
Journal of Chemical Information and Modeling is published by the American Chemical
Society. 1155 Sixteenth Street N.W., Washington, DC 20036

Article

GPCR Structure-Based Virtual Screening Approach for CB2 Antagonist Search
Jian-Zhong Chen, Junmei Wang, and Xiang-Qun Xie

J. Chem. Inf. Model., 2007, 47 (4), 1626-1637• DOI: 10.1021/ci7000814 • Publication Date (Web): 20 June 2007

Downloaded from http://pubs.acs.org on March 12, 2009

More About This Article

Additional resources and features associated with this article are available within the HTML version:

• Supporting Information



Journal of Chemical Information and Modeling is published by the American Chemical
Society. 1155 Sixteenth Street N.W., Washington, DC 20036

• Links to the 5 articles that cite this article, as of the time of this article download
• Access to high resolution figures
• Links to articles and content related to this article
• Copyright permission to reproduce figures and/or text from this article

http://pubs.acs.org/doi/full/10.1021/ci7000814


GPCR Structure-Based Virtual Screening Approach for CB2 Antagonist Search

Jian-Zhong Chen,†,§ Junmei Wang,| and Xiang-Qun Xie*,†,‡,§

Department of Pharmaceutical Sciences, School of Pharmacy, Pittsburgh Molecular Library Screening Center,
Drug Discovery Institute and Department of Computational Biology, University of Pittsburgh, Pittsburgh,
Pennsylvania 15260, Department of Pharmacological & Pharmaceutical Sciences, College of Pharmacy,

University of Houston, Houston, Texas 77204-5037, and Encysive Pharmaceuticals Inc., 7000 Fannin Street,
Houston, Texas 77030

Received March 1, 2007

The potential for therapeutic specificity in regulating diseases has made cannabinoid (CB) receptors one of
the most important G-protein-coupled receptor (GPCR) targets in search for new drugs. Considering the
lack of related 3D experimental structures, we have established a structure-based virtual screening protocol
to search for CB2 bioactive antagonists based on the 3D CB2 homology structure model. However, the
existing homology-predicted 3D models often deviate from the native structure and therefore may incorrectly
bias the in silico design. To overcome this problem, we have developed a 3D testing database query algorithm
to examine the constructed 3D CB2 receptor structure model as well as the predicted binding pocket. In the
present study, an antagonist-bound CB2 receptor complex model was initially generated using flexible docking
simulation and then further optimized by molecular dynamic and mechanical (MD/MM) calculations. The
refined 3D structural model of the CB2-ligand complex was then inspected by exploring the interactions
between the receptor and ligands in order to predict the potential CB2 binding pocket for its antagonist. The
ligand-receptor complex model and the predicted antagonist binding pockets were further processed and
validated by FlexX-Pharm docking against a testing compound database that contains known antagonists.
Furthermore, a consensus scoring (CScore) function algorithm was established to rank the binding interaction
modes of a ligand on the CB2 receptor. Our results indicated that the known antagonists seeded in the
testing database can be distinguished from a significant amount of randomly chosen molecules. Our studies
demonstrated that the established GPCR structure-based virtual screening approach provided a new strategy
with a high potential for in silico identifying novel CB2 antagonist leads based on the homology-generated
3D CB2 structure model.

INTRODUCTION

G-protein coupled receptors (GPCRs), which share a
common core structure of seven transmembrane helical
regions, are responsible for the majority of cellular recogni-
tions of hormones and neurotransmitters as well as light,
odor, and taste sensory messengers, etc.1 Human genome
sequencing has determined that GPCR-encoded genes occupy
approximately 3% of the human genome, a fact that has
become the driving force for the growing role of GPCRs as
drug targets. These findings are expected to provide a
pathway to the blockbuster GPCR drugs of tomorrow.2

However, since GPCRs are membrane proteins, their expres-
sion, purification, crystallization, and structure determination
present major challenges to the discovery of new drugs. Up
to now, only bovine rhodopsin has been mapped with a 3D
crystal structure3 in the GPCR family. Due to this general
lack of experimental 3D structures, computer-aided GPCR-
targeted drug design has depended upon the application of

ligand-based modeling techniques based on the pharma-
cophore models derived from existing bioactive GPCR
ligands.4-6

On the other hand, the X-ray crystal structure of bovine
rhodopsin3 can be employed as a structural template of
general relevance to generate 3D homology models of other
GPCRs for structure-based drug design. In fact, the use of
3D GPCR structural models in drug design and structure-
based virtual screening studies has increasingly emerged in
recent literature.6-15 Among these studies, it has been
demonstrated that the homology models of dopamine D3,
muscarinic M1, vasopressin V1a receptors, and 5HT2c were
reliable enough to retrieve known antagonists via structure-
based virtual screening from several compound databases.7,14

Rhodopsin-based homology models of theR1A receptor could
be used as the structural basis for the lead finding and
optimization through the application of a hierarchical virtual
screening procedure.6 In addition, virtual screening has been
successfully performed to identify a submicromolar antago-
nist of the neurokinin-1 receptor based on a ligand-supported
homology model.12 The impressive discovery of novel potent
dopamine D3 ligands using a hybrid pharmacophore- and
structure-based database searching approach has also been
reported.13 Overall, these few existing virtual screening
studies revealed the feasibility of using the homology-
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predicted 3D GPCR structural models for receptor-based in
silico drug design, although the virtual screening methods
and the hit scoring and ranking processes are still under
development.

