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ABSTRACT
Motivation: Protein dispensability is fundamental to the understand-
ing of gene function and evolution. Recent advances in generating
high-throughput data such as genomic sequence data, protein–
protein interaction data, gene-expression data and growth-rate data
of mutants allow us to investigate protein dispensability systematically
at the genome scale.
Results: In our studies, protein dispensability is represented as
a fitness score that is measured by the growth rate of gene-
deletion mutants. By the analyses of high-throughput data in yeast
Saccharomyces cerevisiae, we found that a protein’s dispensability
had significant correlations with its evolutionary rate and duplication
rate, as well as its connectivity in protein–protein interaction network
and gene-expression correlation network. Neural network and sup-
port vector machine were applied to predict protein dispensability
through high-throughput data. Our studies shed some lights on global
characteristics of protein dispensability and evolution.
Availability: The original datasets for protein dispensability ana-
lysis and prediction, together with related scripts, are available at
http://digbio.missouri.edu/∼ychen/ProDispen/
Contact: xudong@missouri.edu

1 INTRODUCTION
Understanding the importance of an individual gene to the viability
of an organism is critical in studying gene function and designing
mutant species with the help of bioengineering techniques. In gene
‘knockout’ experiments, ‘essential’ and ‘non-essential’ are the two
classical molecular genetics designations referring to the significance
of a gene with respect to its effect on fitness in an organism (Hurst
and Smith, 1999). A gene is considered to be essential if upon dele-
tion results in lethality. On the other hand, non-essential genes are
those for which knockouts do not kill the organism. Essential genes
are less functionally dispensable or less redundant than non-essential
genes. The deletions of different non-essential genes have different
effects on the evolution and population (growth) of the organism car-
riers. The deletion of a non-essential gene might give the carrier a
selective disadvantage, and thus, this carrier is likely to be removed
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from the population over time. Such selection is called purifying
selection (Li, 1997). Given the role of purifying selection in determ-
ining evolution, non-essential genes that are subject to weaker
purifying selection were suggested to have a higher rate of evolution
(Ohta, 1973). Earlier studies showed that protein dispensability and
evolutionary rate were correlated (Hirsh and Fraser, 2001; Krylov
et al., 2003). However, the relationship between protein’s dispens-
ability and evolution could be complex due to a variety of factors
involved (Palet al., 2003). Recently, the balance hypothesis was pro-
posed to study protein dispensability. It assumes that the dominance
is from physiology and metabolism rather than from selection (Papp
et al., 2003). To further investigate the mechanism of protein dispens-
ability, yeast metabolic network was used to predict fitness effects of
enzymes, which indicated that environmental specificity dominates
enzyme dispensability (Pappet al., 2004).

A protein’s dispensability is also constrained by the protein con-
nectivity in a protein–protein interaction network. The topological
structure of a large-scale protein–protein interaction network can be
characterized by a scale-free network, in which only a small number
of proteins are highly connected, while for a vast majority of proteins,
each has only limited interactions (Jeonget al., 2001). It has been
known that highly connected proteins are more likely to be essential
and evolve slowly (Jordanet al., 2003). A protein’s dispensability
may also be related to its gene expression, an aspect that has not
been examined before. Co-expressed gene are often involved in the
same pathway or similar cellular function, and interacting proteins
are frequently co-expressed (Jansenet al., 2002). Thus, the linkage of
coexpression might put some constraints in protein evolution and dis-
pensability, in a similar way as physical protein–protein interaction.
Another factor that may have an impact on protein dispensability is
gene duplication. Gene duplication, originated from region-specific
duplication or genome-wide polyploidization, is an important fea-
ture in genome evolution (Lawton-Rauh, 2003). One can speculate
that a gene with more duplicates is less likely to be essential, as the
duplicates may serve as a backup if the gene is deleted. However,
the relationship between the role of duplicate genes (Guet al., 2003)
and protein dispensability remains unknown.

While protein dispensability has been studied at the individual
gene phenotype level, advances in generating high-throughput
data, such as genomic sequence data, protein–protein interaction
data, gene-expression data and gene fitness data, enable research-
ers to carry out studies at the genome scale. In this study, we
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conducted integrated analyses to understand the dependence of pro-
tein dispensability on protein evolutionary rate, protein-interaction
connectivity, gene-expression cooperativity and gene-duplication
rate at a system level by using high-throughput data from multiple
resources in yeastSaccharomyces cerevisiae, which is a good
model system for our study given that comprehensive genome-scale
high-throughput data are available. Based on the dependences, we
applied machine-learning methods, i.e. neural network and support
vector machine (SVM), to predict protein dispensability from high-
throughput data and to understand the relationship between protein
dispensability and different factors involved.

