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Reducing SVM Classification Time Using
Multiple Mirror Classifiers

Jiun-Hung Chen and Chu-Song Chen, Member, IEEE

Abstract—We propose an approach that uses mirror point pairs
and a multiple classifier system to reduce the classification time
of a support vector machine (SVM). Decisions made with multiple
simple classifiers formed from mirror pairs are integrated to ap-
proximate the classification rule of a single SVM. A coarse-to-fine
approach is developed for selecting a given number of member
classifiers. A clustering method, derived from the similarities be-
tween classifiers, is used for a coarse selection. A greedy strategy is
then used for fine selection of member classifiers. Selected member
classifiers are further refined by finding a weighted combination
with a perceptron. Experiment results show that our approach can
successfully speed up SVM decisions while maintaining compa-
rable classification accuracy.

Index Terms—Classification, kernel-based method, multiple
classifier system, supervised learning, support vector machine.

I. INTRODUCTION

THE SUPPORT VECTOR machine (SVM) [35], known
for being a powerful classification and regression tool,

has been to perform successfully in many applications such as:
handwritten digit recognition [18], [35], face detection [21] and
object recognition [25].1 In principle, its classification time is
proportional to the number of support vectors it has. To speed
up SVM decision time (i.e., to reduce its classification time),
some studies [3], [22], [29] proposed finding a simplified clas-
sifier in which the number of vectors involved in classification
is smaller than the number of support vectors. All these works
focused on solving a reduced set (RS) problem [3]. An RS will
be defined in Section II-A.

Unlike previous works, our approach uses a class of simple
classifiers. We define a simple classifier as one in which the
number of vectors involved in determining a classification result
is small. Decisions of these classifiers are combined to approx-
imate an SVM. This idea combining many simple classifiers is
the same as using multiple classifier systems (MCSs) for pattern
classifications [13], [31], [36]. In terms of the number of param-
eters to be optimized, using simple classifiers has the advantage
of a shorter computation time for finding each classifier than an
RS problem which uses more complex classifiers.
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1Other applications using the SVM for the training purpose can be found in
http://clopinet.com/isabelle/Projects/SVM/applist.html.

In this paper, a simple classifier is devised using mirror points.
Only two vectors are required in determining a classification re-
sult for a simple classifier from a pair of mirror points. Another
additional advantage of using simple classifiers is that simple
classifiers can be constructed or selected systematically and in
tandem from a training data set. Selecting some classifiers from
a set of simple ones is a combinatorial problem and is intractable
if a brute force method is used. In order to solve this problem
efficiently, a clustering method and a greedy approach are com-
bined for selecting classifiers.

The remainder of this paper is organized as follows. Section II
reviews the SVM and some MCSs. Our approach is detailed in
Section III. Experiment results are discussed in Section IV. Con-
clusions and future research directions are given in Section V.

II. SVMS AND MCSS

In this section, SVMs and some related work on speeding up
SVM classification are reviewed, followed by an introduction
to MCSs.

A. SVMs and Related Work on SVM Classification Speed

Consider a two-class classification problem. Let

be a set of input–output training data
pairs, where space is referred to as the input space and is
denoted by herein. The SVM [18], [35] first projects the
input vectors onto the feature space by a nonlinear function

, and then finds a linear separating hyperplane
in the feature space, where , , and

. By solving this equation in its dual form [18], [35]
and can be obtained. The solution of is

(1)

where , are Lagrange multipliers. Note that
a training vector with nonzero is called a support vector
and typically the number of support vectors is smaller than the
number of training examples.

The classification rule of SVM is

(2)

where . Note that is a Mercer’s
kernel [35]. Commonly used Mercer’s kernels include Gaussian
RBF, polynomial functions, and sigmoidal functions. We will
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denote as for brevity in cases in which confusion
is not incurred.

As seen in (2), classification time is proportional to
the number of support vectors,

where is the cardinal of set . To speed
up SVM decision, research focuses on solving the RS problem
[3], which finds , defined as follows:

(3)
where

(4)

and

is the Euclidean distance between the two vectors , in the
feature space . is smaller than the number of support vec-
tors. A set of and , can be found
by optimizing (3) (into which (4) is incorporated). The number
of parameters in this optimization problem is . When

or is large, the computation time for solving the optimiza-
tion problem is very high. Iterative methods, including the RS
method [3], [29] and the regression method [22], have been de-
veloped to solve the RS problem.

