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Chow, M. L., E. J. Moler, and I. S. Mian. Identifying
marker genes in transcription profiling data using a mixture
of feature relevance experts. Physiol Genomics 5: 99–111,
2001.—Transcription profiling experiments permit the ex-
pression levels of many genes to be measured simulta-
neously. Given profiling data from two types of samples,
genes that most distinguish the samples (marker genes) are
good candidates for subsequent in-depth experimental stud-
ies and developing decision support systems for diagnosis,
prognosis, and monitoring. This work proposes a mixture of
feature relevance experts as a method for identifying marker
genes and illustrates the idea using published data from
samples labeled as acute lymphoblastic and myeloid leuke-
mia (ALL, AML). A feature relevance expert implements
an algorithm that calculates how well a gene distinguishes
samples, reorders genes according to this relevance measure,
and uses a supervised learning method [here, support vector
machines (SVMs)] to determine the generalization perfor-
mances of different nested gene subsets. The mixture of three
feature relevance experts examined implement two existing
and one novel feature relevance measures. For each expert, a
gene subset consisting of the top 50 genes distinguished
ALL from AML samples as completely as all 7,070 genes.
The 125 genes at the union of the top 50s are plausible
markers for a prototype decision support system. Chromo-
somal aberration and other data support the prediction
that the three genes at the intersection of the top 50s,
cystatin C, azurocidin, and adipsin, are good targets
for investigating the basic biology of ALL/AML. The same
data were employed to identify markers that distinguish
samples based on their labels of T cell/B cell, peripheral
blood/bone marrow, and male/female. Selenoprotein W
may discriminate T cells from B cells. Results from anal-
ysis of transcription profiling data from tumor/nontumor
colon adenocarcinoma samples support the general utility
of the aforementioned approach. Theoretical issues such as
choosing SVM kernels and their parameters, training and
evaluating feature relevance experts, and the impact of
potentially mislabeled samples on marker identification
(feature selection) are discussed.

marker genes; mixture of experts; support vector machines;
adipsin; cystatin C; azurocidin

DNA MICROARRAY TECHNOLOGY generates a panoramic sur-
vey of genes expressed in a sample of cells. Comparing
the transcription profiles of different types of samples
permits identification of marker genes, genes that best
distinguish samples. When the samples correspond to
different pathological states of the same tissue or sub-
types of the same malignancy, transcription profiling
holds promise as a method for classifying and analyz-
ing cancers from a molecular rather than morphologi-
cal perspective (1, 2, 11). Despite difficulties in obtain-
ing sufficient, high quality, homogeneous tissue
samples from an in situ environment rather than, for
example, cell lines, transcription profiling affords an
opportunity to identify novel and/or uncharacterized
genes that are potential candidates for developing
faster and more reliable systems for clinical diagnosis,
prognosis, and monitoring. Furthermore, these marker
genes represent putative targets for therapeutic agents
and understanding the basic biology of the disorder. A
typical profiling study measures the expression levels
of thousands of genes (features) L across tens of sam-
ples N, with each sample labeled as being of one type or
another. The problem considered here is that of iden-
tifying marker genes given N labeled L-feature sample
profile vectors.

A variety of techniques have been employed to ad-
dress three statistical tasks associated with analysis of
profile data (3, 9, 11, 13, 16–18, 20–22). The first,
unsupervised learning, involves discovering and char-
acterizing the classes present in unlabeled profile vec-
tors. This clustering procedure can suggest previously
unrecognized cancer (sub)types. The second task, su-
pervised learning, involves discriminating between
profile vectors with different labels and assigning the
label of a new profile vector. Given profiling data for a
sample of unknown origin, this classification and pre-
diction procedure can indicate the origin of the sample,
for example, whether it is from tumor or nontumor
tissue. The third task and subject of this work is
feature relevance, ranking, and selection. This involves
defining a feature relevance expert which 1) imple-
ments an algorithm that quantitates the degree to
which a gene distinguishes samples, 2) reorders genes
according to this relevance value, 3) selects nested
subsets of ranked genes and uses them to train a
supervised learning system, and 4) identifies highly
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informative or marker genes based on the ability of
subsets to assign accurately the label for samples not
used for training, i.e., the generalization performance
of the subset. Thus, gene subsets corresponding to
marker genes can be identified by varying a single
parameter, the number of ranked features used to
train and evaluate the supervised learning system. For
a given data set, different feature relevance experts
can be compared via their generalization performance
on the same number of ranked genes.

Recently, two independent studies employed differ-
ent techniques to address the three aforementioned
tasks. The first study applied naive Bayes models,
support vector machines (SVMs) and naive Bayes
global relevance (NBGR) (16) to sixty-two 1,988-fea-
ture experiment profile vectors derived from colon ad-
enocarcinoma samples labeled as tumor or nontumor
(2). The NBGR requires unlabeled profile vectors as
input, since it is computed from the probability param-
eters of profile vector classes discovered by a naive
Bayes model. The second study applied self-organizing
maps (SOMs), neighborhood analysis, and weighted
voting and gene/class correlation to seventy-two 7,070-
feature experiment profile vectors derived from bone
marrow (BM) and peripheral blood (PB) samples la-
beled as acute lymphoblastic or myeloid leukemia
(ALL, AML) (11). The relevance measure, referred to
here as the mean aggregate relevance (MAR), requires
labeled profile vectors, since it is computed from the
mean and standard deviation of the expression levels
of genes in samples labeled ALL and AML. For the
{Tumor, Nontumor} and {ALL, AML} binary supervised
learning problems, each study identified 50 markers
that had the same generalization performance as the
full repertoire of, respectively, 1,988 or 7,070 genes (11,
16).

This work considers three distinct but interrelated
feature relevance-, ranking-, and selection-related
problems. Currently, the number of training examples,
N sample profile vectors, is considerably smaller than
their dimensionality, L measured gene expression lev-
els (N ,, L). The first problem is identifying P marker
genes for development of a robust decision support
system to assign the cancer (sub)type for a new sample
as accurately as or better than the original L genes
(P ,, L). The second problem involves reducing the
dimensionality even further by defining the Q marker
genes best-suited for subsequent experimental investi-
gations (Q , P ,, L). The third problem concerns
multiply-labeled profile vectors and increasing the util-
ity of profiling studies beyond their original purpose.
Apart from the primary ALL and AML labels, each
leukemia sample had 1–3 additional labels: {PB, BM},
{T cell, B cell}, and {Male, Female} (11). Since it is
unlikely that all 7,070 genes are involved in differen-
tiating ALL from AML, it is possible that some (or all)
could provide a readout on other aspects of the sam-
ples. The question becomes whether the L genes ana-
lyzed to address a primary supervised learning prob-
lem can be employed to identify markers for secondary
problems defined by additional sample labels. Here, a

mixture of feature relevance experts is used to address
the first and second problems. The validity of the
premise underlying the third problem is demonstrated
using data from the leukemia samples. Since submis-
sion of this work, a variety approaches for identifying
marker genes have been proposed (see, for example,
Refs. 7, 8, 10, 12, and 23).

METHODS AND APPROACH

Gene expression data. The transcription profiling studies
reconsidered here both employed Affymetrix technology to
monitor gene expression levels. The adenocarcinoma study
provides measurements for 1,988 probes in 62 human colon
adenocarcinoma tissue samples, 40 labeled tumor and 22
nontumor (2). The leukemia study provides measurements
for 7,070 probes in 72 human leukemia samples, 47 ALL and
25 AML (total 72), 10 PB and 62 BM (total 72), 9 T cell and
38 B cell (total 47), and 26 male and 23 female (total 49) (11).
For these five aforementioned binary supervised learning
problems, samples having the label shown in italics are,
without loss of generality, defined to be positive training
examples.

Although not examined in this work, a variety of other
supervised learning problems can be derived from the leuke-
mia data. For example, a binary problem might involve
distinguishing leukemia subtypes on the basis of tissue of
origin ({ALL1PB, ALL1BM} or {AML1PB, AML1BM}). A
multiclass problem could include discriminating samples on
the basis of tissue origin and subtype ({ALL1PB, ALL1BM,
AML1PB, AML1BM}). For convenience, each functionally
defined nucleic acid sequence probe whose expression level is
monitored will be termed a “gene,” irrespective of whether it
is actually a gene, an expressed sequence tag, or DNA from
another source.