2 METHODS

2.1 Integration of high-throughput data

2.1.1 Data preparation In our analyses, we incorporated several
sources of high-throughput data in yeastS.cerevisiae, including genomic
sequence and annotation data, protein–protein interaction data, gene-
expression data and mutant growth-rate data. The dispensability of a protein
can be quantified by its contribution to survival and reproduction of the car-
rier upon gene deletion. This contribution can be measured experimentally
by the growth rate of the carrier. In our study, we used two types of data for
the growth rate. The first type of data is binary, i.e. 1 (for essential genes) or 0
(for non-essential genes). This type of data was used and neural network for
protein dispensability prediction of SVMs. The second type of the growth-
rate data is a fitness value ranging from 0 to 1. For each mutant, we estimated
the deleted gene’s fitness value,fi , as 1− ri/rmax, whereri is the growth
rate of the strain with gene deleted andrmax is the maximal growth rate. The
fitness values of essential gene deletion strains are 1.

Protein–protein interaction data can be represented as a weighted non-
directed graphGp(D) = (Vp,Ep) with the vertex setVp = {di |di ∈ D}
and the edge setEp = {(di ,dj )| for di ,dj ∈ D andi �= j}. Each vertex
represents one protein and each edge represents one measured interaction
between the two connected proteins. The spread of node degree (number of
interacting nodes,k) is characterized by a distribution functionP(k). From
gene-expression microarray data, a gene-expression cooperativity graph was
constructed asGg(D) = (Vg,Eg). The vertex setVg = {di |di ∈ D} and
the edge setEg = {(di ,dj )| for di ,dj ∈ D, i �= j and|rij | ≥ 0.7}. Each
vertex represents one gene and each edge represents one gene pair whose
gene expression profiles correlation coefficient|rij | ≥ 0.7. This cutoff value
of |rij | is determined based on our previous study (Joshiet al., 2004a,b).

2.1.2 Data sources We downloaded the genomic sequences and the
protein annotation data of five species including budding yeastS.cerevisiae
(http://genome-www.stanford.edu/Saccharomyces/), fission yeastSchizosac-
charomyces pombe (http://www.sanger.ac.uk/Projects/S_pombe),Ara-
bidopsis thaliana (http://www.arabidopsis.org/),Drosophila melanogaster
(http://flybase.bio.indiana.edu/), andCaenorhabditis elegans (http://www.
wormbase.org/). The high-throughput protein–protein interaction data based
on yeast two-hybrid experiments were from Uetzet al. (2000) and Itoet al.
(2001), with 5075 interactions among 3567 proteins. We combined the
yeast two-hybrid data with the protein–protein interaction data in the DIP
database (http://dip.doe-mbi.ucla.edu/). In total, 7231 unique binary interac-
tions among 4067 proteins were used in this study. The gene-expression
profiles of microarray data were from Gaschet al. (2000). The growth
rates of gene deletion mutants in yeastS.cerevisiae were measured at the
genome-scale, where 4706 homozygous diploid deletion strains were mon-
itored in parallel under 9 different medium conditions (Steinmetzet al.,
2002). We used the average growth rate over nine conditions in our study,
similar to other studies (Hirsh and Fraser, 2001; Pappet al., 2003). The fit-
ness effects of essential genes have the same phenotype (lethality) under
various conditions. Thus, the essential genes defined here do not have
false positives, although we might miss some ‘marginal essential genes’,

whose deletions do not cause lethality in the well-controlled experimental
conditions but do cause lethality in the wild environment (Thatcheret al.,
1998). The growth-rate data were obtained from the public database at
http://www-deletion.stanford.edu/YDPM/YDPM_index.html.