B. MCS

MCSs [13], [16], [31], [36] use a group of classifiers, instead
of a single classifier, to compromise on a given task. The reason
for combining multiple classifiers is to improve their general-
ization ability [13], [36], tolerate the failure of individual clas-
sifiers [13], [36] and to increase training efficiency [6].

Typically, there are two key steps in designing an MCS. The
first step is to create member classifiers, and the second is to
combine member classifiers. Since it is not useful to combine
classifiers if they have similar classification boundaries, the
main aim of the first step is to create member classifiers with dif-
ferent generalization abilities. Common heuristics for creating
classifiers with different generalizations [31] include using
different kinds of classifiers [9], [36], manipulating training
parameters [34], and training on different or disjoint training
sets [6]. However, the above heuristics do not always guarantee
classifiers with independent errors, whereas such classifiers
provide a useful criterion for improving the classification
accuracy of an MCS [10], [15]. Some methods select a subset
formed by the most error-independent classifiers from an initial
large set of classifiers [9], [23], [32]. This is referred to as an
overproduce and select strategy. Some other methods [20], [28]
can directly create classifiers with independent errors, which
are called direct strategy methods. For further details on these
methods see [20], [28]. For combining classifiers, methods like
weighted averaging [11], [34], [36], majority voting [36], and
rank-based approaches [13] have been proposed. A theoretical
study of combination strategies has recently been given in [16]
but the study employs a restricted underlying assumption that
the estimates of classifiers are independently and identically
distributed (normal or uniform distribution) which cannot be
immediately applied to real life situations.

Similar to an MCS system, Boosting [17] combines simple
member classifiers with weights to form an ensemble such that
the performance of each single ensemble member is improved.
Both member classifiers and weights will be learned within
the Boosting procedure. Kearns and Valiant [14] theoretically
proved that weak classifiers, which perform only slightly better
than random, can be combined to form an arbitrarily good
ensemble classifier when enough data is available. There are
a number of practical Boosting algorithms. The most popular,
AdaBoost [8], allows the designers to continue adding weak
learners until a desired low training error has been achieved.
However, in early Boosting literature, there is a misconception
that Boosting would not overfit even when working with a large
number of iterations. Simulations on data sets with more noise
content clearly show overfitting effects which can be avoided
by regularizing Boosting so as to limit the complexity of the
function class. For example, AdaBoostReg [26], BrownBoost
[7], and SmoothBoost [30] are designed to adapt the applica-
bility of boosting to noisy cases.

In this paper, we design a MCS to approximate the decision of
a classifier (especially, an SVM). A coarse-to-fine approach that
takes classification accuracy and classification efficiency into
account is used to select a given number of member classifiers.
Clustering is performed according to classifier similarities as a
coarse member classifier selection. A greedy strategy, which ex-
ploits the signed-distance differences between the input training
vectors and the mirror pairs, performs a fine selection. In fixing a
number of member classifiers to be selected, the greedy strategy
finds a subset from the coarsely selected member classifiers that
approximates the original classifier.

III. MCS CONSTRUCTED FROM APPROXIMATE

MIRROR CLASSIFIERS

We adopt the overproduce and select strategy [9] to create
member classifiers with errors that are as independent as pos-
sible. A set of simple classifiers, referred to as mirror classifiers
[4], are overproduced from both the SVM and the training data
set. Then, some candidate classifiers are selected. The selected
candidate classifiers are linearly combined with weights and a
bias both obtained by training a perceptron. Its inputs are the
selected candidate classifiers’ outputs. More details about the
proposed method are given in the following subsections.

A. Mirror Classifiers

Assume that a linear separating hyperplane
in the feature space is used as a classification
plane where and

. Given , the
distance from its image to a hyperplane , denoted
by , is

(5)
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Fig. 1. Linear classifiers formed with mirror points. Dotted linew x+b = 0
is a linear separating hyperplane in the feature space. The arrow points to the
region in which data are classified with positive labels. Os and Xs are data
points belonging to positive and negative classes, respectively. The mirror point
of �(x) ism . z can be classified according to the distances d(�(z); �(x)) and
d(�(z);m ). If d(�(z); �(x)) is not larger than d(�(z);m ), z is classified
to the same class of point x. If not, z is classified to the opposite class of point
x.

Furthermore, its mirror vector , associated with in
the feature space , is defined as

(6)

Given a pair of mirror points with
, let us define a classification rule as

if
otherwise

(7)
where . Then the following property holds.