The CB2 receptor is a subtype of the cannabinoid receptors
(CB1 and CB2), which belong to the family I rhodopsin-
like GPCRs. It is mainly expressed in the immune system
and involved in cannabinoid-mediated immune response. The
potential for therapeutic specificity in regulating diseases
makes the cannabinoid receptors important GPCR targets for
new drug discoveries.16 So far, at least five structure-diverse
sets of cannabinergic ligands have been discovered,17 includ-
ing classical cannabinoids, nonclassical cannabinoids, ami-
noalkylindoles, eicosanoids, and arylpyrazoles. Typically,
two arylpyrazole compounds, SR141716A and SR144528
shown in Figure 1, are the first two selective antagonists of
the CB1 and CB2 receptors, respectively.18,19 Since their
discovery in the early 1990s, extensive studies have been
performed on the chemical modification of arylpyrazoles.20-25

The advances made in the medicinal chemistry of arylpyra-
zoles as cannabinergic ligands have been highlighted in
recent review articles.26,27 Structure-activity relationship
(SAR) studies were also conducted to gain further insight
into quantitative28,29and qualitative30,31SAR models for the
arylpyrazoles affinities on cannabinoid receptors. Further-
more, positive results in the clinical trials of SR141716A
have successfully enabled it to become a new drug, named
Rimonabant (Acomplia, Sanofi-Synthelabo), for the manage-
ment of obesity, smoking cessation, and cardimetabolic risk
factor32 in Britain. This significant development in cannab-
inoid drug research and discovery is the most prominent
indication that the cannabinoid receptor antagonists possess
medicinal uses and therapeutic potential.

However, most of the known cannabinoids, including the
naturally occurring (e.g.,∆9-THC, anandamide) and synthetic
cannabinoid ligands (e.g., CP-55940, WIN55212-2), do not
exhibit substantial selectivity for the CB1 or CB2 receptors.
Efforts to develop cannabinoid-based medication have
involved extensive chemical modifications of cannabinoid
structures in order to separate the medicinal properties of
these compounds from their undesirable psychotropic effects.
The discovery of a potent cannabimimetic compound with
novel chemical scaffolds, using computer-aided virtual
screening approaches, will enhance the efforts to discover
an innovative avenue for providing access to more diverse
in cannabinergic lead structures.

In the present manuscript, we report our recent research
in the development of a structure-based virtual screening
protocol for CB2-selective antagonist discovery. The pro-
tocol, based on the 3D homology structural model of the
human CB2 receptor, was generated using the pharmacoph-
ore-constrained FlexX docking method. Structure-based
virtual screening was conducted previously in order to
discover the structure-diverse agonists for the CB2 receptor.15

However, biochemical studies indicated that the agonist and
antagonist of the cannabinoid receptors might bind at the
different active sites of the CB2 receptor.33,34Therefore, our
present CB2 structure-based antagonist virtual screening
studies will allow us to establish an alternative avenue for
the novel lead discovery of a CB2 antagonist. In our studies,
the SR144528-bound CB2 receptor structure model was first
constructed through flexible docking and molecular dynamic/

mechanic (MD/MM) simulation on the basis of important
binding residues derived from site mutagenesis data. The
generated CB2-SR144528 complex model was then used to
examine the potential binding pocket for the CB2-selective
antagonist. The predicted binding pocket was further evalu-
ated in terms of its ability to identify known cannabinoid
antagonists seeded in a testing compound database. Subse-
quently, the CB2 structure-based virtual screening protocol
was established using the FlexX-Pharm docking algorithm.
In this developed protocol, the consensus scoring (CScore)
procedure, in association with the five scoring functions of
FlexX,35 PMF,36 ChemScore,37 D_Score,38 and G_Score,39

was used to rescore binding energies of the hits screened
from the testing compound database by the FlexX docking
in the CB2 homology model. The enrichment factor was
calculated to evaluate the performance of structure-based
virtual screening protocols under the different CScore
functions for the CB2 antagonists. The established in silico
CB2 antagonist screening method and the known testing
database demonstrated that the homology-generated CB2
receptor structure, with a predicted binding pocket, is a
promising model for structure-based virtual screening for
CB2 antagonist lead discovery.

METHODS

Preparing the 3D Compound Training Database.In
order to establish a reliable protocol for the in silico screening
of bioactive CB2 lead compounds, a training compound
database was constructed by mixing the selected known
bioactive cannabinoid ligands with a larger set of random
compounds that are hypothetically considered inactive. Such
a small compound library was used as the testing database
to develop, refine, and evaluate the pharmacophore queries
and structure-based virtual screening protocol.

In preparation for the training compound database, we
compiled a test set of compounds randomly selected from
the National Cancer Institute compound repository (NCI
version 2000:∼250K small molecules). In order to do so,
the NCI2000 was filtered to extract unwanted compounds
such as molecular mixtures, metal organic compounds, and
molecules with unsuitable molecular weights (lower than
250, higher than 600) by using the Tripos Selector program.40

The remaining 135K molecules were then imported into a
Sybyl Molecular SpreadSheet (MSS). Using a random row-
selection algorithm coded in a written Sybyl-SPL script, 967
compounds were arbitrarily chosen from the spreadsheet to
compose a subset of “inactive” compounds in a training
database.

