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Proteins are generally classified into the following 12
subcellular locations: 1) chloroplast, 2) cytoplasm, 3) cy-
toskeleton, 4) endoplasmic reticulum, 5) extracellular, 6)
Golgi apparatus, 7) lysosome, 8) mitochondria, 9) nu-
cleus, 10) peroxisome, 11) plasma membrane, and 12)
vacuole. Because the function of a protein is closely
correlated with its subcellular location, with the rapid
increase in new protein sequences entering into data-
banks, it is vitally important for both basic research and
pharmaceutical industry to establish a high throughput
tool for predicting protein subcellular location. In this
paper, a new concept, the so-called “functional domain
composition” is introduced. Based on the novel concept,
the representation for a protein can be defined as a
vector in a high-dimensional space, where each of the
clustered functional domains derived from the protein
universe serves as a vector base. With such a novel rep-
resentation for a protein, the support vector machine
(SVM) algorithm is introduced for predicting protein
subcellular location. High success rates are obtained by
the self-consistency test, jackknife test, and independ-
ent dataset test, respectively. The current approach not
only can play an important complementary role to the
powerful covariant discriminant algorithm based on the
pseudo amino acid composition representation (Chou,
K. C. (2001) Proteins Struct. Funct. Genet. 43, 246–255;
Correction (2001) Proteins Struct. Funct. Genet. 44, 60),
but also may greatly stimulate the development of this
area.

According to the localization or compartment in a cell, pro-
teins are generally classified into the following 12 categories: 1)
chloroplast, 2) cytoplasm, 3) cytoskeleton, 4) endoplasmic re-
ticulum, 5) extracellular, 6) Golgi apparatus, 7) lysosome, 8)
mitochondria, 9) nucleus, 10) peroxisome, 11) plasma mem-
brane, and 12) vacuole. Given the sequence of a protein, how
can we predict which category or subcellular location it belongs
to? This is certainly a very important problem because the
subcellular location of a protein is closely correlated with its
biological function. Although the information about protein
subcellular location can be determined by conducting various
experiments, that is both time consuming and costly. Because
of the fact that the number of sequences entering into data-
banks has been rapidly increasing, e.g. in 1986 the total se-

quence entries in SWISS-PROT (1) was only 3,939 while the
number was increased to 80,000 in 1999, the problem has
become an urgent challenge. Particularly, it is anticipated that
many more new protein sequences will be derived soon because
of the recent success of the human genome project, which has
provided an enormous amount of genomic information in the
form of 3 billion base pairs assembled into tens of thousands of
genes. Therefore, the challenge will become even more urgent
and critical. Actually, many efforts have been made trying to
develop some computational methods for quickly predicting the
subcellular locations of proteins (2–13). It is instructive to point
out that, of these algorithms, most are based on the amino acid
composition alone without including any sequence-order ef-
fects, and some (9, 12, 13) are based on the pseudo amino acid
composition that incorporated partial sequence-order effects.
To further improve the prediction quality, a logical and key
step would be to find an effective way to incorporate the se-
quence-order effects. The present study was initiated in an
attempt to explore a different approach to incorporate these
kinds of effects. The core of the new approach is based on a
novel concept, the so-called “functional domain composition,” as
will be further described below.