Property 1: for all .
Proof: This property holds because and form a

mirror pair and the distances from and to the hyper-
plane in the feature space are the same.

From Property 1, the classification results of and
are the same for all . This concept is

illustrated in Fig. 1.

B. SVM Approximation From Combined Decisions of Multiple
Mirror Classifiers

Assume that the pre-image [29] of , (i.e., a point
such that ) can be clearly identified. Then, a single
pair of mirror points, can be used to construct an
equivalent classifier of the SVM. However, the pre-image of

may either not exist or require a complex representation.
Let us consider a case in which is approximated by , an
approximate mirror point of . An approximate classification
rule , which results in a linear classifier in the feature
space, is defined as

if
otherwise.

(8)
Note that uses a single pair of approximate mirror
points to approximate .

Below, we define a procedure that uses a weighted
combination of -type classifiers ( ,

) to approximate more accurately. Its pseu-
docodes are as follows.

Procedure (input: , output: result)

Step 1 Let , , .
Step 2 0.
Step 3 For ( to )
Step 3.1 Compute and .
Step 3.2
Step 4 END FOR
Step 5 ,

is defined as

(9)

where . CAMs use the
sum of signed-distance differences of the squared distances as-
sociated along with the input vectors and all their corresponding
mirror pairs in order to classify the input vector.

Two problems remain. One is finding approximate pre-im-
ages of mirror points for creating mirror classifiers, and the other
is finding a suitable combination of classifiers. These two prob-
lems are addressed in the following two subsections.

C. Finding an Approximate Pre-Image of a Mirror Point

If is given, we want to find ( , ) that is satisfied by

(10)

where is the input training data set. The
mirror point can then be approximated as .
We find ( , ) by investigating the training data set. First,
consider each . Let be defined as

(11)

Since (11) a bilinear when is given, analytic solutions of
can be obtained as follows:

(12)

where

(13)

After finding for each contained in the training set,
( , ) with the minimal among all ,

is set to ( , ). The above concept is illustrated
in Fig. 2. To generalize (10), we can consider that

(14)
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Fig. 2. (� , x ) is found by investigating the training data set. Assume that
m is the mirror point to be approximated and Os and Xs are some training
data points that belong to positive and negative classes, respectively. In the
first step, we find � for all i = 1; . . . ; n by using (12). For example, for
�(x ) and �(x ), � �(x ), a vector starting from the origin and ending with
4, and � �(x ), a vector starting from the origin and ending with , can be
obtained by using (12). (� , x ), with the minimal d(� �(x );m ) among all
i = 1; . . . ; n, is set at (� , x ). In this example, (� ; x ) = (� ; x ).

where . To minimize the objection function (14),
the solution of (10) can serve as the initial estimate to be inserted
in the iterative method developed in [29].

D. Finding a Better Combination of Classifiers

A coarse-to-fine approach is developed for selecting and
combining a given number of member classifiers. It takes
into account both classification accuracy and classification
efficiency (closely related to the number of selected classifiers).
The steps in developing this approach follow.

1) Coarse Selection of Classifiers: By varying in the space
, many approximate mirror classifiers [e.g., ( , )] can be

generated (as introduced in Sections III-B and III-C), and a
pool of classifiers can be purposely over-produced. Two pos-
sible ways for creating such a pool include choosing to be any
of the input training examples or merely choosing randomly
in space . In this paper, the former approach is used. Since

-type classifiers can be over-produced, the goal of coarse
selection is selecting some representative classifiers that have
the most independent errors. To do this, we adopted a classi-
fier clustering method [9] in which classifiers are clustered ac-
cording to a distance measure that measures dissimilarities of
the classification results. We adopt the -means clustering prin-
ciple to cluster the classifiers. Centers of classifier clusters are
selected. The distance between two -type classifiers
and , dis , is chosen to be

dis (15)

where ,
, and is the one-norm

of . The center of a cluster consisting of classifiers
is defined as

dis (16)

The pseudocodes for coarse selection are as follows.

Procedure Coarse-Selection by -Means Clustering
(input: a set of AM type classifiers, output: a set of centers
of clusters )

Step 1 Initialize centers of clusters .
Step 2 Do
Step 2.1 For each mirror classifier , find its nearest

center among by (15). Thus clus-
ters are formed.

