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ABSTRACT

Motivation: Protein dispensability is fundamental to the understand-
ing of gene function and evolution. Recent advances in generating
high-throughput data such as genomic sequence data, protein—
protein interaction data, gene-expression data and growth-rate data
of mutants allow us to investigate protein dispensability systematically
at the genome scale.

Results: In our studies, protein dispensability is represented as
a fitness score that is measured by the growth rate of gene-
deletion mutants. By the analyses of high-throughput data in yeast
Saccharomyces cerevisiae, we found that a protein’s dispensability
had significant correlations with its evolutionary rate and duplication
rate, as well as its connectivity in protein—protein interaction network
and gene-expression correlation network. Neural network and sup-
port vector machine were applied to predict protein dispensability
through high-throughput data. Our studies shed some lights on global
characteristics of protein dispensability and evolution.

Availability: The original datasets for protein dispensability ana-
lysis and prediction, together with related scripts, are available at
http://digbio.missouri.edu/~ychen/ProDispen/

Contact: xudong@missouri.edu

from the population over time. Such selection is called purifying
selection (Li, 1997). Given the role of purifying selection in determ-
ining evolution, non-essential genes that are subject to weaker
purifying selection were suggested to have a higher rate of evolution
(Ohta, 1973). Earlier studies showed that protein dispensability and
evolutionary rate were correlated (Hirsh and Fraser, 2001; Krylov
et al., 2003). However, the relationship between protein’s dispens-
ability and evolution could be complex due to a variety of factors
involved (Pakt al., 2003). Recently, the balance hypothesis was pro-
posed to study protein dispensability. It assumes that the dominance
is from physiology and metabolism rather than from selection (Papp
etal., 2003). To further investigate the mechanism of protein dispens-
ability, yeast metabolic network was used to predict fithess effects of
enzymes, which indicated that environmental specificity dominates
enzyme dispensability (Pamgpal., 2004).

A protein’s dispensability is also constrained by the protein con-
nectivity in a protein—protein interaction network. The topological
structure of a large-scale protein—protein interaction network can be
characterized by a scale-free network, in which only a small number
of proteins are highly connected, while for a vast majority of proteins,
each has only limited interactions (Jeoetcal., 2001). It has been
known that highly connected proteins are more likely to be essential
and evolve slowly (Jordast al., 2003). A protein’s dispensability

1 INTRODUCTION c _

. . . . ... may also be related to its gene expression, an aspect that has not
Understand_lng the Importance of an individual gene to the V'_ab',“tybeen examined before. Co-expressed gene are often involved in the
of an organism 1s critical in studylng gene fgnctlon apd designings,me pathway or similar cellular function, and interacting proteins
mutant species with the help of bioengineering techniques. In geng, frequently co-expressed (Janeial., 2002). Thus, the linkage of

knoc_kout experiments, _essent!al ar_wd non-es_sentlal are th? t""Ocoexpression might put some constraints in protein evolution and dis-
classical molecular genetics designations referring to the S|gn|f|cancE

: - ] : ’ ensability, in a similar way as physical protein—protein interaction.
of a gene with respect to its effect on fitness in an organism (Hurs

. ) : o nother factor that may have an impact on protein dispensability is
and Smith, 1999). A gene is considered to be essential if upon dGIeg'ene duplication. Gene duplication, originated from region-specific

tion results in lethality. On the other hand, non-essential genes a1 plication or genome-wide polyploidization, is an important fea-

those for which knockouts do not kill the organism. Essential genesg e in genome evolution (Lawton-Rauh, 2003). One can speculate
are less functiona_llydispepsable orless reduqdant than non-essen {Aht a gene with more duplicates is less likely to be essential, as the
genes. The deletions of different non-essential genes have d'ﬁereahplicates may serve as a backup if the gene is deleted. However,

effects on the evolution and population (growth) of the organism Calthe relationship between the role of duplicate geneset@l, 2003)
riers. The deletion of a non-essential gene might give the carrier and protein dispensability remains unknown

selective disadvantage, and thus, this carrier is likely to be removed While protein dispensability has been studied at the individual
gene phenotype level, advances in generating high-throughput
*To whom correspondence should be addressed. data, such as genomic sequence data, protein—protein interaction