THEORY

The Functional Domain Composition Representation

To improve the quality of statistical prediction for protein subcellular
location, one of the most important steps is to give an effective repre-
sentation for a protein. This is indeed a crucial problem but meanwhile
a quite subtle one, which might lead us to face the dilemma discussed
below. According to common sense, an effective representation should
include as much information a protein has as possible. Compared with
the amino acid composition (14–16) and the pseudo amino acid compo-
sition (12), the entire protein sequence contains of course the most
complete information. Unfortunately, if using the entire sequence of a
protein as its representation to formulate the statistical prediction
algorithm, one would face the difficulty of dealing with almost an
infinity of sample patterns, as elaborated by Chou (12). Accordingly, to
formulate a feasible statistical prediction algorithm, a protein must be
expressed in terms of a set of discrete numbers. The earliest approach
(2–5) in this regard was to use the amino acid composition that consists
of 20 components representing the occurrence frequencies of the 20
native amino acids in a protein. However, if using the amino acid
composition as the representation for a protein, all the sequence-order
effects would be missed. Therefore we are actually confronted with the
dilemma that, if wishing to include the complete information, the pre-
diction would become unfeasible; if wishing to make the prediction
feasible, some important information must be ignored. In view of this,
can we find a compromise scenario, i.e. a new protein representation
that is constituted by a set of discrete numbers but that also contains as
much of the sequence-order effects as possible? The introduction of the
pseudo amino acid composition is a pioneer effort in this regard that has
no doubt made one important step forward for such a goal. The pseudo
amino acid composition consists of 20 � � discrete numbers, where the
first 20 numbers are the same as those in the amino acid composition
and the remaining numbers represent � different ranks of sequence-
correlation factors (12). In this paper, we would like to introduce a
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completely different set of discrete numbers; i.e. instead of using each of
the 20 amino acid components or each of the 20 � � pseudo amino acid
components as a vector base to define a protein, we shall use each of the
native functional domains as a vector base to define a protein.

By searching and clustering 139,765 annotated protein sequences,
Murvai et al. (17) have constructed a data base called SBASE-A that
contains 2005 sequences with well known structural and functional
domain types. With each of the 2005 functional domains as a vector-
base, a protein can be defined as a 2005-dimensional (D)1 vector accord-
ing to the following procedures. 1) Use BLASTP to compare a protein
with each of the 2005 domain sequences in SBASE-A to find the high-
scoring segment pairs (HSPs) and the smallest sum probability (P). A
detailed description about this operation can be found in Altschul (18).
2) If the HSP score �� 75 and P � 0.8 in comparing the protein sequence
with the ith domain sequence, then the ith component of the protein in
the 2005-D space is assigned 1; otherwise, 0. 3) The protein can thus be
explicitly formulated as follows.

X � �
x1

x2

�

xi

�

x2005

� , (Eq. 1)

where

xi � �1 , when HSP score�� 75 and P � 0.8
0 , otherwise (Eq. 2)

Defined in this way, a protein corresponds to a 2005-D vector X with
each of the 2005 functional domain sequences as a base for the vector
space; i.e. rather than the 20-D space (15) of the amino acid composition
approach or the (20 � �)-D space of the pseudo amino acid composition
approach (12), a protein is represented in terms of the functional do-
main-composition. By using such a representation, not only some se-
quence-order effects but also some functional information is included.
In other words, the representation thus obtained for a protein would
bear some sequence-order mark as well as the structural and functional
type mark. Because the function of a protein is closely related to its
subcellular location, the prediction algorithm established based on the
new representation would naturally incorporate those factors that
might be directly correlated with the protein subcellular location.

Support Vector Machines

Support Vector Machines (SVMs) are kinds of learning machines
based on statistical learning theory. The most remarkable characteris-
tics of SVMs are the absence of local minima, the sparseness of the
solution, and the use of the kernel-induced feature spaces. The basic
idea of applying SVMs to pattern classification can be outlined as
follows. First, map the input vectors into a feature space (possible with
a higher dimension) either linearly or non-linearly, which is relevant to
the selection of the kernel function. Then, within the feature space, seek
an optimized linear division; i.e. construct a hyper-plane that can sep-
arate two classes (this can be extended to multi-classes) with the least
error and maximal margin. The SVMs training process always seeks a
global optimized solution and avoids over-fitting, so it has the ability to
deal with a large number of features. A complete description to the
theory of SVMs for pattern recognition is given in the book by Vapnik
(19). SVMs have been used to deal with protein fold recognition (20),
protein-protein interaction prediction (21), and protein secondary struc-
ture prediction (22).

In this paper, the Vapnik’s Support Vector Machine (23) was intro-
duced to predict protein subcellular location. Specifically, SVMlight,
which is an implementation (in C Language) of SVM for the problems of
pattern recognition, was used for computations. The optimization algo-
rithm used in SVMlight can be found in Joachims (24). The relevant
mathematical principles can be briefly formulated as follows.

