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High-resolution mapping of copy-number alterations
with massively parallel sequencing

Derek Y Chiang!?°, Gad Getz!, David B Jaffe!, Michael ] T O’Kelly', Xiaojun Zhao?, Scott L Carter!*,
Carsten Russ!, Chad Nusbaum!, Matthew Meyersonl’2 & Eric S Lander!

Cancer results from somatic alterations in key genes, including
point mutations, copy-number alterations and structural
rearrangements. A powerful way to discover cancer-causing genes
is to identify genomic regions that show recurrent copy-number
alterations (gains and losses) in tumor genomes. Recent
advances in sequencing technologies suggest that massively
parallel sequencing may provide a feasible alternative to DNA
microarrays for detecting copy-number alterations. Here we
present: (i) a statistical analysis of the power to detect copy-
number alterations of a given size; (ii) SegSeq, an algorithm to
segment equal copy numbers from massively parallel sequence
data; and (iii) analysis of experimental data from three matched
pairs of tumor and normal cell lines. We show that a collection of
~ 14 million aligned sequence reads from human cell lines has
comparable power to detect events as the current generation of
DNA microarrays and has over twofold better precision for
localizing breakpoints (typically, to within ~ 1 kilobase).

Copy-number alterations are a substantial category of genetic
variation. Germline copy-number variants can be used for pheno-
typic mapping in genome-wide association studies and have been
linked to various diseases!~>. During carcinogenesis, tumor gen-
omes often acquire somatic chromosomal alterations that can alter
the dosage or structure of oncogenes and tumor suppressor genes.
A powerful way to find cancer genes is to identify genomic regions
with recurrent copy-number alterations (gains and losses) in tumor
genomes®, Ideally, such characterization should include both the
precise identification of the chromosomal breakpoints of each
alteration and the accurate estimation of copy numbers in
each chromosomal segment. Indeed, hybridization of genomic
DNA to oligonucleotide microarrays can reveal genome-wide
copy-number changes>®.

In principle, a simple and powerful approach to assessing copy-
number alterations is to perform ‘digital karyotyping’. For instance,
analyses of whole-genome shotgun sequencing data can delineate
germline copy-number variations among individuals”. One can
use a similar approach to detect copy-number alterations that arise

somatically in tumor genomes. In essence, one performs shotgun
sequencing of short sequence tags from tumor and normal DNA.
The number of sequences aligning to each genomic region should
be proportional to its copy number!®-13, In practice, however, the
high cost of DNA sequencing has greatly limited the practical
application of this approach. Recently, a new generation of DNA
sequencers has enabled massively parallel sequencing of millions of
short sequence reads at dramatically lower costs®!4,

Here we present a detailed analysis of the issues involved in
identifying cancer copy-number alterations using massively parallel
sequencing. First, we analyzed the statistical power to detect copy-
number alterations and to map their boundaries accurately. Sec-
ond, we developed SegSeq, a computational algorithm to detect
these alterations and map their boundaries, taking advantage of
the high density of sequence reads. Third, we applied these
results to actual sequencing data from Illumina 1G Genome
Analyzer, with reads length of 32 or 36 base pairs (bp). With over
10 million aligned sequence reads per sample, we found that copy-
number estimates from massively parallel sequencing achieved
greater sensitivity, higher dynamic range and greater precision
for mapping breakpoints than similar estimates based on micro-
array hybridization.