2.2 Identification of putative orthologs using
reciprocal search

An all-against-all FASTA search was conducted for all the proteins coded
in the S.cerevisiae genome to identify the putative orthologs inS.pombe,
A.thaliana, D.melanogaster andC.elegans. A subclass of putative orthologs
are defined as reciprocal best hits (Tatusovet al., 2000; Hirsh and Fraser, 2001)
with additional two strict criteria: (1) FASTA (Pearson, 2000) expectation
value is<10−10 and (2) the aligned region between two protein sequences is
>80% of the protein length in yeastS.cerevisiae. We illustrate the reciprocal
process using the following example. To identify the orthologs in fission yeast
S.pombe, we first queried one open reading frame (ORFi) in budding yeast
S.cerevisiae against all 4940 ORFs predicted to be protein coding genes in
S.pombe (Woodet al., 2002) to yield the set of hits{W }. Then, we queried the
hit with the lowest expectation value in{W } (ORFj ) against all 6217 ORFs
in budding yeast (Goffeauet al., 1996) to yield the set of hits{Y }. Finally,
the protein pair {ORFi, ORFj } was considered to be putative orthologs if
the member with the lowest expectation value in{Y } is ORFi.

2.3 Identification of paralogs in S.cerevisiae
Duplicated genes are often referred to as paralogous genes. An all-again-
all FASTA search was conducted for the whole set ofS.cerevisiae protein
sequences to identify the paralogs with two criteria: (1) The FASTA expecta-
tion value is<10−10 and (2) the aligned region between two protein sequences
is >80% of any of the two protein sequences.

2.4 Prediction of protein dispensability
We predicted a protein’s dispensability based on the combination of protein
evolution rate, protein-interaction connectivity, gene-expression cooperativ-
ity and gene-duplication data. Neural network and SVM were used to extract
features of essential genes and non-essential genes in the training process,
and the trained models were used to predict protein dispensability. The data
size (number of genes) is 5409. We randomly selected 70% of the data for
training and used the remaining 30% of the data for independent testing. For
a given yeast gene, there were nine input units for neural network and SVM
as follows: (1) the number of species where the yeast protein has orthologs
in the other four selected species (S.pombe, A.thaliana, D.melanogaster and
C.elegans); (2–5) the four sequence identity values, each for an ortholog pair
identified from reciprocal search betweenS.cerevisiae and another species (if
no ortholog is found in a species, the input value is set to 0); (6) the number
of interacting partners in protein–protein interaction network; (7) the num-
ber of neighbors in gene expression cooperativity network; (8) the number of
parologs in yeast; and (9) the protein size. Features 2–5 provide supplemental
information about protein evolutionary rate. Protein size is related with bio-
logical functionality and diversity (Ryden and Hunt, 1993). All nine features
were scaled into the range of[0, 1] for training and testing.

For the expected output of SVM or neural network, each protein was
labeled as 1 (for essential genes) or 0 (for non-essential genes). For SVM
prediction, the initial output fitness value is a floating-point value; while
for neural network prediction, the initial output fitness value is within the
range between 0 and 1. After choosing a cutoff value, we can make a binary
choice whether this gene is essential or non-essential as 0 or 1. For the neural
network, the back-propagation learning algorithm and a logistic activation
function were used. The learning rate was usually between 0.1 and 1.0. This
neural network had one hidden layer with three hidden units. During each
training, the iteration is set from 100 to 1000 cycles. After every 50 cycles, a
model was saved and evaluated using 3-fold cross-validation of the training
data. The performance of each model was ranked by the average Matthews
correlation coefficient (Mathews, 1975). The model with the best performance
was chosen as the predictor to predict the essential or non-essential genes in
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Fig. 1. The fitness (indispensability) of a protein in yeastS.cerevisiae versus (A) number of other species (amongS.pombe, A.thaliana, D.melanogaster and
C.elegans) having orthologs of the protein, (B) protein connectivity in the protein–protein interaction network, (C) gene cooperativity in the gene expression
network and (D) number of paralogs in yeastS.cerevisiae.

the test set. For SVM, the polynomial kernel was used and two parameters C+
and C− were applied for the tradeoff between the generalization ability and
mis-classification error of the unbalanced data. The software packages used
were SNNS 4.2 (Stuttgart Neural Network Simulator) (Zellet al., 1993) for
the neural network and LIBSVM 2.4 (a library for SVMs) (Schölkopfet al.,
2000) for the SVM. The related parameters, other than those specified in the
paper, were chosen from the default of the software packages. The scripts
for data training and testing using SNNS 4.2 and LIBSVM 2.4 are available
upon request.

3 RESULTS
In this section, we will first carry out statistical analyses to identify
the global relationship between the fitness of yeast protein and each
individual factor derived from the high-throughput data. Then, we
will use the statistical information to select inputs of the neural net-
work and SVM for predicting the fitness of individual protein from
the related factors.