Feature relevance experts. The three feature relevance ex-
perts evaluated here implement relevance measures that are
based upon labeled (MAR, MVR) or unlabeled (NBGR) sam-
ple profile vector training examples. These measures are
designed to be illustrative rather than comprehensive, be-
cause, for example, all treat genes as independent of one
another, whereas the transcription levels of some genes are
likely to be correlated. In general, each measure generates a
ranking of features and defines nested gene subsets Top1 ,
Top2 , . . . , TopL, where L is the number of genes mon-
itored in the profiling study (here L 5 1988, 7070). Top1
denotes the top-ranked or most distinctive gene according to
the relevance measure, Top2 denotes the top 2, and so on.
Evaluating all possible gene subsets in terms of how well
they perform on a particular classification and prediction
problem using a supervised learning method (here SVMs) is
a computationally demanding task. Hence, the focus is on a
small number of selected gene subsets, for example, Top4 ,
Top5 , Top11 , Top25 , Top50 , Top100 , TopL, as
well as the bottom and middle 50 ranked genes.

It remains to be determined whether the degrees of diffi-
culty of the supervised learning and feature selection prob-
lems posed by the leukemia and adenocarcinoma data sets
are typical of cancer profiling studies. The strategy deployed
here is sufficiently general that other feature relevance mea-
sures, ranking and selection techniques, supervised learning
methods, training and evaluation procedures, and methods
for combining predictions from experts could be utilized.

Median vote relevance. For gene Fl, let xl
n be its expression

level in sample n. Let ni(Fl) and nj(Fl) be the median values
for samples belonging to classes i (positive training exam-
ples) and j (negative examples). Each sample casts a vote
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V(n, l ) according to whether the expression level is closer to
the median value of class i or j. The median vote relevance
(MVR) is the sum over all N samples

MVR~Fl! 5 (
n 5 1

N

V~n, l! 5 H1 if uni~Fl! 2 xl
nu , unj~Fl! 2 xl

nu
0 Otherwise

The larger the score, the better the gene distinguishes classes
(two or more genes can have the same value). Although both
require labeled training examples, the MVR is less sensitive
to outliers than the mean-based MAR, because the median is
a more robust estimate of the center of a population sample.
MVR values were computed using a spreadsheet program.

Naive Bayes global relevance. Given the K classes identified
and characterized by a naive Bayes model estimated from N
unlabeled L-feature profile vectors, the NBGR (16) is the sum of
the relevance over pairwise combinations of classes

NBGR~Fl! 5
1
K (

i51

K

(
j5i11

K

log F4
N (

n 5 1

N
P~xl

nuci,l!P~xl
nucj,l!

@P~xl
nuci,l! 1 P~xl

nucj,l!#
2G

P(xl
nuck,l) is the probability of the expression level given

class k. The greater the absolute magnitude, the better the
gene distinguishes all K classes. A naive Bayes model was
estimated using AutoClass C version 3.3 (5) and the 72
unlabeled 7,070-feature leukemia sample profile vectors (the
reported expression values were not shifted or scaled in any
way). An expectation maximization algorithm finds a mix-
ture of Gaussian probability distributions, and a Bayesian
approach finds the maximum posterior probability classifica-
tion and optimum number of classes K. Thus, P(xl

nuck,l) 5
[2psk,l

2 ]21/2exp[21/2{(xl
n 2 mk,l)/sk,l}2] where [mk,l, sk,l] is the

[mean, standard deviation] of the Gaussian modeling class k.
For each feature, gene l, a lower bound for sk,l was set to
1/10 of the standard deviation of all N expression levels,
{xl

1, . . . , xl
N}.

A naive Bayes model of the adenocarcinoma experiment
profile vectors identified four underlying classes (16) rather
than the two indicated by the tumor and nontumor labels (2).
NBGR values were calculated using Gaussian parameters
determined directly from the values of gene Fl in the tumor
and nontumor samples, i.e., K 5 2. The generalization
performance of the top 50 genes from this “supervised”
NBGR expert was considerably worse than that of the top 50
from an “unsupervised” NBGR expert that employed the
K 5 4 classes estimated from data.

Mean aggregate relevance. This is the correlation between
a gene and the ALL/AML classes (11). Unlike the MVR, the
MAR utilizes both the location and spread of samples in
classes i and j

MAR~Fl! 5
mi,l 2 mj,l

si,l 1 sj,l

where [mi,l, si,l] and [mj,l, sj,l] are the mean and standard
deviation of the log of the expression level of gene Fl in
classes i and j. A large absolute magnitude signifies a strong
correlation. A positive (negative) sign indicates that the gene
is more highly expressed in class i ( j). MAR(Fl) is related to
the Fisher criterion score u(mi,l 2 mj,l)/(si,l

2 1 sj,l
2 )u.

Leukemia and adenocarcinoma genes: feature ranking and
selection. The 7,070 genes in the leukemia data were ranked
separately according to their NBGR value and MVR value for
the labels {ALL, AML}, {PB, BM}, {T cell, B cell}, and {Male,
Female} (a total of five different rankings). The 1,988 genes
in the adenocarcinoma data were ranked separately accord-

ing to their NBGR value and MVR value for the label {Tumor,
Nontumor} (two different rankings). For each of these seven
rankings, nine representative gene subsets were created by
selecting different numbers of top-, middle-, and bottom-
ranked genes. Two additional gene subsets based on the
{ALL, AML} labels were defined. The first, taken from figure
3A of Ref. 11 and referred to as the MAR 50, represents the
25 genes with the highest positive values and the 25 genes
with the highest negative values. The second subset consists
of genes common to the MAR 50, the NBGR top 50, and the
MVR top 50. For the multiply-labeled leukemia data, the
NBGR ranking reflects the importance of genes in distin-
guishing ALL from AML, so it may be uninformative in terms
of the other labels.

SVMs: training and evaluation. Because of the limited
number of training examples, a leave-one-out cross valida-
tion strategy was utilized. A pool of N known positive and
negative training examples was partitioned into two disjoint
sets (here N 5 62, 72). The estimation set, N 2 1 examples,
was used to determine the parameters of an SVM, and the
test set, 1 example, was used to assess its generalization
performance. The label assigned by a trained SVM to a test
example can be a true positive (known positive test example,
assigned positive label), true negative (negative example,
negative label), false positive (negative example, positive
label), or false negative (positive example, negative label).
This procedure was repeated for each training example in
turn. The generalization performance of these leave-one-out
studies is the total number of SVMs that make true positive
or true negative assignments (the maximum possible gener-
alization performance is N). Elsewhere (11), the 72 leukemia
training examples were partitioned into estimation and test
sets containing 38 and 34 examples, respectively. The gener-
alization performance of this “38 estimation, 34 test” parti-
tioning is how many of the 34 test examples were assigned to
be true positives or true negatives. The roles of the two sets
were then reversed, and the generalization performance of a
“34 estimation, 38 test” partitioning was determined in a
similar manner.

In addition to training examples, estimating an SVM re-
quires specifying an inner-product kernel function, a mea-
sure of similarity between two profile vectors XL

i 5 {x1
i , . . . ,

xL
i } and XL

j 5 {x1
j , . . . , xL

j }. Since there is no general theory
for determining the most appropriate kernel for a particular
learning problem, two kernels were employed. The first was
the dot product kernel K(XL

i , XL
j ) 5 ¥l51

L xl
ixl

i. The second was
a radial basis kernel function K(XL

i , XL
j ) 5 exp(2iXL

i 2
XL

j i2/2s2), where g 5 1/2 s2 is a user-defined width parame-
ter. Two different width parameters were used: gf 5 0.01, a
data-independent value employed in earlier work (16); and 2)
gd, a data-dependent value in which s is set equal to the
median of the Euclidean distances from each positive train-
ing example to the nearest negative training example (3).