TPresent address: BioMarker Development, Novartis Pharmaceuticaldata, gene-expression data and gene fitness data, enable research-
Corporation, One Health Plaza, East Hanover, NJ 07936, USA. ers to carry out studies at the genome scale. In this study, we
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conducted integrated analyses to understand the dependence of pwdose deletions do not cause lethality in the well-controlled experimental
tein dispensability on protein evolutionary rate, protein-interactionconditions but do cause lethality in the wild environment (Thatehe .,
connectivity, gene-expression cooperativity and gene-duplicatio998). The growth-rate data were obtained from the public database at
rate at a system level by using high-throughput data from multiplttP://www-deletion.stanford.edu/YDPM/YDPM_index.html.
resources in yeasﬂaccharomyc&s cerevisiae, Whlch is a good 22 Identification of putative orthologs using
model system for our study given that comprehensive genome-scale .
. ) reciprocal search
high-throughput data are available. Based on the dependences, we
applied machine-learning methods, i.e. neural network and suppoﬁ” all-against-all FASTA search was conducted for all the proteins coded
vector machine (SVM), to predict protein dispensability from high- I/;t::i:n;aglﬁznizgggeaaodgeegzn;hi SSEiﬁzss%;t;ﬂ?agtigszrsﬁ;gs
ghroughthj)t_l_(:ata 32?.'_;0 untd;arsttand_ thelrelgltlonshlp between protegre defined asreciprocal best hits (Tatustal., 2000; Hirsh and Fraser, 2001)
ISpensabiiity and ditierent factors involved. with additional two strict criteria: (1) FASTA (Pearson, 2000) expectation
value is<1019 and (2) the aligned region between two protein sequences is

2 METHODS >80% of the protein length in yeaStcerevisiae. We illustrate the reciprocal
process using the following example. To identify the orthologs in fission yeast
2.1 Integration of high-throughput data Spombe, we first queried one open reading frame (ORRi budding yeast

. . Scerevisiae against all 4940 ORFs predicted to be protein coding genes in
211 Data preparation In our analyses, we incorporated several gpnompe(Woodetal., 2002) to yield the set of hitgV'}. Then, we queried the
sources of high-throughput data in ye&iterevisiae, including genomic it with the lowest expectation value [} (ORF j) against all 6217 ORFs
sequence and annotation data, protein—protein interaction data, gengypqding yeast (Goffeaet al., 1996) to yield the set of hits}. Finally,

expression data and mutant growth-rate data. The dispensability of a protejpo protein pair {ORF, ORF j} was considered to be putative orthologs if
can be quantified by its contribution to survival and reproduction of the carhe member with the lowest expectation valugii is ORFi.

rier upon gene deletion. This contribution can be measured experimentally

by the growth rate of the carrier. In our study, we used two types of data fo2.3 | dentification of para]ogs in S.cerevisiae
the growth rate. The first type of data is binary, i.e. 1 (for essential genes) or% licated ft ferred t | An all-again-
(for non-essential genes). This type of data was used and neural network fop-Pcated genes are often reterred o as parajogous genes. An at-again

S e L all FASTA search was conducted for the whole seSaErevisiae protein
protein dispensability prediction of SVMs. The second type of the growth- ) ) . o
T . ; sequences to identify the paralogs with two criteria: (1) The FASTA expecta-
rate data is a fitness value ranging from 0 to 1. For each mutant, we estimat

: 10 ; ) )

the deleted gene’s fitness valug, as 1— ri/rmax Wherer; is the growth tion valueis<10~-"and (2) the ah_gned region between two protein sequences
L . . is >80% of any of the two protein sequences.

rate of the strain with gene deleted angx is the maximal growth rate. The

fithness v_alues of_egsential gene deletion strains are 1. ‘ 24 Prediction of protein dispensability
Protein—protein interaction data can be represented as a weighted non- _ ) ] N o )
directed graptGp(D) = (Vp, Ep) with the vertex seVp = {d;|d; € D) We predicted a protein’s dispensability based on the combination of protein