RESULTS

Statistical power: copy-number alterations in fixed windows
We first studied the power to detect a copy-number alteration of a
given size. Assuming that sequence reads are randomly chosen from
the genome, the number of reads aligning to a region will follow a
Poisson distribution with mean directly proportional to the size of
the region and to the copy number. With 10 million aligned reads,
for example, a region of 50 kilobases (kb) in the alignable portion of
the human genome (A = 2.2 x 10° for 36-bp reads) would be
expected to have 50,000 x 107 / A = ~230 reads for two copies,
~115 reads for one copy or ~345 reads for three copies (Supple-
mentary Methods online). In practice, one cannot hit repetitive
sequences with uniquely aligning reads. Therefore, here we refer to
the ‘uniquely aligning’ portions of a region.
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For any genomic region, its copy-number ratio equals the
number of aligning reads from a tumor sample, divided by the
number from the corresponding matched normal sample. One
detects a copy-number alteration in regions in which the copy-
number ratio deviates from 1. To calculate the power to detect a
significant alteration at a fixed genome-wide false-positive rate, we
artificially partitioned the genome into nonoverlapping windows of
equal size (Fig. 1a). Then, we used a log-normal approximation for
the logarithm of differences in copy-number ratios to calculate the
total number of aligning reads required to have 90% power to
discriminate between copy number 1, 2 or 3 for regions of various
sizes at a stringency of a single false positive in the entire genome.
To detect a 50-kb region of a single-copy gain, at this stringency,
one requires ~ 15 million aligned reads (Fig. 1b); for a single-copy
loss one needs ~ 6 million aligned reads (Fig. 1c).

Algorithm: detecting and localizing copy-number alterations

We developed a computational algorithm, called SegSeq, to detect
and localize copy-number alterations from massively parallel
sequence data. A simple approach would be to partition the
genome into windows of fixed size, estimate the tumor-normal
ratios for each window and use standard segmentation algorithms
to decompose the genome into regions of equivalent copy num-
ber!®. The disadvantage of this approach, however, is that the
breakpoints could not be localized more finely than the boundaries
of the windows. Instead, we developed an approach with the ability
to identify breakpoints at any read position. Our approach is thus

Figure 2 | Segmentation algorithm for aligned sequenced reads. (a) Candidate
breakpoints (red dots) correspond to tumor read positions (black dots) whose
local log-ratio statistic, D, passes a lenient significance threshold. (b) These
candidate breakpoints define the boundaries of the initial copy-number
segments (blue lines). Each point represents the estimated copy-number
ratio for a 100-kb window. (c) A merging procedure yields the final list of
copy-number segments (green lines) obtained for 10 genome-wide false
positives. (d-e) Sensitivity to detect copy-number alterations as a function
of the local window size parameter, w. A copy-number alteration of a
particular size is introduced into a diploid genome sampled by 12 million
aligned reads. Each line represents the fraction of 1000 spike-in simulations
for which a copy-number gain (d) or loss (e) was correctly identified by the
segmentation algorithm.
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Figure 1 | Theoretical coverage required to detect single-copy gains and
losses. (a) Schematic overview for detecting copy-number alterations by
sequencing. (b,c) Power calculations to detect copy-number alterations for

a single copy gain and loss. We considered fixed windows L ranging from

L =10 kb to L = 100 kb. Lines indicate approximated power based on the
distribution of ratios of normally distributed random variables. For L = 30 kb,
we plotted simulation results for ratios of Poisson-distributed random
variables (cyan dots). The approximation is accurate to within 10% (cyan
dotted lines) for windows with average number of reads A greater than 80
(dashed black line).

not constrained to a window of a prespecified size nor to fixed
marker locations (as in microarray hybridization).

Our algorithm is a hybrid of local change-point analysis with a
subsequent merging procedure that joins adjacent chromosomal
segments (Fig. 2a—c). There are three user-defined parameters: w,
the number of consecutive reads from the normal sample that
defined the local windows for breakpoint initialization; pj,i, the
P-value cutoff for the initial list of candidate breakpoints; and
Pmerge> the P-value cutoff for merging adjacent segments.