SVMs were trained and evaluated using SVMlight version
3.02 (15). Each gene subset was employed to create training
examples in which the input profile vectors contained only
the selected genes. Rather than working directly with the
reported expression levels, xl

n, each value was normalized
using xl

n/[¥l [ S(xl
n)2]1/2 where S is the subset of interest. For

simplicity and to illustrate the basic approach, genes were
ranked once using all N training examples and not reranked
for each estimation set. To account for unequal numbers of
positive and negative examples, each estimation set was
balanced by duplicating as many randomly chosen examples
as necessary from the smaller set to yield the same number
of examples as the larger set. Elsewhere (3), imbalanced data
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sets were handled by adding a diagonal to the kernel matrix
(different values for positive and negative examples).

RESULTS

Leukemia sample profile vector classes. Each of the
N 5 72 samples could be assigned uniquely to one of
three naive Bayes model classes because the probabil-
ity of the profile vector for that class was 1.0 (Table 1).
Although class 3 contains only ALL samples, none of
the other labels exhibit any clear association with
specific classes. The unsupervised learning method uti-
lized here determines the number of classes from the
data, whereas the published SOM approach (11) re-
quires this number be specified a priori (only a four
class SOM was reported). For the adenocarcinoma data
set also (16), the number of classes estimated by a
naive Bayes model is greater than the two that might
be expected given the {Tumor, Nontumor} labels. Fur-
ther research is required to ascertain whether these
discrepancies are the result of deficiencies in the mod-
eling method or reflect the fine structure and complex-
ity of the data that is masked by the original (known)
labels. Interestingly, ranking genes on the basis of
these estimated (pure and mixed) classes does not
diminish the ability of top-ranked gene subsets to ad-
dress the {ALL, AML} and {Tumor, Nontumor} super-
vised learning problems.

Markers for decision support systems. Table 2 shows
that the maximum generalization performance achieved
is less than the maximum possible for both the {ALL,
AML} (71 vs. 72) and {Tumor, Nontumor} (55 vs. 62)
problems. This may be because both data sets contain
outliers and potentially mislabeled samples. For the
five {ALL, AML} experiments with a performance of 71,
the single error is a false positive. Previously, 6/62
adenocarcinoma samples were assigned as false posi-
tive or false negative across the 17 gene subsets exam-
ined (16). Subsets with the same performance may
differ in their false positive and false negative assign-
ments. Decreasing the number of ranked genes below
the top 11 degrades performance. Overall, the NBGR
and MVR rankings are effective because the top 50
perform better than the middle 50 and significantly
better than the bottom 50. Some subsets generalize as
well as or better than the full repertoire of 1,988 or
7,070 genes. Thus the top 25–100 genes of each expert
are potential markers for use in developing decision
support systems aimed at distinguishing tumor from
nontumor colon adenocarcinoma samples and ALL
from AML samples.

SVM kernel function and kernel parameters. No ker-
nel function or parameter setting is optimal in terms of
generalization performance. For example, a data-de-
pendent width parameter gd gives superior results
compared to the data-independent parameter gd for the
{ALL, AML} problem. The reverse is true for the {Tu-
mor, Nontumor} problem. The poorer performance of a
data-dependent width parameter for the {Tumor, Non-
tumor} problem may be due to the larger number of
potentially misclassified examples in the adenocarci-
noma versus the leukemia data set. In previous anal-
ysis of the adenocarcinoma data (16), training exam-

Table 1. Naive Bayes model class assigned to
leukemia samples by a model trained using 72
unlabeled 7,070-feature sample profile vectors

Naive
Bayes
Class

Sample
Number

Primary
Label
{ALL,
AML}

Secondary Label

{PB, BM}
{T cell,
B cell}

{Male,
Female}

1 3 ALL BM T cell M
1 1 ALL BM B cell M
1 17 ALL BM B cell M
1 49 ALL BM B cell M
1 7 ALL BM B cell F
1 8 ALL BM B cell F
1 27 ALL BM B cell F
1 39 ALL BM B cell F
1 40 ALL BM B cell F
1 56 ALL BM B cell F
1 4 ALL BM B cell
1 62 AML PB
1 63 AML PB
1 64 AML PB
1 54 AML BM
1 28 AML BM
1 30 AML BM
1 31 AML BM
1 32 AML BM
1 33 AML BM
1 34 AML BM
1 35 AML BM
1 36 AML BM
1 37 AML BM
1 38 AML BM
1 50 AML BM
1 51 AML BM
1 53 AML BM
1 58 AML BM
1 61 AML BM
2 67 ALL PB T cell M
2 70 ALL PB B cell F
2 71 ALL PB B cell
2 6 ALL BM T cell M
2 10 ALL BM T cell M
2 23 ALL BM T cell M
2 22 ALL BM B cell M
2 25 ALL BM B cell M
2 45 ALL BM B cell M
2 47 ALL BM B cell M
2 12 ALL BM B cell F
2 18 ALL BM B cell F
2 26 ALL BM B cell F
2 41 ALL BM B cell F
2 43 ALL BM B cell F
2 44 ALL BM B cell F
2 46 ALL BM B cell F
2 55 ALL BM B cell F
2 59 ALL BM B cell F
2 19 ALL BM B cell
2 52 AML PB
2 60 AML BM M
2 57 AML BM F
2 29 AML BM
2 65 AML BM
2 66 AML BM
3 68 ALL PB B cell M
3 69 ALL PB B cell M
3 72 ALL PB B cell
3 2 ALL BM T cell M
3 9 ALL BM T cell M
3 11 ALL BM T cell M
3 14 ALL BM T cell M
3 16 ALL BM B cell M
3 21 ALL BM B cell M
3 24 ALL BM B cell M
3 13 ALL BM B cell F
3 15 ALL BM B cell F
3 42 ALL BM B cell F
3 48 ALL BM B cell F
3 5 ALL BM B cell
3 20 ALL BM B cell

ALL, acute lymphoblastic leukemia; AML, acute myeloid leuke-
mia; PB, peripheral blood; BM, bone marrow.
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ples that constituted support vectors in each of the 62
leave-one-out SVMs were used to pinpoint potentially
mislabeled samples (support vectors are training ex-
amples that define the location of the decision surface).
Similarly, it may be instructive to examine how the
nature and number of such invariant support vector

training examples vary according to feature subset,
kernel function, and kernel parameters.

SVM training and evaluation. Table 3 indicates that
performance is influenced by how the training exam-
ples are partitioned (compare the false positives and
false negatives in the “38 estimation, 34 test” and “34

Table 2. Identifying marker genes using two different feature relevance experts

Gene
Subset

Leukemia {ALL, AML}

NBGR MVR

Dot Product

Radial Basis Function

Dot Product

Radial Basis Function

gd550.8,
9537.0 gf50.01

gd551.4,
25641.0 gf50.01

All 7,070 70 (2,0) 70 (1,1) 45 (25,2) 70 (2,0) 70 (1,1) 45 (25,2)
Top 100 71 (1,0) 70 (2,0) 68 (4,0) 71 (1,0) 70 (2,0) 68 (4,0)
Top 50 70 (2,0) 68 (4,0) 70 (2,0) 70 (2,0) 71 (1,0) 66 (6,0)
Top 25 71 (1,0) 70 (1,1) 68 (4,0) 70 (2,0) 71 (1,0) 65 (7,0)
Top 11 70 (2,0) 69 (2,1) 70 (2,0) 70 (2,0) 69 (1,2) 64 (7,1)
Top 5 60 (8,4) 63 (6,3) 53 (19,0) 69 (2,1) 63 (4,5) 58/69* (11,0)
Top 4 67 (3,2) 64 (5,3) 51/70* (19,0) 49 (2,21) 39 (19,14) 41 (7,24)
Middle 50 54 (14,4) 48 (18,16) 49 (22,1) 59 (10,3) 57 (8,7) 46 (25,1)
Bottom 50 47 (25,0) 39 (19,14) 45 (21,6) 43 (7,22) 36 (19,17) 40 (23,9)