and the edge sefp = {(d;,d;)|ford;,d; € D andi # j}. Each vertex gvolution rate, prgteirj-interaction connectivity, gene-expression cooperativ-
represents one protein and each edge represents one measured interactf$@nd gene-duplication data. Neural network and SVM were used to extract
between the two connected proteins. The spread of node degree (numberf&at“res of essential genes and non-essential genes in the training process,
interacting nodesk) is characterized by a distribution functighx). From and the trained models were used to predict protein dispensability. The data
gene-expression microarray data, a gene-expression cooperativity graph wai€e (number of genes) is 5409. We randomly selected 70% of the data for
constructed agg(D) = (Vg, Eg). The vertex seVg = {d:|d; € D} and training and used the remaining 30% of the data for independent testing. For
the edge seEg = {(d;,d;)|ford;,d; € D,i # jand|r;| > 0.7). Each a given yeast gene, there were ning input units for neural nemork and SVM
vertex represents one gene and each edge represents one gene pair whidsfollows: (1) the number of species where the yeast protein has orthologs
gene expression profiles correlation coefficient > 0.7. This cutoff value N the other four selected speci&pombe, A.thaliana, D.melanogaster and

of |r;;| is determined based on our previous study (Jeshi., 2004a,b). C.elegans); (2-5) the four sequence identity values, each for an ortholog pair
identified from reciprocal search betwe®oerevisiae and another species (if

2.1.2 Data sources We downloaded the genomic sequences and theno ortholog is found in a species, the input value is set to 0); (6) the number
protein annotation data of five species including budding y8astevisiae of interacting partners in protein—protein interaction network; (7) the num-

(http://genome-www.stanford.edu/Saccharomyces/), fission Sefagbsac- ber of neighbors in gene expression cooperativity network; (8) the number of
charomyces pombe (http://www.sanger.ac.uk/Projects/S_pombeRra- parologs in yeast; and (9) the protein size. Features 2-5 provide supplemental
bidopsis thaliana (http://www.arabidopsis.org/)Drosophila melanogaster information about protein evolutionary rate. Protein size is related with bio-

(http://flybase.bio.indiana.edu/), ar@henorhabditis elegans (http://www. logical functionality and diversity (Ryden and Hunt, 1993). All nine features
wormbase.org/). The high-throughput protein—protein interaction data basedere scaled into the range [, 1] for training and testing.

on yeast two-hybrid experiments were from Uetal. (2000) and Itcet al. For the expected output of SVM or neural network, each protein was
(2001), with 5075 interactions among 3567 proteins. We combined thdabeled as 1 (for essential genes) or O (for non-essential genes). For SVM
yeast two-hybrid data with the protein—protein interaction data in the DIPprediction, the initial output fithess value is a floating-point value; while
database (http://dip.doe-mbi.ucla.edu/). In total, 7231 unique binary interacfor neural network prediction, the initial output fitness value is within the
tions among 4067 proteins were used in this study. The gene-expressiaange between 0 and 1. After choosing a cutoff value, we can make a binary
profiles of microarray data were from Gasehal. (2000). The growth  choice whether this gene is essential or non-essential as 0 or 1. For the neural
rates of gene deletion mutants in ye&sterevisiae were measured at the network, the back-propagation learning algorithm and a logistic activation
genome-scale, where 4706 homozygous diploid deletion strains were motienction were used. The learning rate was usually between 0.1 and 1.0. This
itored in parallel under 9 different medium conditions (Steinmettal., neural network had one hidden layer with three hidden units. During each
2002). We used the average growth rate over nine conditions in our studyraining, the iteration is set from 100 to 1000 cycles. After every 50 cycles, a
similar to other studies (Hirsh and Fraser, 2001; Pet@d., 2003). The fit- model was saved and evaluated using 3-fold cross-validation of the training
ness effects of essential genes have the same phenotype (lethality) unddata. The performance of each model was ranked by the average Matthews
various conditions. Thus, the essential genes defined here do not hawerrelation coefficient (Mathews, 1975). The model with the best performance
false positives, although we might miss some ‘marginal essential genesiyvas chosen as the predictor to predict the essential or non-essential genes in
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Fig. 1. The fitness (indispensability) of a protein in yeSskerevisiae versus A) number of other species (amoB8gombe, A.thaliana, D.melanogaster and
C.elegans) having orthologs of the proteinBJ protein connectivity in the protein—protein interaction netwofk), gene cooperativity in the gene expression
network and D) number of paralogs in yeaSicerevisiae.

the test set. For SVM, the polynomial kernel was used and two parameters C represents the number of species that contain orthologs of a
and C_ were applied for the tradeoff between the generalization ability and given protein in budding yeasicerevisiae using the recip-
mis-classification error of the unbalanced data. The software packages used rocal search again§&pombe, A.thaliana, D.melanogaster and

were SNNS 4.2 (Stuttgart Neural Netwqu Simulator) (Ztil., 1993) for C.elegans (see Section 2.2)Xo, represents the number of
the neural network and LIBSVM 2.4 (a library for SVMs) (Scholk(mpﬁl., _ proteins that contain orthologs in Gpecies.