In the first step, we hyper-segmented the genome by generating a
list of candidate breakpoints based on read counts in local win-
dows. At each tumor read position, we extended a window to the
left and to the right to include a fixed number of reads, w, in the
normal sample. Then, we calculated the significance (P-value) of a
copy-number change based on the log-ratio between the number of
tumor reads contained in both windows (Supplementary Fig. 1
online). Positions which passed a lenient genome-wide significance
threshold (P-value < pj,;) we declared as candidate breakpoints;
these positions demarcated the initial list of segments. In the next
step, we iteratively joined segments by eliminating the breakpoint
between them, starting from the least significant and continuing as
long as its P-value was above prerge- In this step, we calculated P-
values based on the number of reads in the tumor and normal in
the entire segments. As these segments were typically larger than the
local windows, the increased number of aligned reads enabled more
accurate estimation of statistical significance.

a d
R
°
5 1 o
2]
Q 0.8 Length of
> . alteration (kb)
2 06
40 50 60 70 80 @
© 0.4
Chromosome 15 position (Mb) (%]

o
)

0 200 400 600 800 1,000
w (number of reads)

Copy-number ratio O

ey
1S}
o
o
I
S
~
=}
@
S
1=}
@

e o
> o

Sensitivity

o
)

o
b

0
0 200 400 600 800 1,000
w (number of reads)

Copy-number ratio €

40 50 60 70 80
Chromosome 15 position (Mb)



© 2009 Nature America, Inc. All rights reserved.

Table 1 | Summary of copy-number alterations in tumor cell lines

Massively parallel sequencing

Affymetrix SNP 6.0 array

HCC1954 HCC1143 NCI-H2347 HCC1954 HCC1143 NCI-H2347

Number of segments with predicted gains

Copy-number ratio 1.5-2.0 63 61 5 57 43 5
Copy-number ratio 2.0-4.0 78 38 0 62 29 1
Copy-number ratio 4.0-8.0 27 2 0 20 3 0
Copy-number ratio >8.0 5 1 0 1 0 0
Number of segments with predicted losses

Copy-number ratio <0.25 0 3 3 0 2

Copy-number ratio 0.25-0.50 21 21 7 13 16 8
Total number of predicted alterations 194 126 15 153 93 18

We optimized the user-defined parameters based on replicate
sequencing lanes of a normal sample. The preferred values for these
parameters were set as follows: (i) The P-value cutoffs, p;,;; and
Pmerge> controlled the genome-wide false positive rates and were set
such that we generated ~ 1,000 false positive initial breakpoints
and ~ 10 false positive final segments (Supplementary Methods).
(i) The local window size, w, was set to maximize the sensitivity to
detect alterations, as assessed via spike-in simulations using actual
sequence reads obtained from a tumor cell line and its matched
normal (Fig. 2d,e). We tested single-copy alterations varying from
10 kb to 500 kb, assuming ~ 12 million aligned reads in both the
tumor and normal samples. At this sequencing depth, we found
that w = 400 provided the best sensitivity for single-copy gains at
least 50 kb in size (Fig. 2d) and w = 300 provided the best
sensitivity for single-copy losses at least 75 kb in size (Fig. 2e).

Application: copy-number alterations in tumor cell lines

To test the methodology, we generated and analyzed massively
parallel sequence data on the Illumina 1G Genome Analyzer from
three tumor cell lines (HCC1954, HCC1143 and NCI-H2347) and
their matched normal cell lines (Supplementary Methods). For
each of the six cell lines, we obtained 10-19 million uniquely
aligned reads (Supplementary Table 1 online). The number of
observed counts in both normal and tumor cell lines depended on
the local G+C content (Supplementary Figs. 2 and 3 and Supple-
mentary Table 2 online), which may reflect inherent biases in the
sample preparation or sequencing procedures. These biases were
mitigated by our approach to analyze the ratio of the number of
reads seen in tumor DNA and its paired normal DNA, processed at
the same time.