The training database also contained some bioactive
ligands. In order to span the broadest chemically diverse
range of selected compounds for cannabinoid receptors,
various known bioactive cannabinoids were chosen to
maximize structural-variation. As shown in Figure 1, 30
reference compounds were selected from five traditional
major classes of cannabinoid ligands, including CB1 or CB2
bioactive agonists and antagonists. In addition, three com-
pounds, JTE907, tricyclicpyrazole compound-32, and sul-
fonamide compound-33, were also included in the training
database to maximize the structural diversity of known CB2
antagonists. The 3D structure of each known cannabinoid
ligand was generated using the Tripos Sketch module and
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minimized roughly with a Tripos force field and Gasteiger-
Hückel atomic charges.40 The 33 cannabinoid ligands with
their computer-generated 3D structures were then added to
the training database to create the finalin-housetraining
compound library (a total of 1000 compounds) allowing us
to examine the structure-based virtual screening protocol
based on the 3D CB2 homology model as the following.

Modeling the SR144528-Bound CB2 Receptor Struc-
ture. Since the CB2 receptor does not have an experimental
3D structure available yet, a 3D CB2 homology structural
model has been constructed based on the crystal structure
of bovine rhodopsin and further refined by MD/MM simula-
tions in a previous study.41 Based on this model, the initial
docking position of CB2-selective antagonist SR144528 was
subsequently characterized on the basis of the site-directed
mutagenesis data33 and the molecular modeling results of
the interaction between SR144528 and the CB2 receptor. For
this purpose, MOLCAD40 analysis was performed on the
constructed 3D homology structure of the CB2 receptor41 to
find a solvent-accessible cavity around the two key residues
Ser161 and Ser165.33 The compound SR144528 was then
placed inside the MOLCAD-created solvent-accessible cav-
ity, and the nitrogen atom of pyrazole ring and the oxygen
atom of carboxyamide of the ligand were positioned in the
vicinity of the residues Ser161 and Ser165 of the CB2
receptor. No H-bonding constraints were added for the
following docking simulations.

Furthermore, the receptor-ligand binding geometry was
optimized using a flexible docking method with the Tripos
FlexiDock program.40 In this docking simulation, a CB2
binding pocket was first defined to cover all residues within
4 Å of the ligand in the initial CB2-SR144528 complex.
During flexible docking by the FlexiDock module, all of the
single bonds of residue side chains inside the defined CB2
binding pocket were regarded as rotatable or flexible bonds,
and the ligand was allowed to rotate on all single bonds and
move flexibly within the tentative binding pocket. The atomic
charges were recalculated using the Kollman all-atom
approach for the protein and the Gasteiger-Hückel approach
for the ligand. The H-bonding sites were marked for suitable
atoms, of both SR144528 and CB2 residues within the
defined CB2 active site region, that were able to act as
H-bond donors or acceptors. The binding interaction energy
was calculated to include van der Waals, electrostatic, and
torsional energy terms defined in the Tripos force field.40

The structure optimization was performed for 20 000-
generations using a genetic algorithm, and the 20 best-scoring
ligand-protein complexes were kept for further analyses.
The Flexidock simulation indicated that the obtained 20 best-
scoring SR144528-CB2 complex models have very similar
3D structures with little different energies ranging from

-111.32 kcal/mol to-111.50 kcal/mol. Thus, only the
lowest energy SR144528-CB2 complex model was selected
for further MD/MM simulations as described in the next step.

In order to obtain more consistent antagonist-CB2 interac-
tion modes, further MD/MM computations were carried out
on the FlexiDock-simulated lowest-energy SR144528-CB2
complex using the InsightII Discover program.42 Before the
optimization, a subset of the complex was first defined using
InsightII Subset42 to include the ligand and receptor residues
within 8.0 Å of the ligand in the SR144528-CB2 complex.
In the computations, the AMBER95 force field was applied
to optimize the intermediate ligand-bound CB2 receptor
models with a 15 Å cutoff distance for the nonbonded
interactions, and a distance-dependent dielectric function (ε

) 5r) was used to simulate the transmembrane environment
around the receptor.41 The detailed MD/MM protocol was
described in our previous publication41 and is briefly restated
here: (i) The minimization was initially run for 500 iterations
of steepest descents, followed by a conjugate gradients
optimization until the maximum derivative of energy became
less than 0.1 kcal‚mol-1‚Å-1. (ii) MD simulations were then
performed at a constant temperature of 1000 K with a time
step of 1 fs for a total of 50 ps. Initially, atomic constraints
were applied to retain the backbone atoms in the seven
transmembrane (7-TM) helical domains and all side chain
atoms of the residues outside the defined subset of the CB2
receptor. (iii) Fifty representative SR144528-CB2 receptor
complexes were retrieved from the molecular dynamic
simulations. Each of these complexes was further minimized
with 500 iterations of steepest descent without the constraints
defined in the MD simulation and subsequently minimized
using a conjugate gradient method until the maximum
derivative of the total energy was less than 0.1 kcal‚mol-1‚Å-1.
The obtained 50 MD/MM simulated SR144528-CB2 com-
plex models were filtered to remove the complexes with high
conformational strains of CB2 residues side chains or
SR144528 and the complexes lack of H-bond interactions
between Ser161/Ser165 and SR144528. Finally, among the
remaining MD/MM simulated conformers, the lowest-energy
3D structural model of the SR144528-bound CB2 receptor
was chosen to define the binding site for later structure-based
virtual screening with the FlexX docking method.