Step 2.2 Update by (16).
Step 3 UNTIL there is no change in
2) Creating a CAM by a Greedy Method: Assume that

after -means clustering, -type classifiers are ob-
tained whose signed-difference functions [defined in (9)] are

. The following classification rule is used to
classify a given in the procedure CAM:

(17)

Finding an intermediate CAM that better approximates is ad-
dressed below.

The problem is formulated as finding a suitable subset
containing at most classifiers among the classifiers

which has the best classification performance.
Let be a mapping from to . Then,

corresponds to a set of at most
classifiers chosen from . To choose

a set of at most classifiers among the initial ones
is equivalent to finding a (note that some elements of

may be the same). Note that
for all , is expected in

the ideal case. A performance index is defined as

(18)

and we hope to find a maximizing the performance index:

(19)

Note that in (18), the performance index is defined according to
the ground-truth of the classification problem. Alternatively, if
we change to be the output of the SVM being approximated,
we can define a performance index based on how accurately the
SVM can be approximated. We choose the former performance
index since the resultant CAM will more likely have a better
generalization ability than that of the latter.

As finding the global optimal is difficult, we use the
greedy method described below to find a suboptimal solution.
Initially, for each of the classifiers, we construct a MCS
that contains only this classifier. We call these MCSs current.
New MCSs are formed by iteratively adding a classifier to
current MCSs. We design the following iterative procedure that
has three steps per iteration. The first step for each classifier
is that new MCSs are constructed by adding it to each
current MCS. The second step for each classifier is that the
MCS with the best classification performance among these

new MCSs is saved. In the third step, we replace the
current MCSs with the saved MCSs in the second step. By
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repeating this procedures times, we can get current
MCSs with at most different classifiers. The MCS with the
best classification performance among these current MCSs
is our final suboptimal solution.

In the following, we show the details of the above greedy
method. Let and be recursively defined for

and as (20) and (21), shown at the
bottom of the page, respectively. Note that is the th
component of .

To clarify the above formulations, we will explain them step
by step. Initially, for classifier , we construct
a MCS that contains only this classifier and use to store
this classifier’s classification results for all data
(i.e., ). We call
these MCSs, , current MCSs.
In addition, we let for .

Then, a new MCS can be formed by adding a classifier to
a current MCS. For example, by adding classifier to cur-
rent MCS , , a new MCS can be con-
structed under a condition that for data its classification result
is . If we combine to each current MCS
in the above way, new MCSs can be constructed. Among
these new MCSs we find the MCS with the best classifica-
tion performance (i.e.,

). In addition, we use to save one of the cur-
rent MCS indexes in combination with that creates the best
MCS among these new MCSs. The best classification re-
sults for all data are stored at (i.e,

). and for all
can be similarly calculated. We replace the

current MCSs , with the saved
MCSs , . By repeating above proce-
dures times, we can get current MCSs at most
different classifiers, . Then, the
MCS with the best classification performance among these
current MCSs is our final suboptimal solution and can be found
as follows.

Let

(22)

is the best MCS (found by our method), which con-
sists of at most different classifiers, and serves as our resul-
tant MCS. We then backtrack to find member classifiers of the
resultant MCS by finding as defined in the following:

if

if

(23)

The obtained classifiers associated with are then employed
by the CAM we described in Section III-B (that is, sub-

stitutes for in Procedure ).

Step 1 Initialize
and for .

Step 2 For ( to )
Step 2.1 For ( to )
Step 2.1.1 find by (21) and compute

by (20).
Step 2.2 END FOR
Step 3 END FOR
Step 4 Compute by (22).
Step 5 For ( to 1)
Step 5.1 Compute by (23).
Step 6 END FOR

The procedure of fine selection is as follows.

Procedure Fine-Selection(input: a set of classifiers
and the number , output: ) .

Note that the above method can obtain the global optimum if
is modified to be an identity function in (18), (21) and the

definition of . When is replaced by an identity func-
tion, the above method finds a path with the largest additive
score if the score is defined as . In this condition,
Bellman’s principle of optimality [1] for dynamic programming
is satisfied so that the optimal solution can be found using our
described greedy method. However, this greedy method can not
always yield defined in (19) since Bellman’s principle of op-
timality is not exactly satisfied when is used. Neverthe-
less, according to our experience, this greedy method can find a
good sub-optimal solution in practice.

3) Finding a Weighted Combination for a CAM: Since
the signed differences of squared distances, ,

, are all measured in the feature space , they
are not necessarily proportional to the distances or differences
measured in the input space . In this subsection, we further in-
troduce a weight associated with each to compensate
this effect. The CAM is therefore further refined as a weighted
CAM (WCAM) as introduced below.

