cysteines is odd, we simply reverse the state of last
cysteine so that the number of the bonded cysteines is
even. The probability is given by p;,;; = Ilgm,. We then
scan the CSS sequentially from (R,R,...,R) to (0O,0,...,0).
The probability of the given CSS sequence s,, that includes
the first m cysteines is computed by p,,,(s,) = 7o 71,7, . If
D < Dinis» then s, is rejected, and we go on to the next CSS
sequence. If p,, = p,,,;,, we computep,,, .1 = T, T, 1Dm
and continue the comparison. If the final probability
P.(8,.) > Pinis, then this CSS sequence s, will be used as the
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Sequence: WMVTIVCLDLGYTLKVNKLVPCPAGKL..
Codings: X+y+... X+y+...

Optimizing CSS

l

Predicted CSS
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Sequence: WMVTIVCLDLGYTLKVNKLVPCPAGKL..
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Fig. 1. (a) The single SVM trained with multiple feature vectors
denoted by x + y + ... generates the state probability «; for the given
cysteine. The resultant CSS transition probabilities are then optimized to
generate the predicted CSS. (b) The multiple SVM trained with different
feature vectors (x; + y; + ... or x, + y, + ...) to generate an average
probability «; for the given cysteine. The CSS optimization is identical with
the previous method.

new candidate sequence. The whole process continues
until we find the best CSS.

We use two different approaches that combine SVM and
CSS. Figure 1 schematically shows the outlines. The first
approach [Fig. 1(a)] uses a single SVM that is trained with
multiple feature vectors denoted by x + y + ... to produce
state probability m for the given cysteine. We then opti-
mize the resultant CSS to generate the final prediction for
the bonding states of the cysteines. The second approach
[Fig. 1(b)] uses multiple SVMs trained with different
feature vectors to generate averaged state probabilities for
the given cysteine. The optimization procedures are identi-
cal with the first method. In this article, we use the
notation {x + y + ...} to denote the SVM trained with input
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vector x +y + ..., and the notation {x + y + ...} + CSS to
denote the SVM classifier {x + y + ...} coupled with CSS.

The Transition Probabilities of the Cysteine State
Sequences

Figure 2 shows the observed state-to-state transition
probabilities of proteins with 3—6 cysteines obtained from
the data set of 969 nonhomologous proteins. For proteins
with odd number cysteines [Fig. 2(a and c)], the first
cysteines are predominately in the nonbonded form (the
state probabilities for 3-cysteine and 5-cystein proteins are
0.93 and 0.90, respectively). On the other hand, for pro-
teins with an even number of cysteines [Fig. 2(b and c)],
the first cysteines do not have as strong a tendency to be
nonbonded—the probabilities for 4-cysteine and 6-cystein
proteins are 0.55 and 0.53, respectively. We observe that,
in general, for a cysteine of a given state, the following
cysteine has a strong tendency to be an identical state.
Similar results have also been reported.'® It is possible to
determine the full states of cysteines from the knowledge
of the states of the first few cysteines. For examples, given
the states of the first 2 cysteines, (O,R), of proteins with 5
cysteines, we can predict the rest of the cysteines to be
(0,0,0), and in the case of proteins with 6 cysteines, the
states of the following cysteines are (R,0,0,0). The CSSs
are useful in revealing global correlation between the
cysteine states. Note that the transition probabilities of
some states depend on more than their immediate previ-
ous states, which does not conform to the Markov memory-
less condition. It is obvious that the Markov model is not
the best model for the CSS; however, the Markov model
may be still useful in describing the global bindings states
of cysteines when complemented with local information of
cysteines. In practice, we try to optimize the state-to-state
transition probabilities through the following processes:
The proteins in the database are classified into 24 groups
based on their cysteine numbers, and the average transi-
tion probabilities of the state-to-state transitions are com-
puted for each group. We classify the transition paths into
12 types, namely, (S,0,), (S,R,), (041,0,), (0,,0,), (R{,R,),
Ry,R,), (R1,07), (Ry,05), (O4,R;), (O4,Ry), (R,F), and
(Oy,F). Here O, and O, designate the first and second
cysteine of the cysteine bridge, respectively. R, and R, are
the nonbonded cysteines before the first and second cys-
teines that form a disulfide bridge. The transition probabili-
ties are obtained by averaging the transition probabilities
over these transition paths. In this way, we consider the
protein groups as 24 nodes in a 12-dimensional space. We
calculate the Euclidian distances among these nodes and
cluster the groups by the neighbor-joining method.?* The
protein clusters with less than 8 proteins were combined
with their clustered neighbors to ensure that each cluster
contains enough number of proteins.