Gene
Subset

Colon Adenocarcinoma {Tumor, Nontumor}

NBGR MVR

Dot Product

Radial Basis Function

Dot Product

Radial Basis Function

gd53.0,
56.1 gf50.01

gd53.0,
116.4 gf50.01

All 1,998 53 (5,4) 54 (4,4) 55 (3,4) 53 (5,4) 54 (4,4) 55 (3,4)
Top 100 46 (7,9) 54 (4,4) 53 (6,3) 51 (4,7) 52 (6,4) 55 (3,4)
Top 50 49 (8,5) 53 (6,3) 55 (3,4) 48 (6,8) 52 (6,4) 55 (3,4)
Top 25 47 (6,9) 53 (6,3) 53 (6,3) 46 (8,8) 50 (6,6) 52 (3,7)
Top 11 50 (5,7) 52 (6,4) 54 (3,5) 49 (5,8) 50 (7,5) 53 (3,6)
Top 5 45 (9,8) 51 (8,3) 42 (9,11) 53 (3,6) 49 (7,6) 52 (4,6)
Top 4 38 (12,12) 42 (13,7) 40 (12,10) 52 (4,6) 50 (5,7) 54 (3,5)
Middle 50 39 (10,13) 43 (11,8) 45 (7,10) 51 (4,7) 48 (9,5) 50 (5,7)
Bottom 50 37 (12,13) 34 (12,16) 39 (11,12) 40 (11,11) 33 (16,13) 33 (16,13)

The full repertoire of genes assayed in the leukemia (7,070) and colon adenocarcinoma (1,988) profiling studies were ranked separately
using the NBGR and MVR measures. Each entry gives the generalization performance of leave-one-out SVMs trained using a specific gene
subset (All 7,070, Top 100, . . .), kernel function (dot product, radial basis function), and radial basis function width parameter g
(gd5minimum, maximum, minimum and maximum values across the subsets; gf, fixed value across all subsets). The triplet of numbers
indicates “true positive 1 true negative (false positive, false negative)” assignments. The maximum generalization performance possible for
the leukemia profiling study was 72; the maximum possible score for colon adenocarcinoma study was 62. The maximum generalization
performance achieved in a column is boxed. *Experiments in which only some of the leave-one-out partitioning of the training examples
resulted in estimation sets capable of yielding models (the maximum generalization performance possible decreases from 72 to 69 and 70).
NBGR, naive Bayes global relevance; MVR, median vote relevance; SVM, support vector machine.

Table 3. The generalization performance of different partitionings of the {ALL, AML} training examples

Partitioning of Training
Set

NBGR Top 50 MVR Top 50 MAR 50

Dot
Product

Radial Basis
Function

Dot
Product

Radial Basis
Function

Dot
Product

Radial Basis Function

gd539.8,
102.3 gf50.01

gd541.5,
100.0 gf50.01

gd540.2,
80.5 gf50.01

72 leave-one-out 70 (2,0) 68 (4,0) 66 (6,0) 70 (2,0) 71 (1,0) 70 (2,0) 68 (3,1) 68 (2,2) 70 (2,0)
38 estimation, 34 test 32 (2,0) 32 (2,0) 30 (4,0) 33 (1,0) 33 (1,0) 33 (1,0) 33 (1,0) 33 (1,0) 32 (1,1)
34 estimation, 38 test 37 (1,0) 37 (1,0) 34 (4,0) 36 (2,0) 37 (1,0) 36 (2,0) 37 (1,0) 37 (1,0) 35 (3,0)

Each triplet of numbers refers to “true positive 1 true negative (false positive, false negative)” assignments. For the “72 leave-one-out”
partitioning, they are assignments made by 72 leave-one-out SVMs for their single test example. For the “38 estimation, 34 test” partitioning,
they are assignments made by a single SVM for 34 test examples. For the “34 estimation, 38 test” partitioning, they are assignments made
by a single SVM for 38 test examples.
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estimation, 38 test” experiments). The MAR 50 subset
and “38 estimation, 34 test” partitioning allow a direct
comparison between the performance of SVMs and the
published weighted vote predictor (11). In the latter,
the estimation set was used to compute the MAR for
each feature in the subset. This 50-feature predictor
assigned the label for each of the 34 test examples as
follows. Each gene Fl casts a weighted vote according to
whether the expression level xl is closer to the value of
the gene in class i ; ALL or j ; AML of the estima-
tion set, v(Fl) 5 MAR(Fl)(xl 2 [mi,l 1 mj,l]/2). If the

sum of the absolute values of the positive votes in the
50 genes is greater than the sum of the absolute values
of the negative votes, then the test example is assigned
to the positive class i. The weighted vote predictor
made strong predictions for 29 of the 34 test examples,
and in all instances, the assignments were true posi-
tives or true negatives. In contrast, an SVM makes
true positive or true negative assignments for 33 of the
34 test examples.

ALL and AML markers for experimental studies. The
original leukemia study provided biological explana-

Table 4. The leukemia NBGR top 50 genes

Gene ID Gene Annotation

1 U14394_at METALLOPROTEINASE INHIBITOR 3 PRECURSOR
2 L04947_at KDR Kinase insert domain receptor (a type III receptor tyrosine kinase)
3 M11353_at EEF1G Translation elongation factor 1 gamma
4 X56468_at 14-3-3 PROTEIN TAU
5 M27891_at CST3 Cystatin C (amyloid angiopathy and cerebral hemorrhage)
6 M84526_at DF D component of complement (adipsin)
7 M29581_at ZNF8 Zinc finger protein 8 (clone HF.18)
8 U75679_at Histone stem-loop binding protein (SLBP) mRNA
9 X95190_at Branched chain Acyl-CoA Oxidase

10 Y08612_at RABAPTIN-5 protein
11 M28130_rna1_s_at Interleukin 8 (IL8) gene
12 L07540_at ACTIVATOR 1 36 KD SUBUNIT
13 M21624_at TCRD T-cell receptor, delta
14 M26683_at SCYA2 Small inducible cytokine A2 (monocyte chemotactic protein 1, homologous to mouse Sig-je)
15 D13666_s_at Osteoblast specific factor 2 (OSF-2os)
16 M31166_at PTX3 Pentaxin-related gene, rapidly induced by IL-1 beta
17 D88422_at CYSTATIN A
18 M57731_s_at GRO2 GRO2 oncogene
19 M20203_s_at GB DEF5Neutrophil elastase gene, exon 5
20 HG4316-HT4586_at Transketolase-Like Protein
21 J05412_at REG1A Regenerating islet-derived 1 alpha (pancreatic stone protein, pancreatic thread protein)
22 M54995_at PPBP Connective tissue activation peptide III
23 M27783_s_at ELA2 Elastatse 2, neutrophil
24 U27831_at GB DEF5Striatum-enriched phosphatase (STEP)
25 X82103_at Beta-COP
26 X55668_at PRTN3 Proteinase 3 (serine proteinase, neutrophil, Wegener granulomatosis autoantigen)
27 HG2887-HT3031_at Sry-Related Hmg-Box 12 Protein (Gb:X73039)
28 U39576_at BTN Butyrophilin
29 HG2981-HT3127_s_at MAP kinase kinase 6 (MKK6) mRNA
30 X54667_s_at CST4 Cystatin S
31 J04990_at CATHEPSIN G PRECURSOR
32 M96326_rna1_at Azurocidin gene
33 X65977_at DEFA4 Defensin, alpha 4, corticostatin
34 U80987_s_at GB DEF5Transcription factor TBX5 mRNA
35 M63379_at CLU Clusterin (complement lysis inhibitor; testosterone-repressed prostate message 2; apolipoprotein J)
36 X04602_s_at IL6 Interleukin 6 (B cell stimulatory factor 2)
37 X06182_s_at KIT V-kit Hardy-Zuckerman 4 feline sarcoma viral oncogene homolog
38 X97198_at Receptor protein tyrosine phosphatase hPTP-J precursor
39 M23178_s_at MACROPHAGE INFLAMMATORY PROTEIN 1-ALPHA PRECURSOR
40 X79981_at CDH5 Cadherin 5, VE-cadherin (vascular epithelium)
41 U52112_rna5_at RbP gene (renin-binding protein) extracted from Human Xq28 genomic DNA in the region of the L1CAM

locus
42 X52882_at T-COMPLEX PROTEIN 1, ALPHA SUBUNIT
43 L12392_at HD Huntingtin (Huntington disease)
44 Y09616_at Carboxylesterase (hCE-2) mRNA
45 X13238_at COX6C Cytochrome c oxidase subunit VIc
46 M30703_s_at Amphiregulin (AR) gene
47 U60521_at Cysteine protease ICE-LAP6 mRNA
48 HG3454-HT3647_at Zinc Finger Protein 20
49 X65962_s_at CYP2C17 Cytochrome P450, subfamily IIC (mephenytoin 4-hydroxylase), polypeptide 17
50 S72008_at CDC10 Cell division cycle 10 (homologous to CDC10 of S. cerevisiae)

The “Gene Annotations” in Tables 4–6 and 10–12 are text strings reproduced verbatim from the source, to facilitate searches and ease of
use for the readership when extracting information from the array data. Genes in boldface are present in the {ALL, AML} MVR top 50 shown
in Table 5.
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tions as to why members of the MAR 50 might be
involved in this disorder and could distinguish AML
from ALL (11). The results here indicate that the
NBGR top 50, MVR top 50, and MAR 50 generalize as
well as all 7,070 genes (compare the “72 leave-one-out”
entry in Table 3 with the “All 7,070” entry in Table 2).
Tables 4–6 list the top 50 genes of each expert. Al-
though the precise composition of the top 50s differ,
each set of 50 genes is effective in terms of discrimi-
nating between AML and ALL. The small overlap in
terms of the specific genes suggests the presence of
many gene subsets of a given cardinality that can
generalize equally well.