Procedure (input: , output: result)

Step 0 Let , , , and be given
Step 1 .
Step 2 For ( to )
Step 2.1 Compute and .
Step 2.2
Step 3 END FOR
Step 4 ,

if
if

(20)

if
if (21)
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Let and make
. We can verify that a WCAM is a linear clas-

sifier in because

(24)

A CAM is a special case of WCAMs when ,
and in WCAMs. A WCAM with better clas-

sification accuracy can be accomplished by using the obtained
CAM as an initial estimation. The optimal weight parameters
and bias in WCAM can be found by solving a new classification
problem that discriminates the following input–output training
data pairs .

(25)

In this paper, we use a method similar to those introduced in
[11] and [34] to refine these parameters. A standard perceptron
[12] is trained to discriminate and we let the resultant sep-
arating hyperplane be , where , and

with the initialization being and .
After the separating hyperplane is obtained, we set to be the
th component of for all and to be . Fig. 3

shows the state-flow of the perceptron used for finding the op-
timal parameters.

E. Implementation and Complexity Analysis for WCAM With
Kernel Functions

The procedure WCAM can be implemented with Mercer’s
kernels as shown below. Assume that a set of
is given. For each , , we can get and

by solving the following equation (see (10)) as
introduced in Section III-C.

In addition, let for .
From (24), the following derivations can be obtained.

(26)

In (26), the terms ,
can be obtained off-line. For simplicity, we let

Fig. 3. Refining weight parameters for WCAM by training a perceptron.

and , for
herein. By substituting , , into

(26), we obtain

(27)

where , and
is a constant.

Let us refer to one computation of as a kernel opera-
tion. The time complexity of (27) can be described as approxi-
mately the sum of kernel operations and multiplications.
Note the time complexity of a standard SVM decision as shown
in (2), which requires approximately the sum of kernel oper-
ations and multiplications. In practice, the kernel operations
are a major bottleneck for SVM decision. For example, if the
kernel is selected to be a Gaussian RBF [35]

(28)

where , , then there are approximately subtractions,
multiplications, additions, a square root operation, and an

exponential operation in a kernel operation. If the kernel is se-
lected to be a polynomial function [35]

(29)

where , , then there are approximately multiplica-
tions, additions, and a power operation in a kernel opera-
tion. Hence, if the kernel operation is viewed as the major op-
eration in (27) and (2), their time complexities are and

, respectively. Therefore, the speedup ratio of WCAM to
SVM decision is approximately . When is selected to
be smaller than , speedup is achieved.

IV. EXPERIMENT RESULTS AND DISCUSSIONS

Since operations described in Section III-C and Section III-D
(finding approximate mirror points and constructing a WCAM)
can be done off-line, we focus on the on-line classification ef-
ficiencies and accuracy. The adopted kernel function is RBF in
all experiments.
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Fig. 4. Classification boundaries obtained using SVM and WCAM for the Ripley data set. (a) Classification boundary obtained using SVM. (b) Classification
boundary obtained using WCAM in which two mirror pairs (i.e., four vectors) were used.

A. Two-Class Classification Results

1) Synthetic Data Set Results: This section presents the re-
sult of a classification problem using a synthetic data set, Ripley
data set,2 that was used in experiments in [22]. In this data set,
the number of attributes is 2 and the numbers of training and

2Available: ftp://markov.stats.ox.ac.uk/pub/neural/papers.

testing examples are 250 and 1000, respectively. The parameters
and of the kernel function RBF used for training the SVM

are 1 and 100, respectively (which are the same as in [22]). The
LIBSVM3 software was used to train an SVM for this classi-
fication problem. For the trained SVM, the number of support

3[Online] Available: http://www.csie.ntu.edu.tw/~cjlin/libsvm.
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Fig. 5. Model selection process for SVM over the ionosphere dataset. A Black dot shows the positions of the best parameters. (a) ASR versus the parameters
(r,C) for the ionosphere dataset. (b) The level-curve diagram of (a).

vectors is 78, and the training correct rate and the testing cor-
rect rate are 89.6%, and 89.7%, respectively. Fig. 4(a) shows the
classifying boundaries of the Ripley data set using the SVM.