Assessment of the Prediction Accuracy

Our assessment of the prediction accuracy follows the
standard convention'®: The overall prediction accuracy @,
is evaluated as @, = N_/N,, where N, and N, are the total
number of correct predictions for the bonded cysteines and
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Fig. 2. The observed CSSs evaluated from 969 nonhomologous proteins from the PDB (see Data Sets in
Methods section). The notations S, O, and R denote the initial, bonding, and nonbonding states, respectively.
The arrows indicate the transition path from one state to another, and the numbers labeled indicate the
corresponding transition probabilities (for clarity, the unit transition probability is not labeled). Four examples of
the observed CSSs are shown: disulfide proteins with (a) 3 cysteines, (b) 4 cysteines, (¢) 5 cysteines, and (d) 6

cysteines.

the total number of the bonded cysteines, respectively. The
specificity (spec; i.e., the fraction of all positive predictions
that are true positives) is given by

TP,

:W’ szSorSH,

spec

where FP, is the number of false negatives or overpredic-
tions. The sensitivity (sens; i.e., the fraction of positive

examples predicted) for the bonded cysteine (SS) or the
nonbonded cysteine (SH) is given by

TP,

W’ x=SSorSH,

sens =

where TP, is the number of true positives for state x, and
FN, is the number of false negatives or underpredictions.
The Matthews correlation coefficient (MCC)3? is given by
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Figure 2. (Continued)

TP.TN, — FP.FN, where TN, is the true negatives of state x. The value of

B (TP, + FN,)(TP, + FP,)(TN, + FP,)(TN, + FN,)’ MCC, is 1 for a perfect prediction, and 0 for a completely
random assignment. All the results reported here are from

x=8SorSH, 90-fold cross-validation.

MCC
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TABLE I. Predictive Performance of SVM Based on
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TABLE IV. Comparison of Predictive Performances of

Sequence Inputs of Different Window Lengths, {x,(w)} SVMs Coupled with CSS
Window SS SH SS SH
length Q MCC spec sens spec sens Methods @, MCC spec sens spec sens
5 0.75 0.46 0.69 0.63 0.78 082  {x/(15)} + CSS 089 074 091 074 087 097
9 0.79 0.54 0.71 0.69 0.84 084  {x(7) +x,} + CSS 088 0.71 088 0.74 087 0.95
13 0.80 0.56 0.71 0.71 0.85 084  {x(7) +x(7)} + CSS 088 073 089 074 087 0.95
15 0.81 0.58 0.71 0.73 0.87 0.84  Multiple SVM + CSS* 090 0.77 091 0.77 0.89 097
17 0.80 0.56 0.71 0.72 0.86 084 . .
21 0.80 055 0.69 0.72 0.86 0.83 The multiple SVM classifiers are {x,(15)}, {x,(7) + x.}, and {x,(7) +

TABLE II. Predictive Performances of SVMs Based on
Composition Inputs of Different Window Lengths, {x,(w)}

Window S8 SH
length Q, MCC spec sens spec sens
9 0.67 0.22 0.29 0.59 0.88 0.69
15 0.70 0.31 041 0.62 0.87 0.73
25 0.73 0.38 0.46 0.67 0.89 0.75
35 0.75 0.42 0.51 0.69 0.89 0.76
Full length 0.80 0.55 0.65 0.75 0.88 0.82

TABLE III. Comparison of Predictive Performances of
SVM Based on Single and Multiple Feature Vectors

SS SH
Mehods Q. MCC spec sens spec sens
{x,(15)} 0.81 0.58 0.71 0.73 0.87 0.84
{xe0) 0.80 0.55 0.65 0.75 0.88 0.82
(e (7) + x.0) 0.86 0.69 0.79 0.75 0.89 0.89