Only adipsin, azurocidin, and cystatin C are common
to the NBGR top 50, MVR top 50, and MAR 50. Given
the large number of genes assayed (7,070) and the
extensive literature on leukemia, it should be possible
to provide biologically based rationales as to why three
particular genes might be involved in AML/ALL, even
those chosen at random and having no actual role in
the disease. Although such an explanation cannot be
ruled out for adipsin, azurocidin, and cystatin C, cir-
cumstantial evidence suggests that they may, indeed,
be robust and reliable markers and thus good candi-
dates for additional experimental investigation. These
genes are ranked highly by three independent experts

Table 5. The {ALL, AML} MVR top 50 genes

Gene ID Gene Annotation

1 X95735_at Zyxin
2 X62320_at GRN Granulin
3 D88422_at CYSTATIN A
4 M23197_at CD33 CD33 antigen (differentiation antigen)
5 M83652_s_at PFC Properdin P factor, complement
6 M84526_at DF D component of complement (adipsin)
7 U46499_at GLUTATHIONE S-TRANSFERASE, MICROSOMAL
8 L09209_s_at APLP2 Amyloid beta (A4) precursor-like protein 2
9 M63138_at CTSD Cathepsin D (lysosomal aspartyl protease)

10 M92287_at CCND3 Cyclin D3
11 M31523_at TCF3 Transcription factor 3 (E2A immunoglobulin enhancer binding factors E12/E47)
12 M83667_rna1_s_at NF-IL6-beta protein mRNA
13 M16038_at LYN V-yes-1 Yamaguchi sarcoma viral related oncogene homolog
14 M31211_s_at MYL1 Myosin light chain (alkali)
15 X62654_rna1_at ME491 gene extracted from H. sapiens gene for Me491/CD63 antigen
16 X85116_rna1_s_at Epb72 gene exon 1
17 M19507_at MPO Myeloperoxidase
18 M63379_at CLU Clusterin (complement lysis inhibitor; testosterone-repressed prostate message 2; apolipoprotein J)
19 M96326_rna1_at Azurocidin gene
20 U50136_rna1_at Leukotriene C4 synthase (LTC4S) gene
21 M32304_s_at TIMP2 Tissue inhibitor of metalloproteinase 2
22 M55150_at FAH Fumarylacetoacetate
23 D14664_at KIAA0022 gene
24 J05243_at SPTAN1 Spectrin, alpha, non-erythrocytic 1 (alpha-fodrin)
25 M31303_rna1_at Oncoprotein 18 (Op18) gene
26 M11722_at Terminal transferase mRNA
27 L47738_at Inducible protein mRNA
28 M98399_s_at CD36 CD36 antigen (collagen type I receptor, thrombospondin receptor)
29 X17042_at PRG1 Proteoglycan 1, secretory granule
30 X90858_at Uridine phosphorylase
31 M27891_at CST3 Cystatin C (amyloid angiopathy and cerebral hemorrhage)
32 M23178_s_at MACROPHAGE INFLAMMATORY PROTEIN 1-ALPHA PRECURSOR
33 U05572_s_at MANB Mannosidase alpha-B (lysosomal)
34 HG3494-HT3688_at Nuclear Factor Nf-Il6
35 M31166_at PTX3 Pentaxin-related gene, rapidly induced by IL-1 beta
36 M19508_xpt3_s_at MPO from Human myeloperoxidase gene, exons 1–4./ntype5DNA/annot5exon
37 M93056_at LEUKOCYTE ELASTASE INHIBITOR
38 X59417_at PROTEASOME IOTA CHAIN
39 Z15115_at TOP2B Topoisomerase (DNA) II beta (180kD)
40 X98411_at GB DEF5Myosin-IE
41 J04990_at CATHEPSIN G PRECURSOR
42 HG1612-HT1612_at Macmarcks
43 U05259_rna1_at MB-1 gene
44 M22960_at PPGB Protective protein for beta-galactosidase (galactosialidosis)
45 X16546_at RNS2 Ribonuclease 2 (eosinophil-derived neurotoxin; EDN)
46 X07743_at PLECKSTRIN
47 X70297_at CHRNA7 Cholinergic receptor, nicotinic, alpha polypeptide 7
48 U70063_at Acid ceramidase mRNA
49 M62762_at ATP6C Vacuolar H1 ATPase proton channel subunit
50 U02020_at Pre-B cell enhancing factor (PBEF) mRNA

The “Gene Annotations” in Tables 4–6 and 10–12 are text strings reproduced verbatim from the source, to facilitate searches and ease of use
for the readership when extracting information from the array data. Genes in boldface are present in the NBGR top 50 shown in Table 4.

105IDENTIFICATION OF MARKER GENES

http://physiolgenomics.physiology.org

 on A
ugust 25, 2005 

physiolgenom
ics.physiology.org

D
ow

nloaded from
 

http://physiolgenomics.physiology.org


and are located in chromosomal regions known to be
sites of recurrent abnormalities in ALL and AML (Ta-
ble 7). Chromatin reorganization of the 19p13.3 locus,
which contains azurocidin, proteinase-3, neutrophil
elastase, and adipsin, is associated with myeloid cell
differentiation (24). The generalization performance
achieved by these subsets of 3 (66) and 4 (64) genes is

comparable to the NBGR top 4 (67) and higher than the
MVR top 4 (49) (Table 8).

Cystatins C, A (GenBank accession no. D88422), and
S (X54667) and cathepsins G (J04990) and D (M63138)
are common to two out of the three top 50s. Cystatins
are endogenous protein inhibitors of cathepsins, so
these specific protease-inhibitor pains might be impor-
tant in the etiology of ALL and AML. Human neutro-
phil-derived cathepsin G and azurocidin have been
identified as chemoattractants for mononuclear cells
and neutrophils (6). Experimental investigation of
highly ranked genes may be warranted.

T cell/B cell, PB/BM, and male/female markers for
experimental studies. The MVR expert defines 25
markers for each of the additional leukemia problems
that generalize as well as all 7,070 genes (Table 9).
Comparing the maximum performance achieved and
the maximum possible performance indicates that the
data contain sufficient information for the {PB, BM}
(68 vs. 72) and {T cell, B cell} (46 vs. 47) problems, but
not for the {Male, Female} (31 vs. 49) problem. Fur-
thermore, there is little difference in performance be-
tween the {Male, Female} top 50, middle 50, and bot-
tom 50 gene sets. This suggests little association
between these sample labels and transcription profil-
ing data. Possible explanations for the poorer {Male,
Female} results include 1) transcription profile data
are poor indicators of sex, 2) the 7,070 probe set did not
include those that can distinguish males from females,
and 3) the patients (mostly children) had not achieved