Virtual Screening with the FlexX-Pharm/CScore.The
virtual screening protocol was based upon the FlexX-Pharm
method with the Tripos force field.40 First, a CB2 receptor
description file (RDF file) was generated to contain the
information about the protein, its amino acids, the active site,
non-amino acid residues, and specific torsion angles for the
FlexX-Pharm calculations. In this file, the CB2 binding
pocket for its antagonist was defined as a set of residues
within a radius of 8 Å around the ligand in the SR144528-

Figure 1. Structures of cannabinoid ligands used in the training database. Among them, AM263,28 AM630,26 SR144528, JTE907, and the
compounds 22-30,24 32, and 3327,53 were reported to be bioactive CB2 antagonists.
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bound CB2 receptor model, whereas no torsion angle was
defined for the specific residues’ interaction with the ligand.
After the RDF file was created, a constraint description file
(CDF file), defined for the virtual screening of CB2
antagonist by FlexX-Pharm, was generated to contain
information about the pharmacophore constraints for the
interaction between the receptor and docked ligand according
to a computer-simulated SR144528-CB2 complex model. All
pharmacophore constraints were identified to enclose the
hydroxyl groups of Ser161 and Ser165 as H-bond donors
and the indole ring of Trp158 as hydrophobic center on the
basis of the simulated CB2-SR144528 complex by flexible
docking and MD/MM studies above. The default value,
maximum of 30 docking solutions, for each docked molecule
was set to be scored and saved for further analysis. Last,
other default parameters were chosen for the virtual screening
in the FlexX-Pharm program,40 including the undefinition
of the stereochemistry mode, the default FlexX configuration
file from Tripos, the parallel execution of CScore mode, etc.

Docking Hits Selection.The scoring function is another
important factor in the docking approach to calculate
interaction energies between receptor and ligands in structure-
based virtual screening. For hit ranking and evaluation, we
adopted the concept of consensus scoring functions intro-
duced by Charifson et al.43 Consensus score, or CScore,
combines information from different score functions to
account for errors and possibly improve the chances of
identifying “true” ligands. In this way, consensus scoring is
technically feasible for large library screening because tens
to thousands of protein-ligand complexes can be scored,
with scoring functions, for interactions per minute.40 In the
current in silico screening, a scoring protocol was established
to evaluate the binding poses of FlexX-docked compound
at the CB2 receptor using the Tripos CScore module,40 which
comprises five different scoring functions, including the
FlexX score,35 G_Score,39,44 PMF score,36 D_Score,45 and
ChemScore.37 PMF36 is derived from a knowledge-based
approach, and the others are based on force fields or derived
from empirical principles. The Tripos default CScore pa-
rameter file40 was selected with proper adjustments as needed
in the CScore calculation of the binding interactions between
the docked compound and the CB2 receptor.

Having rescored the docked poses with each of the five
scoring functions, followed by the “consensus scoring” (or
CScoring) computation, we selected the top 10% or 15% of
the individual ranking lists as hits for the calculation of the
enrichment factors in order to evaluate the effectiveness of
the scoring functions ability and to assign high ranks to CB2
antagonists. The resultant top hits were then subjected to
further CB2 receptor-directed database searches, using our
in-house programmed SPL script, to find the poses in which
key H-bonds between the docked compound and the receptor
were present. For each compound, if at least one pose was
found to possess the desired hydrogen bonds with residue
Ser161 or Ser165, it was considered a real hit.

RESULTS AND DISCUSSION

Analysis of the CB2 Potential Binding Pockets.In our
previous study,41 a CB2 3D structural model was constructed
using a comparative protein structure prediction method on
the basis of the crystal structure of bovine rhodopsin.3 Such

a computational approach has been widely used to study the
structural characteristics of experimental-structure-unavail-
able proteins, including cannabinoid receptors.41,46,47 The
defined homology model was then employed to analyze the
CB2 structural characterization of the 7-TM helical bundle
for its helix tilt angles, interhelix hydrophobic interaction,
interhelix H-bonding network, conserved residues and motifs,
and a possible disulfide bond between residues Cys174 and
Cys179.41 The structures of the associated amphipathic
cytoplasmic helix domain VIII in both CB1 and CB2
receptors were verified and compared using a NMR method
to study the solution structures of relative peptides in
membrane mimetic dodecylphosphocholine (DPC) micelles.48

Our data enabled us to better understand the CB2 structural
model from the calculated 3D CB2 structural model.

Furthermore, on the basis of the homology-constructed
CB2 structural model, Connolly solvent-accessible protein
channel analysis40,41 was carried out to explore and predict
the possible CB2 receptor binding cavity using the Tripos
MOLCAD program.40 Results showed that solvent-accessible
surface calculations identified two potential binding domains
as shown in Figure 2A. One is located in a cavity among
the helices III, V, VI, and VII on the extracellular side of
the 7TM bundles. This cavity consists of a hydrophilic center
pointed toward the extracellular loop 2 (e2 loop) interface
and framed by the polar residues Asn188, Asp189, Tyr190,
and Gln276 and a large hydrophobic cleft (brown) sur-
rounded by hydrophobic aromatic residues Phe117, Phe197,
and Trp258. The distance between the hydrophilic and
hydrophobic centers of the identified cavity is estimated to
be 9-11 Å, which is approximately the typical size of a
CB2 agonist, such as the WIN55212-2 molecule. The defined
amphipathic binding pocket is also congruent with the
biochemical studies and shows the residues (such as the e2
loop, Tyr190 and Phe197) around the identified cavity. This
is critical to the binding affinity of CB2 ligands including
CP55940 and Win55212-2 as summarized in a recent review
article.27 Therefore, this site was speculated to be the CB2
agonist binding pocket. The defined CB2 agonist binding
pocket shows certain differences with the model reported
by Salo et al.15 The correspondent structure-based database
search results for novel CB2 agonist leads will be reported
elsewhere, whereas the current study is mainly focused on
developing a virtual screening protocol for a CB2 antagonist
search.