2000) for the SVM. The related parameters, other than those specified in the T . . .
paper, were chosen from the default of the software packages. The scripts ® X&, = {Xp, 1 Pi € Ep}, distribution of proteins with dif-

for data training and testing using SNNS 4.2 and LIBSVM 2.4 are available ~ ferent connectivities in the protein—protein interaction network

upon request. of yeastScerevisiae. Xp, is the number of proteins with the
node degree (number of interactions) 8ndE, = {0, 1,2, 3,
3 RESULTS 4,...}.

In this section, we will first carry out statistical analyses to identify e Xp, = {Xg @ G; € Eg}, distribution of proteins (genes)
the global relationship between the fitness of yeast protein and each  with different connectivities in the gene expression cooperativ-
individual factor derived from the high-throughput data. Then, we ity graph of the microarray data yeaSterevisiae. G; is the

will use the statistical information to select inputs of the neural net- node degree, i.e. number of genes whose expression profiles
work and SVM for predicting the fitness of individual protein from have correlation coefficient 0.7 with a given gene (protein).
the related factors. Xg, is the number of proteins with the node degree &hd

Eq=1{0,1,2,3,4,..}.
31 Integrated analysisof protein dispensability e X, = {Xp, : D; € Egq}, distribution of proteins (genes) with
To characterize the properties of protein dispensability, we invest-  different gene duplication rates in ye&&terevisiae. Xp, is the
igated the relationships between the fithess of a protein in budding  number of proteins with Pparalogs in the yeasicerevisiae
yeastScerevisiaeand protein evolutionary rate, protein connectivity obtained from the FASTA search, afgd = {0, 1, 2, 3,4, . .}.
in the protein—protein interaction network, gene-expression cooper- . L i i .
ativity or gene-duplication rate. We incorporated four types of We_ car_ned out ;Fatlstlcal _anglys_ls for the relationships between
high-throughput data into our analysis, including growth rates ofProtein d|§pensablllty and distributions &g, » X £ XEg andX{gd
mutants, protein sequence data, protein—protein interaction data afg9- 1) Figure 1A shows that the average fitness of a gene in yeast
gene-expression data. The relevant variables derived from sequenc&erévisiae has a positive correlation with the number of species in

data, protein—protein interaction data and gene-expression data a\f‘_@'Ch the gene product_ (protein) has ortholog hits. This implies th_at
as follows: highly conserved proteins across species or slowly evolved proteins

are less dispensable. Figure 1B shows the relationship between pro-
o Xg, = {Xo, : O; € Eo}, distribution of proteins with differ-  tein connectivity in a protein—protein interaction network and fitness.
ent evolutionary rates in yeaSicerevisiae. E, = {0,1,2,3,4  We can see that the proteins involved in more interactions have
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Table 1. Contingency table of fithess distribution versus number of species in which a protein irbyegastisiae has ortholog hits in the other four selected
species $pombe, Athaliana, D.melanogaster andC.elegans)

Fitness Number of species out of four species

0 1 2 3 4
Weak effect (0O< fitness< 0.1) 2106 (1859) 427 (471) 168 (214) 117 (166) 60 (168)
Moderate effect (0.k fithess< 0.5) 1135 (1117) 294 (283) 142 (129) 81 (99) 77 (101)
Moderate effect (0.5 fitness< 1) 37 (50) 13 (13) 7(6) 8(4) 12 (4)
Essential genes (fitness1) 519 (771) 227 (195) 121 (89) 132 (69) 195 (70)

The numbers in parentheses denote the expected values.