3.1 Integrated analysis of protein dispensability
To characterize the properties of protein dispensability, we invest-
igated the relationships between the fitness of a protein in budding
yeastS.cerevisiae and protein evolutionary rate, protein connectivity
in the protein–protein interaction network, gene-expression cooper-
ativity or gene-duplication rate. We incorporated four types of
high-throughput data into our analysis, including growth rates of
mutants, protein sequence data, protein–protein interaction data and
gene-expression data. The relevant variables derived from sequence
data, protein–protein interaction data and gene-expression data are
as follows:

• XEo = {XOi
: Oi ∈ Eo}, distribution of proteins with differ-

ent evolutionary rates in yeastS.cerevisiae. Eo = {0, 1, 2, 3, 4}

represents the number of species that contain orthologs of a
given protein in budding yeastS.cerevisiae using the recip-
rocal search againstS.pombe, A.thaliana, D.melanogaster and
C.elegans (see Section 2.2).XOi

represents the number of
proteins that contain orthologs in Oi species.

• XEp = {XPi
: Pi ∈ Ep}, distribution of proteins with dif-

ferent connectivities in the protein–protein interaction network
of yeastS.cerevisiae. XPi

is the number of proteins with the
node degree (number of interactions) Pi , andEp = {0, 1, 2, 3,
4, . . .}.

• XEg = {XGi
: Gi ∈ Eg}, distribution of proteins (genes)

with different connectivities in the gene expression cooperativ-
ity graph of the microarray data yeastS.cerevisiae. Gi is the
node degree, i.e. number of genes whose expression profiles
have correlation coefficient≥ 0.7 with a given gene (protein).
XGi

is the number of proteins with the node degree Gi , and
Eg = {0, 1, 2, 3, 4,. . .}.

• XEd = {XDi
: Di ∈ Ed}, distribution of proteins (genes) with

different gene duplication rates in yeastS.cerevisiae. XDi
is the

number of proteins with Di paralogs in the yeastS.cerevisiae
obtained from the FASTA search, andEd = {0, 1, 2, 3, 4,. . .}.

We carried out statistical analysis for the relationships between
protein dispensability and distributions ofXEo, XEp, XEg andXEd

(Fig. 1). Figure 1A shows that the average fitness of a gene in yeast
S.cerevisiae has a positive correlation with the number of species in
which the gene product (protein) has ortholog hits. This implies that
highly conserved proteins across species or slowly evolved proteins
are less dispensable. Figure 1B shows the relationship between pro-
tein connectivity in a protein–protein interaction network and fitness.
We can see that the proteins involved in more interactions have
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Table 1. Contingency table of fitness distribution versus number of species in which a protein in yeastS.cerevisiae has ortholog hits in the other four selected
species (S.pombe, A.thaliana, D.melanogaster andC.elegans)

Fitness Number of species out of four species
0 1 2 3 4

Weak effect (0≤ fitness< 0.1) 2106 (1859) 427 (471) 168 (214) 117 (166) 60 (168)
Moderate effect (0.1≤ fitness< 0.5) 1135 (1117) 294 (283) 142 (129) 81 (99) 77 (101)
Moderate effect (0.5≤ fitness< 1) 37 (50) 13 (13) 7 (6) 8 (4) 12 (4)
Essential genes (fitness= 1) 519 (771) 227 (195) 121 (89) 132 (69) 195 (70)

The numbers in parentheses denote the expected values.

Table 2. Contingency table of fitness distribution versus protein connectivity in a protein–protein interaction network

Fitness Protein connectivity (number of interacting partners)
0 1–2 2–4 4–6 6–8 8–10 ≥10

Weak effect (0≤ fitness< 0.1) 1092 (940) 796 (725) 635 (640) 203 (235) 70 (107) 35 (63) 51 (172)
Moderate effect (0.1≤ fitness< 0.5) 538 (565) 418 (436) 408 (384) 132 (141) 65 (64) 44 (38) 125 (103)
Moderate effect (0.5≤ fitness< 1) 18 (25) 15 (19) 15 (17) 12 (6) 2 (3) 6 (2) 9 (5)
Essential genes (fitness= 1) 272 (390) 252 (301) 248 (301) 131 (97) 81 (44) 43 (26) 167 (71)

The numbers in parentheses denote the expected values.