As illustrated in Figure 2A, another calculated solvent-
accessible surface is located in a cavity surrounded by the
helices II, III, and IV. The second cavity also shows
amphipathic characteristics. Figure 2B shows that the size
of this predicted cavity perfectly matches the conformation
of the CB2 antagonist SR144528. The two key residues
Ser161 and Ser165, which have been demonstrated to be
critical to the binding of SR144528 at the CB2 receptor
according to the biochemical studies reported by Gouldson
et al.,33 also reside within this domain. Such a pocket would
be hypothesized as a CB2 antagonist binding site and would
serve as a good starting point for mapping the binding site
of SR144528 at the CB2 receptor for the establishment of a
reliable structure-based virtual screening protocol for CB2-
selective antagonist leads. The relative results will be
discussed in detail later. Therefore, our homology structures
of the cannabinoid receptors are helpful in elucidating their
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structural features and interaction patterns with cannabinoid
ligands. The results from the homology structures are
consistent with biochemical mutation studies on cannabinoid
receptors.49

Generation and Refinement of the Antagonist-Bound
CB2 Structural Model. Since the ligand binding pocket of
a receptor is first defined to simulate the interaction between
a docked compound and the receptor in a docking method,
it is a critical factor to be identified for structure-based virtual
screening. Such a pocket for a receptor that has no
experimental structure might be predicted and explored by
applying computer modeling approaches, in correspondence
with key amino acid residues around the binding pocket
identified by site-directed mutagenesis data. We performed
flexible docking and MD/MM simulations to hypothesize
the CB2 active pocket for its antagonist based on the result
of previous MOLCAD analysis of the generated homology
model.

The homology models of several GPCRs, generated using
the X-ray structure of bovine rhodopsin3 as a template, have
been reported for structure-based drug design.6-15 However,
the relatively low global sequence identity between the
structure-unknown GPCRs and bovine rhodopsin is generally
considered to be insufficient for reliable homology model-
ing.6 The different conformation states of GPCRs could also
be induced by various types of bound ligand. In addition, it
was shown previously that, depending on the composition
of the binding pocket to be modeled, considerable deviations
from the native structure may be obtained.6 Therefore, unlike
the experimentally determined structure of other kinds of
ligand-bound protein, the homology models of GPCRs could
not be directly applied to structure-based virtual screening
with the FlexX docking method. In general, the homology-
constructed GPCR 3D structural model would be refined by
flexible docking and MD/MM simulations of the ligand-
receptor complex to achieve more relevant geometries of
protein binding sites.

The reported CB2 receptor computation and site-directed
mutagenesis studies, carried out by Goldson et al.,33 revealed
that two key residues of Ser161 and Ser165 are important
for SR144528 binding at the CB2 receptor. On the other
hand, their reported structural model of the CB2 receptor
was generated on the crystal structure of bacteriorhodopsin
that does not belong to the GPCR family. Therefore, before
conducting virtual screening based on the CB2 structural
model using the FlexX-Pharm method, we performed flexible
docking with the Tripos FlexiDock program40 and MD/MM
simulations with the InsightII Discover program42 to generate
3D coordinates for the antagonist-bound structural model of
the CB2 receptor based on crystal structure of bovine
rhodopsin. For this purpose, the compound SR144528, the
first potent and selective antagonist of the CB2 receptor, was
chosen to be docked into the initial CB2 homology model
with the support of its mutagenesis data.

As shown in Figure 2A, the potential binding cavity of
the receptor was identified for ligand binding through a
MOLCAD40 simulation. A preliminary topographical interac-
tion model was derived by considering additional mutagen-
esis studies and comparative affinity determinations based
on SR144528 binding at the CB2 receptor.33 Combining our
homology model41 and this mutation data,33 it is further
hypothesized that the antagonist binding pocket of the CB2

Figure 2. (A) Graphic representations of the putative CB2 binding
pockets for agonists (top right) and antagonists (lower left) that
were predicted on the basis of 3D CB2 structure model constructed
using the homology and multiple sequence alignment method. The
CB2 agonist pocket is located inside of the CB2 receptor helix
bundle surrounded by transmembrane helices III, V, and VI and
close to the extracellular side. The antagonist site is predicted to
be located on the side of the CB2 receptor- a grove leaned on
transmembrane helices II, III, IV, V. The important mutagenesis-
determined binding residues are represented using the mode of ball
and stick. Helical portions of the protein, including the seven
transmembrane helices and cytoplasmic helix, are shown as violet
cylinders. Loop regions are shown as blue ribbons. (B) SR144528
placed inside the MOLCAD-created solvent-accessible cavity.
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receptor is embraced by the transmembrane (TM) domains
of helices II, III, and IV. Next, SR144528 was manually
docked into the hypothetical binding pocket of an ensemble
of the CB2 homology model. Then, an automated flexible
docking procedure (FlexiDock)40 was carried out to deter-
mine the most energetically favorable binding location and
orientation for the ligand to interact with the CB2 receptor.
FlexiDock40 considers both the selected side chains of protein
residues in the defined binding pocket and the docked ligand
to be flexible. Subsequently, the most favorable ligand-
receptor complex models were selected by ranking the
binding interactions between SR144528 and the CB2 receptor
model. The FlexiDock-simulated results showed that the best
score was-111.50 kcal/mol for the CB2-SR144528 interac-
tion, incorporating the sum of the van der Waals, electro-
static, and torsional energy terms in the Tripos force field.
Since the FlexiDock calculation is only a rough molecular
modeling process, the FlexiDock-generated models of the
SR144528-CB2 complex were subjected to further MD/MM
simulation. Finally, SR144528-CB2 complex models were
obtained by combining the best ranked side-chain conformers
from a set of different models followed by molecular
dynamic and mechanic simulations of the entire complex
using the InsightII Discover program42 with the Amber force
field.50