RESULTS AND DISCUSSION

In Table I, we compare the predictive performances of
{x(w)} (i.e., SVMs based on local sequence feature vectors
of different window sizes). The predictive performances
steadily increases in accordance with the window size, and
reach the maximum (@, = 81%) when the window size is
15. The prediction accuracy remains relatively the same as
the window size increases. Similar prediction accuracy
was also observed in studies using other approaches based
on local sequence feature vectors.'®'® In Table II, we
compare the predictive performances of {x.(w)} (i.e., SVMs
based on composition input vectors of different window
sizes). The predictive performance increases dramatically
as the window size increases, and reaches the maximum
@, = 80% at the full length. The increase of prediction
accuracy mainly comes from improvement on the sensitiv-
ity of SS (from 0.29 to 0.65). The surprisingly high
accuracy using only a 20-element input vector (i.e., 20
compositions of amino acids) is consistent with the observa-
tion that cysteines of the protein prefer to be in only one
state, either bonding or nonbonding.

Table III compares results based on single or multiple
feature vectors. The SVM classifier {x(7) + x,,} gives @, =
86% and MCC = 0.69, significantly improving on either
{x,(15)} (@5 = 81%) or {x_,} (@5 = 80%). The combined SVM
classifier {x,(7) + x,,) considerably increases the MCC

x (1)}

value for bonded cysteines (from 0.58 or 0.55 to 0.69). Since
{x.o} will fail in the case of proteins with mixed bonding
states of cysteines and {x,(15)} does not know of the global
“all-or-none rule” for bonded (or nonbonded) cysteines, a
combination oflocal environment, x(w), and global proper-
ties, x.y, can better capture essential features of cysteine
states.

Table IV lists the results obtained from SVMs coupled
with CSS, which carries information about the global
patterns of the cysteine states in proteins. When the SVM
is coupled with CSS, we consistently obtain the overall
prediction accuracy @, ranging from 88% to 90%, and MCC
from 0.71 to 0.77. Just like a global property such as the
amino acid composition, CSS can help significantly in-
crease prediction accuracy. For example, {x,(15)} + CSS
yields prediction accuracy @, = 89%, about 8% higher than
that of {x,(15)}. In the case of {x,(7) + x_.,}, which includes
global property in terms of the amino acid compositions,
the effects of CSS are not as pronounced as the previous
example on increasing prediction accuracy (@, from 86% to
88%). We also notice that the SVM+CSS significantly
increases the specificity in predicting bonded cysteines
ranging from 88% to 91%, compared with that of SVM
based on local sequence windows (spec = 71% for SS).
Combining multiple SVM classifiers coupled with CSS, we
are able to obtain the best predictor: @, = 90% and MCC =
0.77.

CONCLUSIONS

We have developed an approach to predict the bonding
states of cysteine using SVM methods based on the local
sequence windows and global descriptors such as the total
amino acids and the cysteine state sequences. We found
that the SVM method based on the combined local se-
quence windows and global amino acid compositions signifi-
cantly improves the predictive performances. Obviously,
the combination of local environments of cysteines (such as
local sequence windows) and global properties (such as
total amino acid compositions) can better capture essential
features of cysteine states. Coupled with CSS, SVM based
on multiple-feature vectors yields 90% prediction accuracy
and 0.77 MCC, considerably higher than the correspond-
ing values 81% and 0.58, respectively, obtained by SVM
based on local sequence windows. We also notice that the
SVM+CSS significantly increases the specificity in predict-
ing bonded cysteines (88—-91%), around 20% higher than
that of SVM based on local sequence windows. Higher
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specificity in bonded cysteines allows for confident predic-
tion and prevents error propagations. Though we did not
include structural information in our input vectors, it is
possible to include structural information, such as the
predicted secondary structures or the predicted solvent
accessible areas of the cysteines, as well as the flanking
residues in the windowing.

Our study shows that the bonding state of the cysteines
is determined by both the local information of the particu-
lar cysteine, such as the flanking amino acid sequences,
and the global information, such as the composition con-
tent of the proteins, as well as the bonding states of other
cysteines. Our results may be useful in both protein
modeling'?3% and protein engineering.?” Recently, there
have been efforts to enhance the stability of proteins by
introducing engineered disulfide bonds,?®*~*° and our re-
sults may also be useful in suggesting appropriate resi-
dues for disulfide crosslinking.
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