Table 2. Contingency table of fithess distribution versus protein connectivity in a protein—protein interaction network

Fitness Protein connectivity (number of interacting partners)

0 1-2 2-4 4-6 6-8 8-10 >10
Weak effect (O< fitness< 0.1) 1092 (940) 796 (725) 635 (640) 203 (235) 70 (107) 35 (63) 51 (172)
Moderate effect (0.k fitness< 0.5) 538 (565) 418 (436) 408 (384) 132 (141) 65 (64) 44 (38) 125 (103)
Moderate effect (0.5 fitness< 1) 18 (25) 15 (19) 15 (17) 12 (6) 2(3) 6(2) 9(5)
Essential genes (fitness1) 272 (390) 252 (301) 248 (301) 131 (97) 81 (44) 43 (26) 167 (71)

The numbers in parentheses denote the expected values.

Table 3. Contingency table of fithess distribution versus gene expression cooperativity from microarray data

Fitness Number of connection in gene-expression profile

0 1-10 10-50 50-100 >100
Weak effect (0< fitness< 0.1) 2333 (2230) 304 (299) 175 (160) 42 (62) 52 (155)
Moderate effect (0.k fitness< 0.5) 1323 (1332) 160 (178) 92 (95) 34 (37) 126 (93)
Moderate effect (0.5 fitness< 1) 55 (59) 10 (8) 3(3) 4(2) 5(4)
Essential genes (fithess1) 831 (921) 134 (123) 55 (66) 46 (26) 134 (64)

The numbers in parentheses denote the expected values.

Table 4. Contingency table of fithess distribution versus number of paralogs that a protein irByeestsiae has

Fitness Number of paralogs

0 1-2 2-4 4-6 6-8 8-10 >10
Weak effect (O< fitness< 0.1) 1884 (2064) 581 (503) 264 (195) 51 (46) 41 (32) 17 (14) 44 (28)
Moderate effect (0.k fithess< 0.5) 1278 (1239) 324 (302) 73 (117) 28 (27) 11 (19) 7(14) 9(17)
Moderate effect (0.5 fithess< 1) 65 (55) 7(13) 2(5) 2(1) 0(1) 0(0) 1(1)
Essential genes (fithess1) 986 (855) 115 (208) 60 (81) 12 (19) 13 (13) 5 (6) 3(12)

The numbers in parentheses denote the expected values.

higher values of fitness (i.e. more likely to be essential). Figure 1Gn protein—protein interaction network, gene-expression cooperativ-
demonstrates that genes with more correlated gene partners (whidly from microarray data and the number of paralogs that a protein in
means more cooperativity with other genes in biological pathwaysyeastS.cerevisiae has. Each distribution frequency is compared with
tend to be less dispensable. Figure 1D shows that a protein havirthe expected value. The expected value at positiop) in the table is
more paralogs irB.cerevisiae (or more gene duplications) is more calculated based on a random distribution according to the following
likely to be dispensable. Tables 1-4 are contingency tables of fithedsrmula:

distribution versus number of species in which a protein in yeast

Scerevisiae has ortholog hits in the other four species, connectivity Expecti, j) = Sumi) « Sum(j)/Total,
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where Sund) is the sum of all the observed values in thih row A
in the table, Surgy) is the sum of all the observed values in théh 1.0+
column and Total is the sum of all the values in the table. This assumes

that there is no correlation between column and row. The observa-

tions in Figure 1 are in line with the distributions in Tables 1-4. For
example, in Table 2, we can find that the number of essential proteins

is less than expected when the number of interacting partners is smal% 0.6+
and larger than expected when the number of interacting partners i$5
large. Obviously, the hypothesis that the row variable and column &
variable are independent is not true. Thus, Peaygestatistics was
calculated to test the significant dependence between the rows and
columns for each table: 0.2+

o (i —ninj/n)? 1
G? = R . .
Sy 00 | |

. . .
i=1 j=1 0.0 0.2 0.4 0.6 0.8 1.0
Sensitivity

0.8

wheren;; denotes the observations in cgll j), n;. denotes the sum
of observed values of rowi = 1,2,..., r,n; denotes the sumof B 117
observed values of columh j = 1, 2,..., ¢, andn denotes the total 1.0 =,
of all the values in the table. The?-values for Tables 1-4 are 543, 0.9
405, 204 and 177, respectively with-values<0.001, indicating
significant dependence between rows and columns in each table. - |
The correlation between protein size and protein dispensabilitys 0.7
is very weak (data not shown). We can conclude that protein sizc=;'§J 0.6
does not have a straightforward trend in terms of determining protein ¢ s
dispensability like other four factors as shown in Figure 1. Neverthe- 1
less, protein size might have implicit effect on protein dispensability
especially when this feature is combined with other features such as 1
protein evolution rate. Hence, we still included protein size as one 0.2+
input feature in the neural network and SVM. Although the effectof 4]
protein size is small, the neural network and SVM can automatically 0.0,
give the protein size a small weight. 00 02 04 08 o8 10