The simulated SR144528-bound CB2 structural model is
depicted in Figures 3 and 4, showing hydrophobic and
hydrophilic interactions between the ligand and CB2. Large
hydrophobic pockets consisting mostly of residues in the
TMs II, III, IV, and V embrace the big bulk fenchyl group
of SR144528. Hydrophobic amino acids, which participate
in hydrophobic interaction with the fenchyl group of
SR144528, may include Leu82, Ala83, Val86, Leu108,
Ile110, Pro168, Leu169, and the aromatic ring of Tyr166.
Such results are consistent with the results of our previous
3D-QSAR studies.28 The CoMFA-generated 3D-QSAR
model revealed the presence of a significant hydrophobic
region in the CB2 binding site that is capable of accom-
modating a large hydrophobic group, such as the bulky
fenchyl group of SR144528. In addition, the aromatic stack
interaction between the indole ring of Trp158 and aromatic
rings of SR144528 also serves to increase the thermal
stability of the complex. Important hydrophilic interactions
include two H-bonds. One H-bond is formed between the
oxygen atom in the carboxyamide functional group of
SR144528 and the hydroxyl group of Ser165 of the CB2
receptor with a H-bond length of 2.02 Å and an angle of
153.7°. Another one is formed between the nitrogen atom
in the pyrazole ring of SR144528 and the hydroxyl group
of Ser161 of the CB2 receptor with a H-bond length of 2.45
Å and an angle of 156.9°. The two H-bond interactions
demonstrated that the residues Ser161 and Ser165 play
critical roles in the binding of SR144528 at the CB2 receptor.
Such a docking result is consistent with previously reported
biochemical data, which indicate that the mutants of the CB2
receptor (S161A and S165A) lose the high-affinity binding
of SR144528 at the receptor.33

FlexX-Pharm Database Virtual Screening.The FlexX
program35 is a flexible docking algorithm that takes into
account ligand flexibility while keeping the protein rigid. It
allows for fast docking of small molecules into protein active
sites for the performance of 3D database searches. In the

present research, the CB2 structure-based virtual screening
experiments were carried out using the FlexX-Pharm51

method, which is an extended version of FlexX. FlexX-
Pharm allows the information regarding important charac-
teristics of protein-ligand binding modes to be included into
the docking calculation.51 FlexX-Pharm outperforms FlexX
alone in most cases, and it has been verified to be more
reliable in predicting accurate poses of ligand binding at the
receptor.52 Many structure-based drug design studies have
demonstrated that the introduction of pharmacophore con-
straints for FlexX-Pharm docking might improve enrichment
factors significantly.52 Such effects could be attributed to the
efficient filtering of inactive molecules and a decrease in
the number of false positives.52 Therefore, FlexX-Pharm was
used to establish our CB2 receptor-based virtual screening
protocol.

The flexible docking and MD/MM simulation results
above implicate the important hypothetic pharmacophore
queries for CB2 structure-based virtual screening by using
the FlexX-Pharm method. As shown in Figure 5, the capped
stick model in green represents the conformation of SR144528
in the simulated CB2-SR144528 complex. This was used to
define the antagonist binding site of the CB2 receptor while

Figure 3. The MOLCAD-predicted CB2 antagonist binding pocket,
showing SR144528 is situated in the predicted CB2 binding cavity.
The CB2 antagonist SR-144528 was docked by the FlexiDock
program and was further refined by using MM/MD simulations.
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generating the CB2 receptor description file for FlexX-Pharm
searching. In addition, the OH groups of the residues Ser161
and Ser165 were defined as the essential H-bond donor
constraints, represented by red surfaces, for interaction with
the H-bond acceptor atom of the docked ligand. The indole
ring of the residue Trp158 was defined as an essential phenyl

center constraint, represented in white, for interaction with
phenyl-ring, CH3-Phe, or amide on the ligand.40

The 33 cannabinoid ligands, including CB1 and CB2
agonists and antagonists, were enclosed in the training
database. Among these cannabinoids, the ligands AM263,28

SR144528, and compounds 22-3024 were reported to be
CB2 antagonists. As reviewed by Huffman,26 the indole
compound AM630 is different from the traditional cannab-
inoid agonist Win55212-2. It was identified instead as a CB2
selective inverse agonist or antagonist. In addition, another
three compounds, including JTE907, tricyclicpyrazole com-
pound-32, and sulfonamide compound-33, were also identi-
fied as CB2 antagonists.27,53Therefore, these 15 compounds
were considered as bioactive CB2 antagonists in the training
database for the generation of the CB2 structure-based virtual
screening search protocol. All of the randomly selected
compounds from the NCI2000 compound database and the
other cannabinoids were considered inactive ligands in the
training database. Normally, a top percentage set of the
compounds, resulting from FlexX-Pharm database searches
and CScoring evaluations, was chosen as “true” hits to
calculate the enrichment factor for the evaluation of our
structure-based virtual screening protocol.

The evaluation and ranking of predicted ligand binding
conformations at a receptor is a crucial aspect of structure-
based virtual screening. Although the accurate free-energy
simulation techniques have been currently developed for
scoring the binding interaction between ligand and protein,
they are too complicated for the structure-based virtual
screening of the large compound library. For practical
purposes, several approximate scoring functions were de-
veloped with various assumptions and simplification in the

Figure 4. Close views of the CB2 antagonist binding pocket revealed in Figure 3, depicting the SR144528-CB2 binding model resulting
from FlexiDocking and MM/MD simulation. The left picture shows the CB2 receptor residues located around the binding pocket. The right
one reveals the two important residues Ser 161 and Ser 165 have H-bonding interactions (2.51 and 1.90 Å) with the N atom of pyrazole
ring and the O atom of carboxy group of SR144528, respectively. The binding pocket was rendered from the molecular surface created
using the Sybyl MOLCAD module and was color-coded by hydrophobicity (brown to blue: a scale of hydrophobic to hydrophilic properties).
The refined 3D model was used as the predicted binding mode for virtual screening of CB2 antagonist by FlexX-Pharm/CScore docking
method.