Table 3. Contingency table of fitness distribution versus gene expression cooperativity from microarray data

Fitness Number of connection in gene-expression profile
0 1–10 10–50 50–100 ≥100

Weak effect (0≤ fitness< 0.1) 2333 (2230) 304 (299) 175 (160) 42 (62) 52 (155)
Moderate effect (0.1≤ fitness< 0.5) 1323 (1332) 160 (178) 92 (95) 34 (37) 126 (93)
Moderate effect (0.5≤ fitness< 1) 55 (59) 10 (8) 3 (3) 4 (2) 5 (4)
Essential genes (fitness= 1) 831 (921) 134 (123) 55 (66) 46 (26) 134 (64)

The numbers in parentheses denote the expected values.

Table 4. Contingency table of fitness distribution versus number of paralogs that a protein in yeastS.cerevisiae has

Fitness Number of paralogs
0 1–2 2–4 4–6 6–8 8–10 ≥10

Weak effect (0≤ fitness< 0.1) 1884 (2064) 581 (503) 264 (195) 51 (46) 41 (32) 17 (14) 44 (28)
Moderate effect (0.1≤ fitness< 0.5) 1278 (1239) 324 (302) 73 (117) 28 (27) 11 (19) 7 (14) 9 (17)
Moderate effect (0.5≤ fitness< 1) 65 (55) 7 (13) 2 (5) 2 (1) 0 (1) 0 (0) 1 (1)
Essential genes (fitness= 1) 986 (855) 115 (208) 60 (81) 12 (19) 13 (13) 5 (6) 3 (12)

The numbers in parentheses denote the expected values.

higher values of fitness (i.e. more likely to be essential). Figure 1C
demonstrates that genes with more correlated gene partners (which
means more cooperativity with other genes in biological pathways)
tend to be less dispensable. Figure 1D shows that a protein having
more paralogs inS.cerevisiae (or more gene duplications) is more
likely to be dispensable. Tables 1–4 are contingency tables of fitness
distribution versus number of species in which a protein in yeast
S.cerevisiae has ortholog hits in the other four species, connectivity

in protein–protein interaction network, gene-expression cooperativ-
ity from microarray data and the number of paralogs that a protein in
yeastS.cerevisiae has. Each distribution frequency is compared with
the expected value. The expected value at position(i, j) in the table is
calculated based on a random distribution according to the following
formula:

Expect(i, j) = Sum(i) ∗ Sum(j)/Total,
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where Sum(i) is the sum of all the observed values in thei-th row
in the table, Sum(j) is the sum of all the observed values in thej -th
column and Total is the sum of all the values in the table. This assumes
that there is no correlation between column and row. The observa-
tions in Figure 1 are in line with the distributions in Tables 1–4. For
example, in Table 2, we can find that the number of essential proteins
is less than expected when the number of interacting partners is small
and larger than expected when the number of interacting partners is
large. Obviously, the hypothesis that the row variable and column
variable are independent is not true. Thus, Pearsonχ2-statistics was
calculated to test the significant dependence between the rows and
columns for each table:

G2 =
r∑

i=1

c∑

j=1

(nij − ninj /n)2

ninj /n
,

wherenij denotes the observations in cell(i, j), ni. denotes the sum
of observed values of rowi, i = 1, 2,. . . , r,nj denotes the sum of
observed values of columnj , j = 1, 2,. . . , c, andn denotes the total
of all the values in the table. Theχ2-values for Tables 1–4 are 543,
405, 204 and 177, respectively withP -values<0.001, indicating
significant dependence between rows and columns in each table.

The correlation between protein size and protein dispensability
is very weak (data not shown). We can conclude that protein size
does not have a straightforward trend in terms of determining protein
dispensability like other four factors as shown in Figure 1. Neverthe-
less, protein size might have implicit effect on protein dispensability
especially when this feature is combined with other features such as
protein evolution rate. Hence, we still included protein size as one
input feature in the neural network and SVM. Although the effect of
protein size is small, the neural network and SVM can automatically
give the protein size a small weight.