Table 6. The {ALL, AML} MAR 50 genes
from figure 3A of Ref. 11

Gene ID Gene Annotation

U22376 c-myb
X59417* Proteasome iota
U05259* MB-1
M92287* Cyclin D3
M31211* Myosin light chain
X74262 RbAp48
D26156 SNF2
S50223 HkrT-1
M31523 E2A
L47738* Inducible protein
U32944 Dynein light chain
Z15115* Topoisomerase II b
X15949 IRF2
X63469 TFIIEb
M91432 Acyl-Coenzyme A dehydrogenase
U29175 SNF2
Z69881 Ca21-ATPase
U20998 SRP9
D38073 MCM3
U26266 Deoxyhypasine synthase
M31303* Op 18
Y08612† Rabaptin-5
U35451 Heterochromatin protein p25
M29696 IL-7 receptor
M13792 Adenosine deaminase
M55150* Fumarylacetoacetate
X95735* Zyxin
U50136* LTC4 synthase
M16038* LYN
U82759 HoxA9
M23197* CD33
M84526*† Adipsin
Y12670 Leptin receptor
M27891*† Cystatin C
X17042* Proteoglycan I
Y00787 IL-8 precursor
M96326*† Azurocidin
U46751 p62
M80254 CyP3
L08246 MCL1
M62762* ATPase
M28130† IL-8
M63138* Cathepsin D
M57710 Lectin
M69043 MAD-3
M81695 CDC11c
X85116* Ebp72
M19045 Lysozyme
M83652* Properdin
X04085 Catalase

MAR, mean aggregate relevance. *Genes common to MVR top 50
(Table 5). †Genes common to NBGR top 50 (Table 4). Genes in
boldface are common to the MAR 50, NBGR top 50, and MVR top 50.
The “Gene Annotations” in Tables 4–6 and 10–12 are text strings
reproduced verbatim from the source, to facilitate searches and ease
of use for the readership when extracting information from the array
data.

Table 7. Abnormalities associated with two
chromosomal regions containing genes at the
intersection of the NBGR top 50, MVR top 50, and
MAR 50: azurocidin (Gene ID M96326), adipsin
(M84526), and cystatin C (M27891)

Region Abnormality Neoplasm
Total
Cases

19p13.3 t(1;19)(q21;p13) ALL 5
t(1;19)(q22;p13) ALL 2
t(1;19)(q23;p13) ALL 108
t(11;19)(q23;p13) ALL 67
t(11;19)(q23;p13) AML 76
t(17;19)(q21;p13) ALL 3
t(17;19)(q22;p13) ALL 5
del(19)(p13) AML 2
der(19)t(1;19)(q11;p13) AML 2
der(19)t(1;19)(q21;p13) ALL 8
der(19)t(1;19)(q23;p13) ALL 172

20p11.2 t(14;20)(q11;p11) ALL 2
del(20)(p11) ALL 3
del(20)(p11) AML 2

The data are derived from the Breakpoint Map of Recurrent
Chromosome Aberrations (http://www.ncbi.nlm.nih.gov/CCAP).
The 19p13.3 region contains the four closely linked genes 59 azuro-
cidin-proteinase 3-neutrophil elastase-adipsin 39 (24). The 20p11.2
region contains cystatin C (M27891) and cystatin S (X54667). Pro-
teinase 3 (X55668), neutrophil elastase (M27783), and cystatin S are
in the NGBR top 50. Other NBGR and MVR top-ranked genes
located in sites of recurrent abnormalities include tissue inhibitor of
metalloproteinase 3 (U14394; 22q12.3) and zyxin (X95735, 7q32),
respectively.
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sexual maturity and thus not manifested any differ-
ences.

Of the 72 training examples, 47 have {T cell, B cell}
labels, and there is only one false positive assignment
when either all 7,070 or the top 25 genes are used. It is
interesting to note that a dot product SVM trained
using these 47 labeled 7,070-feature experiment profile
vectors assigned a B cell label to each of the 72 2 47 5
25 test examples. These test examples are the AML
samples listed in Table 1.

The three sets of MVR rankings appear to be biolog-
ically interesting (Tables 10–12). It should be noted,
however, that they are valid only within the context of
tissue samples derived from patients with ALL/AML.
Bearing this in mind, the {T cell, B cell} top 50 contains
many known T cell related genes. Genes that have no
obvious annotation linking them to this cell type, such
as protein disulfide isomerase, selenoprotein W, and
Ras-related protein Rab-32, may be novel markers that
can discriminate between T cells and B cells. Seleno-
protein W is an intracellular protein that may be in-
volved in protection against oxidative damage and
muscle metabolism (4, 14). Overexpression of Lrp, the
top ranked {PB, BM} gene, often predicts a poor re-
sponse to chemotherapy in leukemia because it is one
of the mechanisms by which cancer cells develop resis-
tance to cytotoxic agents (reviewed in Ref. 19).

DISCUSSION

The principal requirement for identifying marker
genes for use in developing a clinically relevant deci-
sion support system for cancer diagnosis, prognosis,
and monitoring is that the resultant system generate
accurate predictions. The generalization capacity of
the system is of paramount importance since the num-
ber and diversity of samples available for its develop-
ment are likely to be far smaller than samples for
which predictions will need to be made. Undoubtedly, a
variety of the extracellular and intracellular pathways
that regulate and maintain interactions between cells
and their microenvironment are perturbed during car-
cinogenesis. Hence, feature relevance experts should
be designed that implement as fundamentally different
notions of relevance as possible in order that each
relevance measure captures a different, physiologically
relevant pathway or mechanism leading to the biolog-
ical end point. Given a mixture of experts, selecting
gene subsets that are ranked highly by each expert and
which generalize as well as or better than the full
repertoire should help to pinpoint robust marker
genes. Based on the results here, a prototype system
for discriminating between ALL and AML samples
could contain the 125 features that are the union of
NBGR top 50, MVR top 50, and MAR 50.

Table 8. The generalization performance of gene
subsets that are good candidates for further
experimental studies of ALL and AML

Gene Subset Dot Product

Radial Basis Function

gd gf50.01

Intersection of NBGR, MVR,
and MAR 50s

60/70* (10,0) 66 (5,1) 28/69* (18,23)

M27891 Cystatin C (CST3)
M84526 Adipsin
M96326 Azurocidin

Linked genes in 19p13.3
locus

60/71* (11,0) 64 (6,2) 46/58* (10,2)

M96326 Azurocidin
X55668 Proteinase 3

(PRTN3)
M20203 Neutrophil

elastase
M84526 Adipsin

NBGR Top 4 67 (3,2) 64 (5,3) 51/70* (19,0)
U14394 Metalloproteinase

inhibitor 3
L04947 KDR Kinase insert

domain receptor
M11353 EEF1G

Translation elongation
factor 1 g

X56468 14-3-3 protein tau

MVR Top 4 49 (2,21) 39 (19,14) 41 (7,24)
X95735 Zyxin
X62320 Granulin (GRN)
D88422 Cystatin A
M23197 CD33 antigen

“Intersection of NBGR, MVR, and MAR 50s” refers to genes com-
mon to the NBGR top 50, MVR top 50, and MAR 50. “Linked genes
in 19p13.3 locus” denotes the four closely linked genes found in the
NBGR top 50. “NBGR Top 4” and “MVR Top 4” are the top four genes
listed in Tables 4 and 5, respectively. *Experiments in which only
some of the leave-one-out partitioning of the training examples
resulted in estimation sets capable of yielding models.

Table 9. Marker genes that distinguish leukemia samples according to their {PB, BM}, {T cell, B cell}, and
{Male, Female} labels and identified using the MVR expert

Gene
Subset

{PB, BM} (72) {T cell, B cell} (47) {Male, Female} (49)

Dot product

Radial Basis
Function

Dot product

Radial Basis
Function

Dot product

Radial Basis
Function

gd5459.8, 23696.7 gd518.5, 20833.3 gd58.4, 12.9

All 7,070 63 (6,3) 64 (8,0) 45 (1,1) 46 (1,0) 30 (15,4) 31 (9,9)
Top 100 67 (2,3) 68 (3,1) 46 (1,0) 46 (1,0) 26 (11,12) 29 (10,10)
Top 50 65 (3,4) 67 (4,1) 46 (1,0) 46 (1,0) 27 (12,10) 29 (9,11)
Top 25 64 (3,5) 64 (5,3) 46 (1,0) 46 (1,0) 29 (11,9) 30 (11,8)
Middle 50 56 (6,10) 55 (10,7) 31 (4,12) 37 (7,3) 28 (11,10) 27 (12,10)
Bottom 50 20 (5,47) 57 (10,5) 11 (3,33) 31 (9,7) 28 (12,9) 29 (10,10)

The maximum possible generalization performance is given in parenthesis. See legend to Table 2 for complete description and definitions.
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Although reducing the original 7,070 leukemia genes
to 125 is appropriate in terms of a decision support
system, this is still too many for in-depth experimental
studies. Hence, the most informative experimental
markers may be genes at the intersection of the top
ranked genes: adipsin, azurocidin, and cystatin C.
However, they are unlikely to be the sole determinants
of the difference between ALL and AML because the
generalization performance of these three genes is
poorer than some of the larger gene subsets. The same
is true for the four closely linked genes on chromosome
19p13.3 (azurocidin-proteinase 3-neutrophil elastase-
adipsin). Nonetheless, the strategy proposed here pro-

vides a protocol for pinpointing experimentally infor-
mative marker genes and thus prioritizing subsequent
investigations.