0.8+

0.4+

0.34

3.2 Prediction of protein dispensability Sensitivity

The dependence of protein fitness effects on protein evomtior;fi 2. ROC curves of protein dispensability predictions) Sensitivity and
proteln-lntc_era(_:tlon connectivity, gene-expreSSIOQ cooperatlv.lty an sp?ecificity of neural ne?work (NNgjand SVI\)I/BF;[ Sensitivity and spezificity
ge.ne'dupllcatI(.)In suggests that it may be possible to predict PrO3f neural network for different feature combinations (e.g. connectivity of
tein d'Spensa_b'“ty based on high-throughput data. \_Ne found _th_at th&ene-expression datay, gene duplication datd ,, protein connectivity in
dependence is not strong enough to be expressed in an explicit funGrotein-interaction network; anl,, gene conservation rate).
tion through techniques such as linear regression. Thus, we applied
supervised machine learning methods including neural network and
SVM for the prediction. The neural network and SVM were trained  To further understand how different factors contribute to the
to distinguish ‘essential effect’ from ‘non-essential effect’ based onprotein dispensability, we investigated the effect of different com-
the high-throughput data. The test results were evaluated in terms gfinations of factors on protein dispensability prediction. For every
the performance of sensitivity and specificity: pair of the factors Ko, Ep, Eq andEg), i.e. protein evolutionary rate,
o protein-interaction connectivity, gene-expression cooperativity and
Sensitivity=TP/(TP+FN) and gene-duplication rate, respectively, a neural network was trained and
Specificity= TN/(FP+TN), tested to get the optimal performance. The data with detail descrip-
tions are available at http://digbio.missouri.eduthen/ProDispen/.
where TP is for true positives, FN is for false negatives, FP is forAs shown in Figure 2B for the ROC curves, the combination
false positives and TN is for true negatives. For different cutoffs forthat has the highest impact for protein dispensability prediction is
converting the floating-point values of initial neural network/SVM E, + E,, i.e. protein evolutionary rate and protein-interaction con-
outputs into the final binary outputs between ‘essential effect’ anchectivity. E; 4 E4 has a significant better performance thignt- Eq,
‘non-essential effect’, different sensitivity/specificity values can bewhile E;+ Eg andEq+ E, have similar performance. This suggests
obtained. To assess the tradeoffs between sensitivity and specificithat £, is likely to be more important thahj, for protein dispensab-
(Hastieet al., 2001), Figure 2A shows the receiver operating char-ility. Based on such arguments, we can rank the relative importance
acteristic (ROC) curves of the performance of neural network andor protein dispensability, from high to low, &, Ep, Eg, andEg.
SVM for the testing dataset. The neural network has a slightly betteThis result is consistent with the statistical analysis of contingency
performance than the SVM. Tables 1-4. The 2-values for Tables 1-4, which correspond t&gs

579


http://digbio.missouri.edu/

Y.Chen and D.Xu

Table5. Protein dispensability, connectivities in protein-interaction network the dependences of protein dispensability on protein-evolution rate,
and gene conservation rates of components of the Anaphase-Promotingotein-interaction connectivity, gene-duplication rate and gene-
Complex/Cyclosome (APC/C) expression cooperativity, in an order of decreasing importance.
Moreover, we provided a framework for predicting protein dispens-
D Gene Species where Protein Fitness  ability based on such dependences. The approach described in this
ortholog found connectivity ~ value study is most probably applicable to other organisms for which
various high-throughput data are becoming available (Brown and
Balling, 2001). Although gene deletion strains in yeasérevisiae

YDLOOSBW  APC11 10 1

YNL172W  APC1 10 1 are available and phenotype assay has been performed for all genes,
YOR249C  APC5 10 1 we expect that protein dispensability prediction will be particularly
YDR118W  APC4 10 1 useful for organisms in which mutant strains are less available and
YKL022C ~ CDC16  Spombe; 10 1 more difficult to assay (Browast al., 1996).