3.2 Prediction of protein dispensability
The dependence of protein fitness effects on protein evolution,
protein-interaction connectivity, gene-expression cooperativity and
gene duplication suggests that it may be possible to predict pro-
tein dispensability based on high-throughput data. We found that the
dependence is not strong enough to be expressed in an explicit func-
tion through techniques such as linear regression. Thus, we applied
supervised machine learning methods including neural network and
SVM for the prediction. The neural network and SVM were trained
to distinguish ‘essential effect’ from ‘non-essential effect’ based on
the high-throughput data. The test results were evaluated in terms of
the performance of sensitivity and specificity:

Sensitivity= TP/(TP+FN) and

Specificity= TN/(FP+TN),

where TP is for true positives, FN is for false negatives, FP is for
false positives and TN is for true negatives. For different cutoffs for
converting the floating-point values of initial neural network/SVM
outputs into the final binary outputs between ‘essential effect’ and
‘non-essential effect’, different sensitivity/specificity values can be
obtained. To assess the tradeoffs between sensitivity and specificity
(Hastieet al., 2001), Figure 2A shows the receiver operating char-
acteristic (ROC) curves of the performance of neural network and
SVM for the testing dataset. The neural network has a slightly better
performance than the SVM.
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Fig. 2. ROC curves of protein dispensability predictions. (A) Sensitivity and
specificity of neural network (NN) and SVM. (B) Sensitivity and specificity
of neural network for different feature combinations (e.g. connectivity of
gene-expression data;Ed , gene duplication data;Ep , protein connectivity in
protein-interaction network; andEo, gene conservation rate).

To further understand how different factors contribute to the
protein dispensability, we investigated the effect of different com-
binations of factors on protein dispensability prediction. For every
pair of the factors (Eo, Ep, Eg andEd), i.e. protein evolutionary rate,
protein-interaction connectivity, gene-expression cooperativity and
gene-duplication rate, respectively, a neural network was trained and
tested to get the optimal performance. The data with detail descrip-
tions are available at http://digbio.missouri.edu/∼ychen/ProDispen/.
As shown in Figure 2B for the ROC curves, the combination
that has the highest impact for protein dispensability prediction is
Eo + Ep., i.e. protein evolutionary rate and protein-interaction con-
nectivity.Eo+Ed has a significant better performance thanEp+Ed,
whileEo +Eg andEg +Ep have similar performance. This suggests
thatEo is likely to be more important thanEp for protein dispensab-
ility. Based on such arguments, we can rank the relative importance
for protein dispensability, from high to low, asEo, Ep, Eg, andEd.
This result is consistent with the statistical analysis of contingency
Tables 1–4. Theχ2-values for Tables 1–4, which correspond to asEo,
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Table 5. Protein dispensability, connectivities in protein-interaction network
and gene conservation rates of components of the Anaphase-Promoting
Complex/Cyclosome (APC/C)

ID Gene Species where
ortholog found

Protein
connectivity

Fitness
value

YDL008W APC11 10 1
YNL172W APC1 10 1
YOR249C APC5 10 1
YDR118W APC4 10 1
YKL022C CDC16 S.pombe; 10 1

D.melanogaster
YBL084C CDC27 10 1
YLR127C APC2 A.thaliana; S.pombe 12 1
YLR102C APC9 13 0.1
YFR036W CDC26 12 0.05
YHR166C CDC23 A.thaliana; 15 1

D.melanogaster;
S.pombe; C.elegans

Ep, Eg andEd are 543, 405, 204, and 177, respectively as showed in
Section 3.1. The largerχ2-value, the stronger dependence underly-
ing the data. Hence, theχ2-analysis gives the same order forEo, Ep,
Eg andEd as the ROC analysis in terms of their relative importance
for protein dispensability.

Our studies showed that gene conservation rate is the most import-
ant factor to determine protein dispensability. The more ancient a
gene is, the more likely it is essential. This is also supported by a pilot
gene deletion project ofS.pombe (Decottignieset al., 2003). On the
other hand, gene dispensability is also closely correlated with func-
tionality. Some organism-specific genes, which may play important
roles in cell life, can be essential genes too. This aspect may be char-
acterized by protein–protein interaction network. Protein–protein
interaction network is tolerant to error but highly vulnerable to
attack on the highly connected proteins (Albertet al., 2000; Barabasi
and Albert, 1999). Highly connected proteins constitute functional
units essential for the life of cell and they have high likelihood to
be essential genes. This is particularly the case for some molecu-
lar machines that consist of multiple protein units. Missing one unit
can cause the instability of the entire molecular machine structure
and thus the loss of function. Table 5 shows an example of the pro-
tein dispensability, conservation rate and protein connectivity for
the components of the Anaphase-Promoting Complex/Cyclosome,
which is an ubiquitin ligase complex that degrades mitotic cyclins
and anaphase inhibitory protein, thereby triggering sister chromatid
separation and exiting from mitosis. In this complex, the components
are highly connected as shown in Table 5. Most of the components
are essential proteins although they are not conserved in evolution.
In other words, gene conservation rate and protein functionality cap-
ture the different aspects of protein dispensability. Such effect may
not be completely captured by our current study, and is subjected to
future investigation.