Given a set of n samples, i.e. a series of input vectors

Xk � �� �k � 1 , . . . ,N� , (Eq. 3)

where Xk can be regarded as the kth protein or vector defined in the
2005-D space according to the functional domain composition (see Eq.
1), and �� is a Euclidean space with � dimensions. Because the multi-

class identification problem can always be converted into a two-class
identification problem, without loss of the generality, the formulation
below is given for the two-class case only. Suppose the output derived
from the learning machine is expressed by yk �{�1,�1} (k � 1, . . . , N)
where the indexes –1 and �1 are used to stand for the two classes
concerned, respectively. The goal here is to construct one binary clas-
sifier or derive one decision function from the available samples that
has a small probability of misclassifying a future sample. Here both the
basic linear separable case and the most useful linear non-separable
case for most real life problems are taken into consideration.

The Linear Separable Case

In this case, there exists a separating hyper-plane whose function is
W � X � b � 0, whose implication is shown in the following equation.

yk�W � Xk � b� � 1 , �k � 1 , . . . ,N� (Eq. 4)

By minimizing �W�2 subject to the above constraint, the SVM approach
will find a unique separating hyper-plane. Here �W�2 is the Euclidean
norm of W, which maximizes the distance between the hyper-plane or
the optimal separating hyper-plane (25) and the nearest data points of
each class. The classifier thus obtained is called the maximal margin
classifier. By introducing Lagrange multipliers �i, and using the Ka-
rush-Kuhn-Tucker conditions (26, 27) as well as the Wolfe dual theorem
of optimization theory (28), the SVM training procedure amounts to
solving the following convex quadratic programming problem

Max: �
i�1

N

�i 	
1
2 �

i�1

N �
j�1

N

�i�jyiyjXi � Xj (Eq. 5)

subject to the following two conditions.

�i � 0 , �i � 1, 2 , . . . ,N� (Eq. 6)

�
i�1

N

�iyi�0 (Eq. 7)

The solution is a unique globally optimized result, which can be ex-
pressed with the following expansion.

W � �
i�1

N

yi�iXi (Eq. 8)

Only if the corresponding �i � 0, are these Xi called the Support
Vectors. Now suppose X is a query protein defined in the same 2005-D
space based on the functional domain composition (see Eq. 1). After the
SVM has been trained, the decision function for identifying which class
the query protein belongs to can be formulated as

f�X� � sgn ��
i�1

N

yi�iX � Xi � b� (Eq. 9)

where sgn() in the above equation is a sign function, which equals to �1
or �1 when its argument is �0 or �0, respectively.

The Linear Non-separable Case

For this case two important techniques are needed that are given
below.

The “Soft Margin” Technique—To allow for training errors, Cortes
and Vapnik (25) introduced the slack variables shown below.


i � 0 �i � 1 , . . . ,N� , (Eq. 10)

The relaxed separation constraint is given below.

yi�W � Xi � b� � 1 	 
i , �i � 1 , . . . ,N� (Eq. 11)

The optimal separating hyper-plane can be found by minimizing

1
2

�W�2 � c�
i�1

N


i (Eq. 12)

where c is a regularization parameter used to decide a trade-off between
the training error and the margin.

The “Kernel Substitution” Technique—The SVM performs a nonlin-

1 The abbreviations used are: D, dimensional; HSP(s), high-scoring
segment pair(s); SVM(s), support vector machine(s).
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ear mapping of the input vectors from the Euclidean space 194 d into a
higher dimensional Hilbert space H, where the mapping is determined
by the kernel function. Then like in the linear separable case, it finds
the optimal separating hyper-plane in the Hilbert space H that would
correspond to a non-linear boundary in the original Euclidean space.
Two typical kernel functions are listed below

K�Xi,Xj� � �Xi � Xj � 1�� (Eq. 13)

K�Xi,Xj� � exp ��r �Xi 	 Xj �2� (Eq. 14)

where the first one is called the polynomial kernel function of degree �,
which will eventually revert to the linear function when � � 1, the
second one is called the radial basic function kernel. Finally, for the
selected kernel function, the learning task amounts to solving the
following quadratic programming problem

Max: �
i�1

N

�i 	
1
2 �

i�1

N �
i�1

N

�i�j yi yj K�Xi � Xj� (Eq. 15)

which is subject to the following equations.