We use the approach introduced in Section III to find a
WCAM to approximate the SVM decision. The number of
mirror pairs is set to be 2. The obtained classification
boundary is shown in Fig. 4(b). The correct rates for training
and testing data sets with the WCAM are 88% and 89%,
respectively. These rates are comparable to the classification
results rates, 89.6% and 89.7%, obtained by SVM. From ex-
perimental results in [22], 14 vectors and 33 vectors (i.e., about
5.5 and 2.33 times speedup) were used to approximate .4 The
WCAM obtained by our method achieves
times faster than the SVM decision and has a comparable
classification performance.

2) Real Data Set Results: In the first experiment, we use
ten-fold cross-validation to train a classifier of the ionosphere
dataset,5 and in this dataset the numbers of attributes and
training examples are respectively 32 and 351. To find an SVM
with a good classification performance, model selection was
performed to find the best pair of parameters ( , ) within a
given range, and the average of the training and testing correct
rates ASR is chosen to be the performance measure. The
parameters and were respectively investigated within [0,2]
and [ , ] in our model selection process. Fig. 5 shows
model selection results. The best ( , ) found is (0.45,10). In
this parameter setting, the average number of support vectors,
the average training correct rate and the average testing correct
rate are 171.8, 100% and 94.6%, respectively.

A WCAM was built with the proposed method to approxi-
mate the SVM in this experiment. Average classification and
speedup performances of all folds were computed for both the
training and testing data sets. Fig. 6 shows the experiment re-
sults. As is shown, when the number of mirror pairs in use is 8.55
(i.e., the number of vectors in use is ), the speedup
ratio is ten. The obtained correct ratios for training and testing

4However, they did not report the classification results and performances.
5Available: UCI Repository of machine learning databases

http://www.ics.uci.edu/~mlearn/MLRepository.html.

data are respectively 91.9% and 91.5%. Note that for testing
data WCAM can achieve better correct rates than SVM when
the number of vectors involved in determining classifications
is larger than 44.2 (i.e., the speedup ratio is ).
The best correct rates achieved by the approximation of WCAM
for training and testing data are 98.6% and 96.3%, respectively.
Meanwhile, the number of vectors involved in determining clas-
sifications is 74.4 (i.e., the speedup ratio is ).
In this example, the ASRs of WCAM and SVM are 97.45%
and 97.3%, respectively. In term of ASRs, the performance of
WCAM is slightly better than that of SVM even when param-
eters of the SVM have been extensively investigated for this
dataset. Note that WCAM takes less than half the classification
time of that required for SVM to achieve this performance.

A digit recognition experiment that discriminates between
digit 0 and all other digits is performed on the USPS data set.6

In this USPS data set, the number of attributes is 256 and the
numbers of training and testing examples are 7291 and 2007, re-
spectively. The ( , ) is set to be (1/128,10)7 for training SVM.
The number of support vectors is 230 and the training and the
testing correct rates are 100%, and 99.25%, respectively.

Fig. 7 shows the experiment results using WCAM. For ex-
ample, when the number of vectors in use is 20, the speedup
ratio is . The obtained training and testing cor-
rect ratios are 99.51% and 98.85%, respectively. In this experi-
ment, the best training and testing correct rates achieved by the
approximation of WCAM are 99.67% and 98.95%, respectively.
In the WCAM with the best training and testing correct rates, the
number of vectors involved in determining classifications is 64
(i.e., the speedup ratio is ).

The USPS data set has also been used in [29] which intro-
duces two techniques in RS methods. One is called the RS se-
lection technique, and the other is called the reduced set con-
struction (RSC) technique. Selection via kernel PCA (SK) and
as well as penalization (SP) are both introduced in the RS
selection technique. Table I shows the comparisons of the num-

6Available: ftp://ftp.kyb.tuebingen.mpg.de/pub/bs/data.
7This setting of parameters is the same as those in [29].
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TABLE I
COMPARISON OF THE NUMBERS OF MISCLASSIFIED DIGITS AND THE CORRECT RATE OF THE TESTING DATA (SEPARATED WITH /) FOR EACH METHOD UNDER

GIVEN SPEEDUP RATIOS. FOR SK, SP, AND RSC, ALL NUMBERS ARE ESTIMATED FROM TABLES II TO IV IN [29]

Fig. 6. Speedup performance of WCAM for the ionosphere data set. Correct
rates versus the speedup ratios.

bers of misclassified digits under some given speedup ratios for
each different method. When the number of misclassified digits
is fixed at 23, the speedup rates for SK, SP, RSC and WCAM
are 3.39, 2.24, 11.29, and 11.5, respectively. Both Table I and
the above statistics show that our method is superior to SK and
SP, and approximately comparable to RSC.