We used our segmentation algorithm with these optimized
parameters to parse the genome into intervals of constant copy
number. After filtering for segments with copy-number ratios
greater than 1.5 or less than 0.5, we found 194 copy-number
alterations in the HCC1954 cell line, 126 alterations in the
HCC1143 cell line and 15 alterations in the NCI-H2347 cell line
(Table 1, Supplementary Figs. 4-6 and Supplementary Data
online). There were six high-level amplifications (copy-number
ratios greater than 8), all of which matched previously reported
loci'®!7, We also found seven regions of homozygous deletion
ranging in size from ~29 kb to ~ 582 kb (Supplementary Table 3
and Supplementary Fig. 7 online).

We then compared the results obtained by massively parallel
sequencing to the results obtained from hybridization of the same
samples to oligonucleotide arrays (Affymetrix SNP Array 6.0). After
merging segments that spanned fewer than 8 consecutive probe
sets, we found 153 copy-number alterations in the HCC1954 cell
line, 93 alterations in the HCC1143 cell line and 18 alterations in
the NCI-H2347 cell line.

In general, the copy-number segments detected by both
approaches were highly concordant with respect to identifying
the existence of a copy-number alteration, whereas massively
parallel sequencing had somewhat better resolution for localizing
the breakpoints (Supplementary Fig. 8 online). Notably, sequen-
cing achieved a higher dynamic range for estimating copy-number
alterations. For instance, we considered the high-level amplification
of the ERBB2 locus in the HCC1954 cell line. We estimated a
16-fold increase in copy-number ratio by microarrays, compared to
a 55.6-fold increase estimated by sequencing (Supplementary
Figs. 8 and 9 online). Quantitative PCR measurement confirmed
the higher extent of amplification'® (at ~ 70-fold). This saturation
effect of microarray hybridization at high copy numbers could be
explained by a Langmuir adsorption model'® (Supplementary
Fig. 8 and Supplementary Methods).

Application: mapping breakpoints in tumor cell lines

We next studied our ability to map breakpoints accurately. For this
purpose, we considered interstitial homozygous deletions, whose
boundaries can be mapped to single-nucleotide resolution by
sequencing across the deletion. We detected three homozygous
deletions in the NCI-H2347 cell line: a previously unidentified
44-kb deletion at the UTRN locus, as well as previously reported
deletions at the PTPRD and HS3ST3A1 loci'®?° (Supplementary
Table 3 and Supplementary Figs. 10-12 online). After confirming
that these deletions were absent in the paired normal cell line, we
mapped their breakpoints by the conventional sequencing of PCR
products spanning each deletion.

Our segmentation algorithm (using ~ 14 million tumor reads)
predicted breakpoints that were extremely close to the actual
breakpoints (the differences for the six breakpoints being 2, 52,
226, 527, 829 and 1,007 bp, with a mean of 440 bp) (Fig. 3a—c and
Supplementary Table 3). As short sequence reads cannot uniquely
align to repeat regions, the presence of Alu repeats flanking three of
the six breakpoints limited the precision of mapping. Segmentation
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Figure 3 | Mapping the chromosomal breakpoints of homozygous deletions. (a-c) Breakpoint mapping
with aligned sequence reads at the UTRN locus (a), the PTPRD locus (b) or the HS3T3A1 locus (c). Each
point represents the location of a sequence read aligning to the NCI-H2347 (blue) tumor cell line or its
matched normal, NCI-BL2347 (black). Vertical green lines indicate the exact chromosomal breakpoints
mapped by sequencing of a PCR product spanning each homozygous deletion. For each breakpoint, we
report the difference between the predicted and actual breakpoint positions. (d-f) Breakpoint mapping
with an Affymetrix SNP 6.0 Array, where each point represents the log, copy-number ratio interrogated by
an array probeset in the UTRN locus (d), the PTPRD locus (e) or the HS3T3A1 locus (f). The minimum
value for log, copy-number ratios was set to —7. Horizontal blue lines represent copy-number segments

inferred by the circular binary segmentation algorithm?8,

Chromosome 17 position (Mb)

al rearrangements from paired-end reads.
As sequencing and microarray technolo-
gies continue to improve, it will be impor-
tant to continually benchmark their
performance. We anticipate that each mas-
sively parallel sequencing platform may be
susceptible to particular biases?>?* (Supple-
mentary Figs. 2 and 3 online). We propose
that the trio of cancer cell lines and the
sequence data reported here may provide a
useful foundation for such evaluation.