0 � ai � c , �i � 1 , 2 , . . . , N� (Eq. 16)

�
i�1

N

�i yi � 0 (Eq. 17)

Accordingly, the form of the decision function is given by the equation
shown below.

f�X� � sgn ��
i�1

N

yi�i K�X , X i� � b� (Eq. 18)

For a given dataset, only the kernel function and the regularity param-
eter c must be selected to specify the SVM.

RESULTS AND DISCUSSION

To facilitate comparison, the same dataset constructed by
Chou and Elrod (6) was used to demonstrate the current
method. However, as mentioned in Chou (12), because the
change of code names, some protein sequences could no longer
be retrieved from the SWISS-PROT data bank (1). Of the 2319
proteins originally listed in Appendix A of Chou and Elrod (6),
2191 protein sequences were retrieved. These sequences con-
sist of 145 chloroplast proteins, 571 cytoplasm, 34 cytoskeleton,
49 endoplasmic reticulum, 224 extracellular, 25 Golgi appara-
tus, 37 lysosome, 84 mitochondria, 272 nucleus proteins, 27
peroxisome, 699 plasma membrane, and 24 vacuole.

During the operation, the width of the Gaussian radial basic
functions was selected for minimizing the estimation of the
Vapnik-Chervonenkis dimension (19). The parameter c that

controlled the error-margin trade-off was set at 1000. After
being trained, the hyper-plane output by the SVM was ob-
tained. This indicates that the trained model, i.e. hyper-plane
output that includes the important information, has the func-
tion to identify the protein subcellular locations.

The demonstration was conducted by the three most typical
approaches in statistical prediction (29), i.e. the resubstitution
test, jackknife test, and independent dataset test as reported
below.

Resubstitution Test—The so-called resubstitution test is an
examination for the self-consistency of an identification
method. When the resubstitution test is performed for the
current study, the subcellular location of each protein in the
dataset is in turn identified using the rule parameters derived
from the same dataset, the so-called training dataset. The
success rate thus obtained for predicting the 12 subcellular
locations of the 2191 proteins is summarized in Table I, from
which we can see that 1913 proteins were correctly predicted
for their subcellular locations and that only 278 proteins were
incorrectly predicted. The overall success rate is 87.3%, indi-
cating that after being trained, the SVMs model has grasped
the complicated relationship between the functional domain
composition and the subcellular location of proteins. However,
during the process of the resubstitution test, the rule parame-
ters derived from the training dataset include the information
of the query protein later plugged back in the test. This will
certainly underestimate the error and enhance the success rate
because the same proteins are used to derive the rule param-
eters and to test themselves. Accordingly, the success rate thus
obtained represents an optimistic estimation (6, 15, 30, 31).
Nevertheless, the resubstitution test is absolutely necessary
because it reflects the self-consistency of an identification
method, especially for its algorithm part. An identification
algorithm certainly cannot be deemed as a good one if its
self-consistency is poor. In other words, the resubstitution test
is necessary but not sufficient for evaluating an identification
method. As a complement, a cross-validation test for an inde-
pendent testing dataset is needed because it can reflect the
effectiveness of an identification method in practical applica-
tion. This is important especially for checking the validity of a
training data base: whether it contains sufficient information
to reflect all the important features concerned so as to yield a
high success rate in application.

Jackknife Test—As is well known, the independent dataset
test, subsampling test and jackknife test are the three methods
often used for cross-validation in statistical prediction. Among
these three, however, the jackknife test is deemed as the most

TABLE I
Overall rates of correct prediction for the 12 subcellular locations of proteins by different algorithms and test methods