Figure 5. A set of three pharmacophore constraints identified in
the active site of CB2 receptor for SR144528 was used in virtual
screening using the FlexX-Pharm program. Constraints include (1)
an essential H-bonding donor at the OH group of S161 (red surface),
(2) an essential H-bonding donor at the OH group of S165 (red
surface), and (3) a phenyl center at the indole ring of W158 (gray
surface).
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evaluation of binding energies for computer-simulated
ligand-protein complexes.54 Typically, the scoring functions
utilized in the present consensus scoring scheme were
representatives of the three main classes of scoring functions,
namely the empirical-based scoring functions, the force-field-
based scoring functions, and the knowledge-based scoring
functions, including ChemScore, G_Score, D_Score, and
PMF, described in the review.54 The combination of different
scoring functions, so-called consensus scoring (CScoring),43

have been developed to balance errors in single scores and
improve the probability of identifying ‘true’ ligands.54

Among the retained 30 conformations of each FlexX-
docked compound, FlexX-Pharm only considers the interac-
tion energy between bound compound and receptor but not
its intraenergy. In other words, some binding conformers of
certain docked compounds interact well with the CB2
receptor, but their conformational energy is probably so high
that the conformation or binding pose is very bad for this
compound. The binding poses of hits are filtered out to
eliminate those with high internal energy. Therefore, in the
hits scoring scheme, the ligand-binding pose extraction was
handled separately from the ranking. Both pose extraction
and ranking were executed by five scoring functions,
including FlexX, G_Score, PMF, D_Score, and ChemScore.36

The best binding pose of each hit was first picked with its
relatively low conformational energy. Then, the scores were
ranked in 28 different combinations of five scoring functions,
as shown in Table 1. As defined in theMethodssection,

only the top 10% or 15% of the individual ranking lists were
regarded as the “true” hit lists from the structure-based virtual
screening protocol. Table 1 summarizes the number of
bioactive cannabinoid antagonist hits that were calculated
with the different combinations of consensus scoring func-
tions.

Furthermore, comparative enrichment factor calculations
were performed to study the efficiency of FlexX-Pharm
database searches using the computer-stimulated antagonist-
bound CB2 structural model. The goal of these computations
was to examine the enrichment effectiveness of our structural-
based virtual screening protocol for bioactive CB2 antago-
nists using different combinations of the five scoring
functions included in the Tripos CScore module.40 In order
to achieve greater effectiveness in structure-based virtual
screening protocols with various settings, the enrichment
factor6,52 was calculated to judge the quality of the rankings
using the following equation

where EF is the enrichment factor, Hitsactive is the number
of bioactive CB2 antagonists in the “true” hit list, Hitssampled

is the number of compounds in the “true” hit list,Nactive is
the number of CB2 bioactive antagonists in the training
database, andNtotal is the number of compounds in the
training database. Based on the definition of the enrichment

Table 1. Numbers of Bioactive CB2 Antagonists Shown up in the Top 10% or 15% of Hits Selected by Single Docking Scores and the
Consensus Scores of the Various Combinations of the Five Scoring Functions for the Training Database Searches

single scoring functionsa

S1 S2 S3 S4 S5

the number of CB2 antagonists retrieved in 10% hits 2 10 2 11 10
the number of CB2 antagonists retrieved in 15% hits 4 12 2 14 11

consensus scoring functionsb

C12 C13 C14 C15 C23

the number of CB2 antagonists retrieved in 10% hits 6 3 9 3 3
the number of CB2 antagonists retrieved in 15% hits 9 5 11 7 4

consensus scoring functionsb

C24 C25 C34 C35 C45

the number of CB2 antagonists retrieved in 10% hits 11 10 5 3 11
the number of CB2 antagonists retrieved in 15% hits 13 13 6 5 13

consensus scoring functionsb

C123 C124 C125 C134 C135

the number of CB2 antagonists retrieved in 10% hits 5 10 6 6 4
the number of CB2 antagonists retrieved in 15% hits 6 12 9 9 5

consensus scoring functionsb

C145 C234 C235 C345 C1234

the number of CB2 antagonists retrieved in 10% hits 9 7 6 7 7
the number of CB2 antagonists retrieved in 15% hits 11 8 7 8 11

consensus scoring functionsb

C1235 C2345 C12345

the number of CB2 antagonists retrieved in 10% hits 5 7 7
the number of CB2 antagonists retrieved in 15% hits 6 10 11

a Single scoring function: S1 representing FlexX Score, S2 representing D_Score, S3 representing PMF_Score, S4 representing G_Score, and
S5 representing ChemScore.b Consensus scoring functions correspondent to the different combinations of five scoring functions, for example, C12
representing a combination of FlexX and D_Score, C123 representing a combination of FlexX, D_Score, and PMF_Score, etc.

EF )
Hitsactive/Hitssampled

Nactive/Ntotal
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factor, EF depends on the total number of compounds in
the “true” hit lists, which are composed of both bioactive
and inactive compounds. Thus, the enrichment factor was
used to estimate the ability of consensus scoring functions
in the docking/scoring protocol studies to assign a high
ranking to bioactive CB2 antagonists.