In transcription profiling studies, more genes are
monitored than are probably required to understand
the main problem. This “overdetermined” property
suggests that broader questions could be answered if
additional information were available for each sam-
ple. For the leukemia {T cell, B cell} and {PB, BM}
secondary problems, the 7,070 genes are sufficiently
informative that 25 markers can be defined that
generalize as well as all 7,070 genes. It remains to be
determined whether these makers are universal or

Table 10. The {PB, BM} MVR top 50 genes

Gene ID Gene Annotation

1 X79882_at Lrp mRNA
2 X57206_at ITPKB Inositol 1,4,5-trisphosphate 3-kinase B
3 M37766_at CD48 CD48 antigen (B-cell membrane protein)
4 L36818_at INPPL1 Inositol polyphosphate phosphatase-like protein 1 (51C protein)
5 U76764_s_at CD97 CD97 antigen (leucocyte antigen)
6 M60922_at Surface antigen mRNA
7 D86976_at KIAA0223 gene, partial cds
8 AF006084_at Arp2/3 protein complex subunit p41-Arc (ARC41) mRNA
9 L32976_at Protein kinase (MLK-3) mRNA

10 S73591_at Brain-expressed HHCPA78 homolog [human, HL-60 acute promyelocytic leukemia cells]
11 D00591_at CHC1 Chromosome condensation 1
12 X07767_at PRKACA Protein kinase, cAMP-dependent, catalytic, alpha
13 D50923_at KIAA0133 gene
14 D38305_at Tob
15 U49187_at Placenta (Diff48) mRNA
16 X90780_rna1_at Cardiac troponin I gene, exons 1 to 5
17 D83735_at Adult heart mRNA for neutral calponin
18 M72885_rna1_s_at G0S2 gene extracted from Human GOS2 gene, 59 flank and cds
19 D14657_at KIAA0101 gene
20 X01703_at Alpha-tubulin mRNA
21 M60830_at EVI2B PROTEIN PRECURSOR TROPIC VIRAL INTEGRATION SITE 2B PROTEIN
22 U52101_at YMP mRNA
23 U15085_at HLA-DMB Major histocompatibility complex, class II, DM beta
24 X75962_at OX40L RECEPTOR PRECURSOR
25 M87339_at RFC4 Replication factor C, 37-kD subunit
26 J03600_at ALOX5 Arachidonate 5-lipoxygenase
27 U93049_at GB DEF5SLP-76 associated protein mRNA
28 U03851_at Capping protein alpha mRNA, partial cds
29 HG4557-HT4962_r_at Small nuclear ribonucleoprotein U1, 1snrp
30 U66464_at Hematopoietic progenitor kinase (HPK1) mRNA
31 L36983_at Dynamin (DNM) mRNA
32 U01038_at PLK mRNA
33 J00220_cds5_at IGHA1 gene extracted from Human Ig germline H-chain G-E-A region A: gamma-3 59 flank
34 D25538_at KIAA0037 gene
35 U20158_at 76 kDa tyrosine phosphoprotein SLP-76 mRNA
36 D63482_at KIAA0148 gene
37 X59405_at MCP Membrane cofactor protein (CD46, trophoblast-lymphocyte cross-reactive antigen)
38 U00921_at LST1 mRNA, cLST1/E splice variant
39 X04106_at CAPN4 Calpain, small polypeptide
40 U56418_at Lysophosphatidic acid acyltransferase-beta mRNA
41 X78121_at CHM Choroideremia
42 X61587_at ARHG Ras homolog gene family, member G (rho G)
43 U80073_at GB DEF5Tip associating protein (TAP) mRNA
44 U37022_rna1_at Cyclin-dependent kinase 4 (CDK4) gene
45 U49278_at Putative DNA-binding protein mRNA, partial cds
46 X63131_s_at PML Probable transcription factor PML alternative products
47 X62048_at WEE1-LIKE PROTEIN KINASE
48 U46751_at Phosphotyrosine independent ligand p62 for the Lck SH2 domain mRNA
49 U53204_at Plectin (PLEC1) mRNA
50 U03105_at B4-2 protein mRNA

The “Gene Annotations” in Tables 4–6 and 10–12 are text strings reproduced verbatim from the source, to facilitate searches and ease of
use for the readership when extracting information from the array data.
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are restricted to samples originating from ALL and
AML patients.

Both the leukemia and adenocarcinoma data sets
contain potentially misclassified samples, samples for
which the original label (the “gold standard”) may be
incorrect (1/72 and 6/62 respectively). In a previous
study of the latter data set (16), the subset of training
examples that constituted support vectors across the
entire series of leave-one-out SVMs was suggested to
be indicative of samples most likely to have been mis-
classified (the set of support vectors does appear to
depend upon which training example is withheld when
estimating an SVM). Misclassification may be due to

simple human error during sample handling, RNA
preparation, data acquisition, data analysis, and so on.
Standardized protocols stipulating rigorous procedures
at each step of the process should reduce this type of
problem and improve the chances of creating a coher-
ent data set. The possibility of misclassification cannot
be eliminated entirely because although a sample
might appear to be visually and/or histologically of one
type, it might be a member of the other class in reality.
By training SVMs with hard margins, assuming no a
priori labeling errors, potentially mislabeled samples
can be pinpointed and subjected to additional investi-
gation to verify their label. Given the nature of the

Table 11. The {T cell, B cell} MVR top 50 genes

Gene ID Gene Annotation

1 X03934_at GB DEF5T-cell antigen receptor gene T3-delta
2 D00749_s_at T-CELL ANTIGEN CD7 PRECURSOR
3 X00274_at HLA CLASS II HISTOCOMPATIBILITY ANTIGEN, DR ALPHA CHAIN PRECURSOR
4 X04145_at CD3G CD3G antigen, gamma polypeptide (TiT3 complex)
5 U23852_s_at GB DEF5T-lymphocyte specific protein tyrosine kinase p56lck (lck) abberant mRNA
6 M23323_s_at T-CELL SURFACE GLYCOPROTEIN CD3 EPSILON CHAIN PRECURSOR
7 X76223_s_at GB DEF5MAL gene exon 4
8 M13560_s_at PROBABLE PROTEIN DISULFIDE ISOMERASE ER-60 PRECURSOR
9 X00437_s_at TCRB T-cell receptor, beta cluster