Algorithm Input form
Test method

Resubstitutiona Jackknifea Independent datasetb

Least Hamming distance (33) Amino acid composition
1067

2191
� 48.7% 1033

2191
� 47.2% 1151

2494
� 46.2%

Least Euclidean distance (14) Amino acid composition
1096

2191
� 50.0% 1063

2191
� 48.5% 1197

2494
� 48.0%

ProtLock (3) Amino acid composition
1023

2191
� 46.7% 971

2191
� 44.3% 1018

2494
� 40.8%

Covariant-discriminant (7) Amino acid composition
1751

2191
� 79.9% 1492

2191
� 68.1% 1888

2494
� 75.7%

Augmented covariant discriminant (9) Pseudo amino acid composition (12)
1880

2191
� 85.8% 1600

2191
� 73.0% 2017

2494
� 80.9%

Support vector machines Functional domain composition
1913

2191
� 87.3% 1461

2191
� 66.7% 2037

2494
� 81.7%

a Conducted for the 2191 proteins classified into 12 subcellular locations in the training dataset as described under “Results and Discussion.”
b Conducted based on the rule parameters derived from the 2191 proteins in the training dataset for the 2494 proteins in the independent dataset

(see “Results and Discussion”).
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effective and objective one; see, e.g. a relevant review (29) for a
comprehensive discussion about this and a monograph (32) for
the mathematical principle. During jackknifing, each protein
in the dataset is in turn singled out as a tested protein and all
the rule parameters are calculated based on the remaining
proteins. In other words, the subcellular location of each pro-
tein is identified by the rule parameters derived using all the
other proteins except the one which is being identified. During
the process of jackknifing both the training dataset and testing
dataset are actually open, and a protein will in turn move from
one to the other. The results of jackknife test thus obtained for
the 2191 proteins are given in Table I as well.

Independent Dataset Test—Moreover, as a demonstration of
practical application, predictions were also conducted for an
independent dataset based on the rule parameters derived
from the 2191 proteins in the training dataset. The independ-
ent dataset was also adopted from Ref. 6. However, for the
same reason as mentioned in Ref. 12, of the 2591 independent
proteins originally studied by Ref. 6, only 2494 protein se-
quences were retrieved. They are: 112 chloroplast proteins, 761
cytoplasm, 19 cytoskeleton, 106 endoplasmic reticulum, 95 ex-
tracellular, 4 Golgi apparatus, 31 lysosome, 163 mitochondria,
418 nucleus proteins, 23 peroxisome, and 762 plasma mem-
brane. None of these proteins occurs in the training dataset.
The predicted results thus obtained for the 2494 proteins in the
independent dataset are also summarized in Table I, from
which we can see that 2037 proteins were correctly predicted
for their subcellular locations, and only 478 proteins were
incorrectly predicted. The overall success rate is 81.7%.

Furthermore, to facilitate comparison, listed in Table I are
also the results predicted by various other methods on the same
datasets. From Table I the following can be observed. 1) The
success prediction rates by both the functional domain compo-
sition approach and the pseudo amino acid composition ap-
proach are significantly higher than those by the simple geom-
etry approaches (14, 33) and the ProtLock algorithm (3). This is
fully consistent with what is expected because both of these two
approaches bear the marks of some sequence-order effects al-
though by means of different avenues. 2) A comparison be-
tween the functional domain composition approach and the
pseudo amino acid composition approach indicates that the
success rates by the former are higher than the latter in both
the self-consistency test and independent dataset test, indicat-
ing the current functional domain composition approach is
quite promising with a considerable potential for further de-
velopment. However, its success rate by the jackknife test is
lower than that of the pseudo amino acid approach (12) by
using the augmented covariant discriminant algorithm (9) and
even 1.4% lower than that of the conventional amino acid
approach by using the covariant discriminant algorithm (6).
The setback might be due to the reason that the functional
domain data base used in the current study is far from a
complete one yet. Also, some subsets in the training dataset are
too small (e.g. with less than 50 sequences) to have a high
cluster-tolerant capacity (34) for the 2005-D functional domain
composition space. It is anticipated that with the continuous
improvement of the functional domain data base as well as the
training data of small subsets by adding into them more new
proteins that have been found belonging to the subcellular
locations defined by these subsets the setback would be natu-
rally overcome. As a demonstration, the testing dataset was
incorporated into the original training dataset to form an aug-
mented training dataset of 2191 � 2494 � 4685 proteins, and
then the jackknife test was reapplied. It was observed that the
success rate thus obtained by the current functional domain
composition approach was increased from 66.7 to 87.9%, but

the corresponding rate by the augmented covariant discrimi-
nant algorithm was increased from 73.0 to 79.5%, convincingly
indicating the strong potential of the current approach.