In this study, multiple scoring functions have been utilized
to rescore the ligand poses binding at the receptor. Such a
consensus scoring approach provides a popular strategy for
postprocessing the results generated from virtual screening.
However, it is more prudent to identify the combination of
scoring functions that together optimize the specific 3D
database search, since it is possible that the standard
combination of several scoring functions in consensus may
not give the best enrichment factor. Figure 6 describes the
enrichment factors for the different combinations of five
scoring functions on the basis of validated hits, defined as
the top 10% or 15% of the ranked database search in our
virtual screening. The applied data set illustrated that the
highest enrichment factor was obtained when G_Score (S4)
was used as a scoring function. As shown in Table 1 and
Figure 6, G_Score can retrieve 11 CB2 antagonists in the
top 10% of ranked hits (a total of 16 compounds) or 14 CB2
antagonists in the top 15% of ranked hits (a total of 25
compounds). These 14 bioactive compounds consist of the
highly structure-diverse known CB2 antagonists, including
biarylpyrazoles, AM630, JTE907, and tricyclicpyrazole
compound 32. Conversely, the PMF scoring function (S3)
provided the lowest enrichment factors. In the 15% com-
pounds of the ranked database, only two known bioactive
CB2 antagonists were retrieved with this scoring function.

In addition, our data shows that the enrichment factors
are influenced when five scoring functions are used together
to rescore the hits with different combinations. In various

combinations of the five scoring functions, the consensus
scoring functions C24 (the combination of D_Score and
G_Score), C25 (the combination of D_Score and Chem-
Score), and C45 (the combination of G_Score and Chem-
Score) provided the second-highest enrichment factor for the
top 10% or 15% of the ranked database (Figure 6). In the
top 15% of the ranked hit lists, these three CScore functions
can retrieve 13 of 15 bioactive CB2 ligands, from the testing
database which contained 1000 compounds, including almost
all kinds of CB2 antagonists, such as arylpyrazoles, tricy-
clicpyrazole compound-32, indole derivative AM630, and
2-oxoquinoline derivative JTE907. Among other CScore
functions, S2 (D_Score), S5 (ChemScore), and C124 (the
combination of FlexX, D_Score and G_Score) also offered
high enrichment factors for the top 10% of the ranked
database, and S2 (D_Score), C25 (the combination of
D_Score and ChemScore), and C124 (the combination of
FlexX, D_Score, and G_Score) generated high enrichment
factors and brought a total 12 of 15 bioactive CB2 antagonists
from the testing database for the top 15% of the ranked
database. The data presented in Figure 6 illustrated that the
identification of true-positive hit compounds were dependent
on retaining a large number of docked poses and rescoring
these on the basis of the consensus scoring with different
combinations of the five scoring functions. For our ongoing
CB2 structure-based antagonist virtual screening of actual
compound databases, these CScore functions are currently
applied to rank the FlexX-docking hits to be selected later
for experimental bioassay validation.

The results of the present CB2 homology model-based
virtual screening also showed that the CB2 bioactive sul-
fonamide compound-33 was included in the ranked database.
Some consensus scoring functions, for example C123 (the
combination of FlexX Score, D_Score, and PMF_score) and
C12345 (the combination of FlexX_Score, D_Score, PMF-
_Score, G_Score, and ChemScore), ranked compound-33 in
the top 15% of the screening hits. Therefore, our in silico
screening protocol not only regained pyrazole CB2 bioactive
antagonist but also recovered other kinds of CB2 bioactive
antagonist. Furthermore, there were no cannabinoid agonists
screened with our structure-based CB2 antagonist virtual
screening protocol. This ensured the reliability of our
established method. Therefore, the generated CB2 homology
model-based virtual screening protocol can be applied to
efficiently retrieve all kinds of CB2-active antagonists in the
testing database.

Finally, the top 10% or 15% of the screening hits also
included some compounds that were randomly selected from
NCI2000 in the training database. Although these compounds
were hypothetically regarded as inactive CB2 ligands in the
development of our virtual screening protocol, they have
H-bond interactions with the key residues, Ser161 and
Ser165, of the CB2 receptors and hydrophobic interaction
with the CB2 residue Tyr158. However, they have totally
different structures in comparison with known CB2 antago-
nists. This result suggests that the highly diverse structural
compounds can be in silico screened from the compound
library for the discovery of new leading CB2 antagonists
using our generated virtual screening protocol. On the other
hand, such a hypothesis can only be demonstrated by
bioassay testing of certain virtual screening hits in the future.

Figure 6. The calculated enrichment factors for the structure-based
CB2 antagonists virtual screening with the rankings from 28
different combinations of five scoring function, including FlexX,
ChemScore, D-Score, ChemScore, and PMF.
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CONCLUSION

A virtual screening protocol using the 3D CB2 homology
model generated from the crystal structure of bovine rhodop-
sin was developed using combined flexible docking, MD/
MM simulations, and FlexX-Pharm docking approaches as
well as the CScore ranking method. The generated CB2
structure-based virtual screening protocol was successful in
identifying all known bioactive CB2 antagonists from our
training database with good enrichment effectiveness. In
addition, the present study also demonstrated that our refined
CB2 receptor homology model provides a relevant structural
basis for rationalizing the CB2 receptor binding. The
established in silico receptor-based screening approach and
consensus scoring functions as well as the 3D CB2 structure
model and predicted binding pocket are currently applied in
our 3D database searches for new chemical scaffold CB2-
selective antagonist lead discovery.
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