D.melanogaster It has been proposed that essential genes evolve more slowly by
yBLOBAC  CDC27 ) 10 1 the adaptive theory of mutation rates (Tourasse and Li, 2000). How-
YLR127C  APC2 Athaliana; Spombe 12 L ever, Hurst and Smith (1999) argued that in rat and mouse essential
YLR102C APC9 13 0.1 . .
YERO36W  CDC26 12 005 and non-essential genes evolve at the same rate. These observations
YHR166C CDC23  Adthaliana: 15 1 suggested that sequence mutation rate might not be the most biolo-

D.melanogaster; gically relevant measure of the evolutionary conservation of gene. In

Spombe; C.elegans our studies, we explored an alternative, i.e. the number of species in

which budding yeask.cerevisiae has orthologous hits through com-
parison of multiple complete genomes using the reciprocal search
method. The conservation rate based on such an approach correlates

Ep, EqandEq are 543, 405, 204, and 177, respectively as showed il:_(vell with the dispensability of a gene, and in .fact, it is the most
Section 3.1. The larger?-value, the stronger dependence underly- !mp_ort_ant factor among the four that we considered. Ou_r method
ing the data. Hence, the?-analysis gives the same order feg, Ep, is similar to an previous study by Krylost al. (2003), who intro-
Eq andEq as the ROC analysis in terms of their relative importanceduced the concept of propensity for gene loss (PGL) to measure gene
for protein dispensability. conservatlo_n rate to study the cor_relatlons among gene loss, pr_oteln
Our studies showed that gene conservation rate is the most impori€duence divergence and gene dispensability. However, they did not
ant factor to determine protein dispensability. The more ancient &PPly any machine learning technique (neural network or SVM) in
gene s, the more likely itis essential. This is also supported by a piloPrédicting gene dispensability, as we did. o
gene deletion project @ pombe (Decottignieset al., 2003). On the Althoy_gh we q_uantlfled the general dependenc_es of_proteln dis-
other hand, gene dispensability is also closely correlated with funcPensability on different factors, the actual relationship between
tionality. Some organism-specific genes, which may play importanPotein dispensability ._smd_ th(_ase factors in individual cases can be
roles in cell life, can be essential genes too. This aspect may be chaf2MPlicated. Our studies indicated that gene conservation rate and
acterized by protein—protein interaction network. Protein—proteinP’Otein-interaction connectivity are the most important factors to
interaction network is tolerant to error but highly vulnerable to détermine protein dispensability. This does not contradict the res-
attack on the highly connected proteins (Alletl., 2000; Barabasi  Ults Of Pappet al. (2003, 2004) that protein dispensability is not the
and Albert, 1999). Highly connected proteins constitute functional€Sults of selection to favor resilience but the consequence of envir-
units essential for the life of cell and they have high likelihood to ©"Mental specificity. Various interaction networks (i.e. regulation,
be essential genes. This is particularly the case for some molecifP€xPression and metabolism) are abstract representations of bio-
lar machines that consist of multiple protein units. Missing one unit'0gical functionality and genes/proteins are organized in a dynamic
can cause the instability of the entire molecular machine structuréshion within these dynamic networks. It is possible that a change
and thus the loss of function. Table 5 shows an example of the pron environmental condition triggers certain interactions of proteins

tein dispensability, conservation rate and protein connectivity for" Correlated gene expression, leading to a detected fitness change.

the components of the Anaphase-Promoting Complex/CycIosomé:,”rther systems-level understanding of the organization and dyn-

which is an ubiquitin ligase complex that degrades mitotic cyclinsamicsf of protein in_t(_aractions will shed lights on mechanistic basis of
and anaphase inhibitory protein, thereby triggering sister chromati@rotein dispensability. o .
separation and exiting from mitosis. In this complex, the components The dispensability is related not only to the connectivity of protein
are highly connected as shown in Table 5. Most of the componentEhySical interactions, but also to the connectivity of genetic interac-
are essential proteins although they are not conserved in evolutiof{ONS- Genetics interactions reveal network components performing
In other words, gene conservation rate and protein functionality cap-élated functions or connecting pathways that converge on the same
ture the different aspects of protein dispensability. Such effect mafSSential endpoint of functionality (Ozieral., 2003). Genetic inter-

not be completely captured by our current study, and is subjected tBCtions can be mapped in a large scale by synthetic genetic array
future investigation. (SGA) analysis in which two single deletions that cause no evident

phenotype individually are lethal in combination. A comprehensive
identification of synthetic lethal interactions in budding yeast was
4 DISCUSSION conducted by crossing mutations in 132 query genes with the com-
We have studied the protein dispensability at the genome scale lyylete set of 4800 viable yeast gene deletion mutants (Bbrad.,
the integrated analyses of high-throughput data. We have show2004). In Figure 3, we measured the relationship between protein
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0.20 Hastie,T., Tibshirani,R. and Friedman,J. (200hg Elements of Statistical Learning:

Data Mining, Inference and Prediction. Springer-Verlag, NY.
i Hirsh,A.E. and Fraser,H.B. (2001) Protein dispensability and rate of evoliNainore,
411, 1046-1049.
0.154 Hurst,L.D. and Smith,N.G. (1999) Do essential genes evolve sld@dyr. Biol., 9,
747-750.
1 Ito,T., Chiba,T., Ozawa,R., Yoshida,M., Hattori,M. and Sakaki,Y. (2001) A comprehens-
ive two-hybrid analysis to explore the yeast protein interactdPnec. Natl Acad.
0.104 Sci. USA, 98, 4569-4574.
1 Jansen,R., Greenbaum,D. and Gerstein,M. (2002) Relating whole-genome expression
data with protein—protein interactiorSenome Res., 12, 37-46.
0.05 Jeong,H., Mason,S.P., Barabasi,A.L. and Oltvai,Z.N. (2001) Lethality and centrality in
protein networksNature, 411, 41-42.
1 Jordan,l.K., Wolf,Y.l. and Koonin,E.V. (2003) No simple dependence between protein
0.00 evolution rate and the number of protein—protein interactions: only the most prolific
1-5

5-10 10-15 >—15 interactors tend to evolve slowlBMC Evol. Bial., 3, 1-6.
Joshi,T., Chen,Y., Becker,J.M., Alexandrov,N. and Xu,D. (2004a) Cellular function
Gene connectivity prediction for hypothetical proteins in ye&siccharomyces cerevisiaeusing multiple
sources of high-throughput datRroceedings of the World Multi-Conference on
Systemics, Cybernetics and Informatics, Vol. IX, pp. 17-20.
Fig. 3. The fitness (indispensability) of 132 query genes in yBastevisiae Joshi,T., Chen,Y., Becker,J.M., Alexandrov,N. and Xu,D. (2004b) Genome-scale
versus gene connectivity in the genetic interaction network determined gene function prediction using multiple sources of high-throughput data in yeast
through the SGA analysis. Gene connectivity is measured by the node degree Saccharomyces cerevisiae. OMICS (in press).
(number of interactions) in the network. Krylov,D.M., Wolf,Y.I., Rogozin,I.B. and Koonin,E.V. (2003) Gene loss, protein
sequence divergence, gene dispensability, expression level, and interactivity are
correlated in eukaryotic evolutioGenome Res., 13, 2229-2235.

dispensability and gene connectivity (the node degree of comporiawton-Rauh,A. (2003) Evolutionary dynamics of duplicated genes in plas.

; T : Phylogenet. Evol., 29, 396—-409.
nts in genetic interaction network) for th 132 r nes. |
ehts ﬁe st Chl teractio d(‘af: 8 ) 0 ,t ese 13 .que y gefesf. Ei,W.H.(lQQ?)MoIecular Evolution, 1st edn. Sinauer Associates Inc., Sunderland, MA.
shows that highly connecte ub genes’ are more important for It'Mathews,B. (1975) Comparison of the predicted and observed secondary structure of

ness, as they may participate in more biological activities, and thus T4 phage lysozymeBiochim. Biophys. Acta, 405, 442-455.
they are more essential to cell life. It has been argued that increasethta, T. (1973) Slightly deleterious mutant substitutions in evolutiature, 246,
functional connectivity of network underlies the evolution of more  96-98.

. zier,O., Amin,N. and Ideker,T. (2003) Global architecture of genetic interactions on
complex species (Pawson and Nash, 2003). The study on the rel? the protein networkNt., Biotechnol, 21, 490491

tlonSh'p between d|5pen5ab'||ty and genetic interactions is ongomgﬁal,c., Papp,B. and Hurst,L.D. (2003) Genomic function: rate of evolution and gene
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