4 DISCUSSION
We have studied the protein dispensability at the genome scale by
the integrated analyses of high-throughput data. We have shown

the dependences of protein dispensability on protein-evolution rate,
protein-interaction connectivity, gene-duplication rate and gene-
expression cooperativity, in an order of decreasing importance.
Moreover, we provided a framework for predicting protein dispens-
ability based on such dependences. The approach described in this
study is most probably applicable to other organisms for which
various high-throughput data are becoming available (Brown and
Balling, 2001). Although gene deletion strains in yeastS.cerevisiae
are available and phenotype assay has been performed for all genes,
we expect that protein dispensability prediction will be particularly
useful for organisms in which mutant strains are less available and
more difficult to assay (Brownet al., 1996).

It has been proposed that essential genes evolve more slowly by
the adaptive theory of mutation rates (Tourasse and Li, 2000). How-
ever, Hurst and Smith (1999) argued that in rat and mouse essential
and non-essential genes evolve at the same rate. These observations
suggested that sequence mutation rate might not be the most biolo-
gically relevant measure of the evolutionary conservation of gene. In
our studies, we explored an alternative, i.e. the number of species in
which budding yeastS.cerevisiae has orthologous hits through com-
parison of multiple complete genomes using the reciprocal search
method. The conservation rate based on such an approach correlates
well with the dispensability of a gene, and in fact, it is the most
important factor among the four that we considered. Our method
is similar to an previous study by Krylovet al. (2003), who intro-
duced the concept of propensity for gene loss (PGL) to measure gene
conservation rate to study the correlations among gene loss, protein
sequence divergence and gene dispensability. However, they did not
apply any machine learning technique (neural network or SVM) in
predicting gene dispensability, as we did.

Although we quantified the general dependences of protein dis-
pensability on different factors, the actual relationship between
protein dispensability and these factors in individual cases can be
complicated. Our studies indicated that gene conservation rate and
protein-interaction connectivity are the most important factors to
determine protein dispensability. This does not contradict the res-
ults of Pappet al. (2003, 2004) that protein dispensability is not the
results of selection to favor resilience but the consequence of envir-
onmental specificity. Various interaction networks (i.e. regulation,
coexpression and metabolism) are abstract representations of bio-
logical functionality and genes/proteins are organized in a dynamic
fashion within these dynamic networks. It is possible that a change
of environmental condition triggers certain interactions of proteins
or correlated gene expression, leading to a detected fitness change.
Further systems-level understanding of the organization and dyn-
amics of protein interactions will shed lights on mechanistic basis of
protein dispensability.

The dispensability is related not only to the connectivity of protein
physical interactions, but also to the connectivity of genetic interac-
tions. Genetics interactions reveal network components performing
related functions or connecting pathways that converge on the same
essential endpoint of functionality (Ozieret al., 2003). Genetic inter-
actions can be mapped in a large scale by synthetic genetic array
(SGA) analysis in which two single deletions that cause no evident
phenotype individually are lethal in combination. A comprehensive
identification of synthetic lethal interactions in budding yeast was
conducted by crossing mutations in 132 query genes with the com-
plete set of 4800 viable yeast gene deletion mutants (Tonget al.,
2004). In Figure 3, we measured the relationship between protein
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Fig. 3. The fitness (indispensability) of 132 query genes in yeastS.cerevisiae
versus gene connectivity in the genetic interaction network determined
through the SGA analysis. Gene connectivity is measured by the node degree
(number of interactions) in the network.

dispensability and gene connectivity (the node degree of compon-
ents in genetic interaction network) for these 132 query genes. It
shows that highly connected ‘hub genes’ are more important for fit-
ness, as they may participate in more biological activities, and thus
they are more essential to cell life. It has been argued that increased
functional connectivity of network underlies the evolution of more
complex species (Pawson and Nash, 2003). The study on the rela-
tionship between dispensability and genetic interactions is ongoing,
which may shed some lights on gene dispensability from a different
perspective.
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