10 X59871_at TCF7 Transcription factor 7 (T-cell specific)
11 X69398_at CD47 CD47 antigen (Rh-related antigen, integrin-associated signal transducer)
12 M37271_s_at T-CELL ANTIGEN CD7 PRECURSOR
13 U59878_at Low-Mr GTP-binding protein (RAB32) mRNA, partial cds
14 L40386_s_at DP2 (Humdp2) mRNA
15 U67171_at GB DEF5Selenoprotein W (selW) mRNA
16 M26692_s_at GB DEF5Lymphocyte-specific protein tyrosine kinase (LCK) gene, exon 1, and downstream promoter region
17 HG4128-HT4398_at Anion Exchanger 3, Cardiac Isoform
18 M37815_cds1_at CD28 gene (glycoprotein CD28) extracted from Human T-cell membrane glycoprotein CD28 mRNA
19 U14603_at Protein tyrosine phosphatase PTPCAAX2 (hPTPCAAX2) mRNA
20 U18009_at Chromosome 17q21 mRNA clone LF113
21 D11327_s_at PTPN7 Protein tyrosine phosphatase, non-receptor type 7
22 X87241_at HFat protein
23 U50743_at Na,K-ATPase gamma subunit mRNA
24 D87292_at Rhodanese
25 L05148_at Protein tyrosine kinase related mRNA sequence
26 U18422_at DP2 (Humdp2) mRNA
27 U49835_s_at CHIT1 Chitinase 1
28 M28826_at CD1B CD1b antigen (thymocyte antigen)
29 X14975_at GB DEF5CD1 R2 gene for MHC-related antigen
30 U50327_s_at Protein kinase C substrate 80K-H gene (PRKCSH)
31 X98172_at MACH-alpha-2 protein
32 X67235_s_at PRHX Proline-rich homeodomain-containing transcription factor (symbol provisional)
33 U16954_at (AF1q) mRNA
34 M12886_at TCRB T-cell receptor, beta cluster
35 S78187_at M-PHASE INDUCER PHOSPHATASE 2
36 M16336_s_at CD2 CD2 antigen (p50), sheep red blood cell receptor
37 X60992_at T-CELL DIFFERENTIATION ANTIGEN CD6 PRECURSOR
38 J03077_s_at PSAP Sulfated glycoprotein 1
39 S65738_at Actin depolymerizing factor [human, fetal brain, mRNA, 1452 nt]
40 D38549_at KIAA0068 gene, partial cds
41 X69433_at IDH2 Isocitrate dehydrogenase 2 (NADP1), mitochondrial
42 X58072_at GATA3 GATA-binding protein 3
43 D83920_at FCN1 Ficolin (collagen/fibrinogen domain-containing) 1
44 X68742_at GB DEF5Integrin, alpha subunit
45 HG3576-HT3779_f_at Major Histocompatibility Complex, Class Ii Beta W52
46 U64675_at SRI Sorcin
47 D30758_at KIAA0050 gene
48 L08895_at MEF2C MADS box transcription enhancer factor 2, polypeptide C (myocyte enhancer factor 2C)
49 X99584_at SMT3A protein
50 D82345_at NB thymosin beta

The “Gene Annotations” in Tables 4–6 and 10–12 are text strings reproduced verbatim from the source, to facilitate searches and ease of
use for the readership when extracting information from the array data.
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underlying biology and technical issues surrounding
generation of transcription profiling data, it is conceiv-
able that many, it not all, cancer profiling experiments
will contain noisy data and misclassified samples. Soft
margin SVMs do take into consideration misclassified
training examples but it is difficult to estimate the
underlying error rate at the present time. To improve
the reliability of downstream analyses, it may be pref-
erable to incorporate a preprocessing step that identi-
fies, and subsequently corrects if necessary, any mis-
classified samples. Once achieved, the distance of a

sample to the optimal hyperplane can be used to assess
confidence in an assignment.

The results from this and previous (16) work high-
light a need for theoretical research in several areas.
As illustrated here, the generalization performance of
SVMs depends not only on the precise learning prob-
lem, but also on the training and testing procedure
employed. Although leave-one-out cross-validation is
costly and time-consuming, it provides a reasonable
estimate of the expected generalization error. In view
of uncertainties in the labels assigned to samples and

Table 12. The {Male, Female} MVR top 50 genes

Gene ID Gene Annotation

1 L08246_at INDUCED MYELOID LEUKEMIA CELL DIFFERENTIATION PROTEIN MCL1
2 D31887_at KIAA0062 gene, partial cds
3 M21121_at SCYA5 Small inducible cytokine A5 (RANTES)
4 U29656_at NME1 Non-metastatic cells 1, protein (NM23A) expressed in
5 D64159_at GB DEF53–7 gene product, partial cds
6 D14657_at KIAA0101 gene
7 U37022_rna1_at Cyclin-dependent kinase 4 (CDK4) gene
8 HG2788-HT2896_at Calcyclin
9 HG417-HT417_s_at Cathepsin B

10 M28213_s_at RAB2 RAB2, member RAS oncogene family
11 J03925_at ITGAM Integrin, alpha M (complement component receptor 3, alpha)
12 L38593_s_at GB DEF5Integral membrane protein (NRAMP1) gene, exon 5
13 X01703_at Alpha-tubulin mRNA
14 X03663_at CSF1R Colony stimulating factor 1 receptor, formerly McDonough feline sarcoma

viral (v-fms) oncogene homolog
15 J04182_at LAMP1 Lysosome-associated membrane protein 1
16 Z50022_at Surface glycoprotein
17 X98534_s_at VASP gene, exons 4 to 13
18 U56402_s_at Chromatin structural protein homolog (SUPT5H) mRNA
19 X79780_at YPT3 mRNA
20 J04132_at CD3Z CD3Z antigen, zeta polypeptide (TiT3 complex)
21 U90905_at Clone 23574 mRNA sequence
22 D79990_at KIAA0168 gene
23 U43077_at CDC37 homolog mRNA
24 D87434_at KIAA0247 gene
25 L13977_at LYSOSOMAL PRO-X CARBOXYPEPTIDASE PRECURSOR
26 M33552_at GB DEF5Lymphocyte-specific protein 1 (LSP1) mRNA
27 U61167_at SH3 domain-containing protein SH3P18 mRNA
28 U26173_s_at BZIP protein NF-IL3A (IL3BP1) mRNA
29 D90097_at ALPHA-AMYLASE 2B PRECURSOR
30 U02680_at Protein tyrosine kinase mRNA
31 M20543_at ACTA1 Actin, alpha 1, skeletal muscle
32 Z11697_at CD83 ANTIGEN PRECURSOR
33 U20816_s_at GB DEF5Nuclear factor kappa-B2 (NF-KB2) gene, partial cds
34 U04810_at DbpB-like protein mRNA
35 D14811_at KIAA0110 gene
36 U79273_at Clone 23933 mRNA sequence
37 M85276_at NKG5 PROTEIN PRECURSOR
38 HG620-HT620_at Tyrosine Phosphatase, Epsilon
39 X62534_s_at HMG2 High-mobility group (nonhistone chromosomal) protein 2
40 X75756_at PRKCM Protein kinase C, mu
41 X56841_at HLA-E MHC class I antigen HLA-E
42 M22995_at RAP1A RAP1A, member of RAS oncogene family
43 X78121_at CHM Choroideremia
44 S81914_at IEX-1
45 U51990_at HPrp18 mRNA
46 M84371_rna1_s_at CD19 gene
47 X65550_at MKI67 Antigen identified by monoclonal antibody Ki-67
48 M29474_at Recombination activating protein (RAG-1) gene
49 Z83741_at GB DEF5HH2A/m gene
50 L13329_at IDS Iduronate 2-sulfatase (Hunter syndrome)

The “Gene Annotations” in Tables 4–6 and 10–12 are text strings reproduced verbatim from the source, to facilitate searches and ease of
use for the readership when extracting information from the array data.
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the small, imbalanced sample set, a relatively simple
assessment of the overall performance of SVMs was
utilized: the cost function used to judge accuracy was
the total number of true positive and true negative
assignments. Principled, sophisticated methods need
to be developed for areas such as 1) selecting features
in the presence of an unknown number of misclassified
training examples, 2) choosing the appropriate class of
kernel function and determining (near) optimal kernel
parameters automatically, 3) training and evaluating a
learning system that is both computationally efficient
and yields biologically meaningful results, and 4) gen-
erating an integrated prediction from a set of feature
relevance experts that vary in how well they perform
on the classification and prediction task at hand (boost-
ing and bagging).

Despite the aforementioned limitations, utilizing a
mixture of feature relevance experts that incorporate
SVMs for supervised learning problems appears to be a
promising method for identifying marker genes in can-
cer profiling studies. This approach can be applied
directly to identifying markers in transcription profil-
ing studies addressing other discrimination problems
such as those encountered in aging and responses to
different doses and dose rates of xenobiotic agents such
as radiation. Similarly, the technique could be used to
identify marker experiments as opposed to marker
genes. These ideas can be extended to molecular pro-
filing studies in which the features monitored are not
genes, but are molecules such as proteins, metabolites,
and so on.

This work was supported by the Director, Office of Science, Office
of Biological and Environmental Research, Life Sciences Division,
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