The goal of this study is not to determine the possible upper
limit of the success rate for the prediction of protein subcellular
location, but to propose a novel and different approach to in-
corporate the sequence-order effect as well as the factors of
structural and functional types that might help to open a new
avenue to further increase our ability or options to deal with
this very complicated and difficult problem. It should be real-
ized that it is too premature to construct a complete or quasi-
complete training dataset based on the knowledge available so
far. Without a complete or quasi-complete training dataset, any
attempt to determine such an upper limit would be unjustified,
and the result thus obtained might be misleading no matter
how powerful the prediction algorithm is.

It should be pointed out that some proteins are known to be
shuttled from one subcellular compartment to another and
back again. For example, if a query protein is shuttled between
nucleus and cytoplasm, then only half-correction should be
counted even its subcellular location was predicted to be one of
the two locations. However, cases like that would not happen in
the current study. This is because the same dataset constructed
by Chou and Elrod (6) was used to demonstrate the current
method. Compared with the other datasets in this area that
only cover two-five subcellular locations, the dataset used here
has covered many more subcellular locations. Even though, as
clearly described by the authors of Ref. 6, “Sequences anno-
tated by two or more locations are not included because of a
lack of uniqueness. For example, a protein sequence labeled
with ‘‘Golgi and nuclear’’ or ‘‘chloroplast or mitochondria’’ was
omitted.” Those proteins that are known to be shuttled between
subcellular compartments must be annotated by two or more
locations in SWISS-PROT. According to the screen procedure,
they were already excluded from the dataset.

CONCLUSION

The above results, together with those obtained by the co-
variant discriminant prediction algorithm (6) and those further
improved by introducing some sequence-order effects (9, 12),
have indicated that the subcellular locations of proteins are
predictable with a considerable accuracy. The development in
statistical prediction of protein attributes generally consists of
two cores: one is to construct a training dataset and the other
is to formulate a prediction algorithm. The latter can be further
separated into two subcores: one is how to give a mathematical
expression to effectively represent a protein and the other is
how to find an operational equation to accurately perform the
prediction. The process in expressing a protein from the 20-D
amino acid composition space (14, 15, 33, 35) to the (20 � �)-D
pseudo amino acid composition space (12) and to the current
2005-D functional domain composition space reflects the devel-
opment of defining a protein in terms of different mathematical
representations. The process in conducting prediction using
from the simple geometry distance algorithm (14, 33, 35), to the
Mahalanobis distance algorithm (3, 15, 16), to the covariant
discriminant algorithm (6, 7, 36–38), and to the current SVM
algorithm reflects the development of computation by means of
different mathematical operations. One of the remarkable ad-
vantages for the pseudo amino acid composition representation
is to use a set of simple and intuitive sequence-order-coupling
modes to directly incorporate the sequence-order effects, while
a remarkable advantage of the functional domain composition
representation is to use the functional domain data base to
incorporate the information of not only some sequence-order
effects but also the structural and functional types. Each of the
two representations has its own advantage. For some cases, the
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functional domain composition representation yields better re-
sults than the pseudo amino acid composition representation;
but for some other cases, the outcome may be just the reverse.
This is just exactly the same in comparison of the covariant
discriminant algorithm with the SVM algorithm. Therefore,
when we are still in the situation of lacking a complete training
dataset and functional domain data base, it would be wise to
complement the covariant discriminant algorithm based on the
pseudo amino acid composition representation with the SVM
algorithm based on the functional domain composition repre-
sentation for conducting practical predictions. Finally, the
functional domain composition approach might have more
room and potential for further development because it incorpo-
rates both the sequence-order information and the functional
type information.

The program of the new prediction method, called CLPFD
(Cellular Location Prediction based on Functional Domains), is
available by contacting Y. D. Cai at y.cai@umist.ac.uk.
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