B. Multiclass Classification Results

We test our method on a multiclass classification problem
using the COIL20 database [19]. Since to the best of our knowl-
edge, there are no other related papers using SVM on this data-
base, we design a simple setting for this database. For each ob-
ject, we use 54 of its images as training images and its other
remaining 18 images as testing images. To deal with this multi-
class classification problem, we use a standard one-against-one
strategy. That is, for each pair of two different labels, we train a
binary classifier to determine the label of a test image. We then
use majority voting among these classifiers to
determine the label of a test image. After performing parameter
selection for SVM, we can achieve perfect 100% correct rates
for both training and testing images. Based on this SVM, our
method is used to speed up each of binary SVM classi-
fiers. The average speedup rates versus correct rates for
classifiers are reported below. For total binary classi-
fication, the best average of training and testing correct rates is
97.64% and the average speedup is 31.7 times. However, using
these binary classifiers for multiclass classification, we obtain
a very worse performance: the training correct rate is 87.87%,

Fig. 7. Speedup performance of WCAM for the USPS data set. Correct rates
versus the speedup ratios.

the testing correct rate is 54.72% and the speedup rate is 2.71.
For multiclass classification, the best performance is that the
training correct rate is 84%, the testing correct rate is 80% and
the speedup rate is 1.17.

C. Discussions

We justify our method from the following two viewpoints: 1)
we use clustering to speed up the greedy search process since the
computational cost of our greedy search process is proportional
to the number of classifiers that make up the CAM and 2) we
provide some experiment results to support greedy search and
perceptron learning. For example, in ionosphere’s experiment
results, the best average training and testing correct rates for a
single mirror classifier over tenfold cross validation are 67.0%
and 65.7%, respectively. After perceptron learning, these correct
rates for a single mirror classifier increase to 74.9% and 72.0%,
respectively. Furthermore, after combining greedy search and
perceptron learning, when the speedup ratio is 10, the average
training and testing correct rates become 91.9% and 91.5%. For
the USPS dataset, after combining greedy search and perceptron
learning, similar performance improvement is also shown.

From the above multiclass results, some points need to be dis-
cussed. For binary classification, even though our method can
achieve about 31.7 times speedup, for multiclass classification,
the speedup is slight. Extending a binary classification speedup
method to a multiclass classification speedup method (that is,
using a binary classification speedup method to speed up each
binary classifier and then combining them by through a voting
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method) cannot work well since the speedup for binary classi-
fication diminishes once all binary classifiers are combined. A
practical extension should account for the number of common
vectors in all binary classifiers so that the speedup for binary
classification can be maintained after all binary classifiers are
combined. One future research direction is to extend our method
for multiclass classification speedup. To the best of our knowl-
edge, there have not been any research papers on this topic.

V. CONCLUSIONS

We propose a new approach to speed up SVM decision. Com-
pared with the existing methods [3], [22], [29], our method com-
bines the decisions of multiple simple classifiers for approxi-
mating the decision of an SVM. By using the concept of mirror
points, a pool of classifiers can be generated in a simple manner
and each classifier is an approximation of the SVM. Such a
useful property makes simple mirror classifiers easily be incor-
porated into an MCS scheme for generating an approximate de-
cision.

Some issues merit further study. In the method proposed in
this paper, each mirror point is approximated by a vector in
the feature space using a single pre-image. A mirror point can
also be better approximated with more than one pre-image, and
finding such a better approximation for a mirror point is equiva-
lent to solving a RS problem. Although less speedup is achieved
when more pre-images are used, more pre-images induces an
extension from our original scheme and can achieve a better
classification performance. In addition to SVMs, our method
can also be used to speed up some other classifiers whose clas-
sification functions can be expressed as a linear combination of
kernel functions (e.g., (1) for an SVM). For example, the ra-
dial-basis-function network [2], [24], the relevance vector ma-
chine [33], and the fuzzy kernel perceptron [5] all have the clas-
sification rules with the same form as SVM. So our method can
be applied to reduce their classification time.

Developing an automated way to find a trade-off between
classification accuracy and classification speed would be a very
useful future direction. However, defining an objective function
which balances classification accuracy and classification speed
is still task dependent and currently we do this selection manu-
ally.
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