of data from microarrays had a mean error of 1,068 bp; it missed
the actual breakpoints by +2,718 bp and -1,262 bp for the
UTRN locus, by —491 bp and -1,242 bp for the PTPRD locus
and by +608 bp and —86 bp for the HS3ST3A1 locus (Fig. 3d—f).

DISCUSSION

With the advent of powerful new technologies, massively parallel
sequencing will provide increasingly high-resolution analyses of
copy-number alterations in cancer genomes. We found that a
collection of ~14 million sequence reads had over two times
higher resolution than the current generation of DNA microarrays
(median spacing, ~ 700 bp) to localize breakpoints. Our analysis of
sequence data from three tumor-normal cell-line pairs provided
experimental confirmation of our statistical analyses. Although the
sequencing of 14 million reads is currently more expensive than
microarray hybridization, relative costs may change with higher
sequencing throughput.

Cancer genome analysis will benefit considerably from these
improvements in measurement accuracy. A common approach
to localizing key cancer-related genes relies on pinpointing a
‘common region of overlap’ among overlapping gains or
losses across hundreds of samples®?1:?2, The increased precision
of mapping chromosomal breakpoints in individual samples
will identify more precise coordinates for the aggregate
overlapping region. Even more importantly, improvements in
sequencing will enable the detection of extremely small
intragenic events, especially homozygous deletions. For example,
we identified four intragenic homozygous deletions ranging in
size from 44 kb to 582 kb that affected between one and 15
coding exons. The higher precision of breakpoint mapping may
thus help to identify recurrent alterations in tumor suppressor
genes that have been previously missed by other genome character-
ization technologies.
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METHODS

Sample preparation, sequencing and alignment. For each
cell line, we prepared 3 pg of genomic DNA for sequencing
on the Illumina 1G Genome Analyzer”> (Supplemen-
tary Methods).

Statistical analysis of tumor-normal copy-number ratios. We
describe a statistical framework for observing a certain number of
reads obtained from a tumor and a matched normal sample that
align to a genomic window (Supplementary Methods and Sup-
plementary Figs. 1 and 13 online).

Segmentation algorithm for the identification of copy-number
alterations. We identified copy-number alterations based on
changepoint detection, followed by agglomerative merging of
adjacent segments. The input to this algorithm is a list of positions
for aligned sequence reads from a tumor sample and a normal
sample, and the output includes a list of breakpoints and copy-
number estimates for each inferred chromosomal segment (Sup-
plementary Methods).

Comparison of copy-number alterations with single-nucleotide
polymorphism arrays. We calculated copy numbers for
the Affymetrix Genome-Wide Human SNP Array 6.0 with a
GenePattern  pipeline’® according to methods previously
described?”’. We optimized parameters for the circular binary
segmentation algorithm?® to infer chromosomal segments of
constant copy number from the median of replicate arrays
(Supplementary Fig. 14 online and Supplementary Methods).
We determined consensus chromosomal segments from the
list of breakpoints predicted by each method and evaluated
the concordance between predicted copy numbers (Supplemen-
tary Fig. 8 and Supplementary Methods).
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Data and software availability. National Center for Biotechnology
Information (NCBI) Short Read Archive: SRP000246 (sequence
reads); NCBI Gene Expression Omnibus: GSE13372 (Affymetrix
SNP 6.0 array data). MATLAB code that implements the segmen-
tation algorithm can be obtained from http://www.broad.mit.edu/
cancer/pub/solexa_copy_numbers/.

Note: Supplementary information is available on the Nature Methods website.
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