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An Improved Conjugate Gradient Scheme
to the Solution of Least Squares SVM

Wei Chu, Chong Jin Ong, and S. Sathiya Keerthi

Abstract—The least square support vector machines (LS-SVM) formu-
lation corresponds to the solution of a linear system of equations. Several
approaches to its numerical solutions have been proposed in the literature.
In this letter, we propose an improved method to the numerical solution of
LS-SVM and show that the problem can be solved using one reduced system
of linear equations. Compared with the existing algorithm for LS-SVM, the
approach used in this letter is about twice as efficient. Numerical results
using the proposed method are provided for comparisons with other ex-
isting algorithms.

Index Terms—Conjugate gradient (CG), least square support vector ma-
chines (LS-SVM), sequential minimal optimization (SMO).

I. INTRODUCTION

As an interesting variant of the standard support vector machines
(SVMs) [2], least squares support vector machines (LS-SVM) have
been proposed by Suykens and Vandewalle [3] for solving pattern
recognition and nonlinear function estimation problems. The links
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between LS-SVM classifiers and kernel Fisher discriminant analysis
have also been established by Van Gestel et al. [4]. The LS-SVM
formulation has been further extended to kernel principal component
analysis, recurrent networks and optimal control [5]. As for the training
of the LS-SVM, Suykens et al. [1] proposed an iterative algorithm
based on the conjugate gradient (CG) algorithm. Keerthi and Shevade
[6] adapted the sequential minimal optimization (SMO) algorithm for
SVM [7] for the solution of LS-SVM.
In this letter, we propose an improved algorithm with CG methods

for LS-SVM. We first show the optimality conditions of LS-SVM, and
establish its equivalence to a reduced linear system. CG methods can
then be employed for its solution. Compared with the algorithm pro-
posed by Suykens et al. [1], our algorithm is equally robust and is at
least twice as efficient.
We adopt the following notations. x 2 Rd; D 2 Rn�m are d-di-

mensional column vector andn�mmatrix of real entries, respectively;
xT is the transpose of x; 1n and 0n are n-column vectors of entries
1 and 0, respectively. This letter is organized as follows. In Section II,
we review the optimization formulation of LS-SVM, and then show the
simplification of the optimality conditions to a reduced linear system.
In Section III, we present the results of numerical experiments using
our proposed algorithm on some benchmark data sets of different sizes,
and compare with the results obtained using the conjugate method by
Suykens et al. [1] and the SMO algorithm by Keerthi and Shevade [6].
We conclude in Section IV.

II. LS-SVM AND ITS SOLUTION

Suppose that we are given a training data set of n data points
fxi; yig

n
i=1, where xi 2 Rd is the ith input vector and yi is the

corresponding ith target. For binary classification problems yi takes
only two possible values f�1;+1g, whereas yi 2 R for regression
problems. We employ the idea to transform the input patterns into
the reproducing kernel Hilbert space (RKHS) by a set of mapping
functions ���(x) [5]. The reproducing kernel K(x; x0) in the RKHS is
the dot product of the mapping functions at x and x0, i.e.

K(x; x0) = h���(x) � ���(x0)i: (1)

In the RKHS, a linear classification/regression is performed. The dis-
criminant function takes the form f(x) = n

i=1
hwww ����(x)i+ b, where

www is the weight vector in the RKHS, and b 2 R is called the bias term.
The discriminant function of LS-SVM classifier [3] is constructed by
solving the following minimization problem:

min
www;b;���

P (www; b; ���) =
1

2
hwww �wwwi+

C

2

n

i=1

�
2

i (2)

s:t: yi � (hwww � ���(xi)i+ b) = �i i = 1; . . . ; n (3)

where C > 0 is the regularization factor and �i is the difference be-
tween the output yi and f(xi). Using standard techniques [8], the La-
grangian for (2)–(3) is

L(www; b; ���;���) =
1

2
hwww �wwwi+

C

2

n

i=1

�
2

i

+

n

i=1

�i (yi � (hwww � ���(xi)i+ b)� �i) (4)
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TABLE I
COMPUTATIONAL COSTS FOR SMO AND CG ALGORITHMS (��� = 0 INITIALIZATION) ON SMALL-SIZE AND MEDIUM-SIZE DATA SETS. KERNEL DENOTES

THE NUMBER OF KERNEL EVALUATIONS, IN WHICH EACH UNIT DENOTES 10 EVALUATIONS. CPU DENOTES THE CPU TIME IN SECONDS
CONSUMED BY THE OPTIMIZATION. D(���) DENOTES THE DUAL FUNCTIONAL AT THE OPTIMAL SOLUTION. � IS THE PARAMETER IN GAUSSIAN

KERNEL, WHICH IS CHOSEN AS IN [9]. C IS THE REGULARIZATION FACTOR IN (2)

where �i; i = 1; . . . ; n are the Lagrangian multipliers corresponding
to (3). The Karush–Kuhn–Tucker (KKT) conditions (2) are

@L

@www = 0 ! www =
n

i=1

�i���(xi)

@L

@b
= 0 !

n

i=1

�i = 0

@L

@�
= 0 ! �i = C�i 8i

@L

@�
= 0 ! �i = yi � (hwww � ���(xi)i+ b) 8i

: (5)

In the numerical solution proposed by Suykens et al. [1], the KKT
conditions of (5) are reduced to a linear system by eliminating www and
���, resulting in

QQQ 1n

1
T
n

0
�

���

b
=

yyy

0
(6)

where QQQ 2 Rn�n with ijth entry QQQij = K(xi; xj) + (1=C)�ij 1,
yyy = [y1; y2; . . . ; yn]

T and ��� = [�1; �2; . . . ; �n]
T . Note that QQQ is

symmetric and positive–definite since the matrix KKK 2 Rn�n with
KKKij = K(xi; xj) is semipositive–definite and the diagonal term 1=C
is positive. Solving (6) for ��� and b, the discriminant function can be
obtained from f(x) = n

i=1
�iK(xi; x) + b.

Suykens et al. [1] suggested the use of the CG method for the
solution of (6). In addition, they reformulated (6) so as to exploit
the positive–definiteness of QQQ and proposed to solve two systems of
linear equations for ���. More exactly, their algorithm can be described
as

1� is 1 only when i = j, otherwise 0.
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1) Solve the intermediate variables and
from and using CG

methods.
2) Find solution , and

.

In step 1, the nth-order linear equations are solved twice, using CG
method, for the solutions of ��� and ���. In the following, we propose a
single step approach that solves the linear system having n � 1 order.
We begin by stating some known results.

Lemma 1: Consider the partition of the symmetric and positive–def-

inite matrix QQQ :=
�QQQ qqq

qqqT QQQ
nn

, where �QQQ 2 R(n�1)�(n�1), qqq 2

Rn�1 and QQQ
nn

2 R. Then

~QQQ := �QQQ� 1n�1 � qqq
T � qqq � 1Tn�1 +QQQ

nn
� 1n�1 � 1

T

n�1 (7)

is positive–definite.

Proof: LetMMM =
In�1 0n�1

�1Tn�1 1
and note that

MMMT�QQQ�MMM=
In�1 �1n�1

0
T

n�1 1

�QQQ qqq

qqqT QQQ
nn

In�1 0n�1

�1Tn�1 1

=
~QQQ ~qqq

~qqqT QQQ
nn

(8)

where ~QQQ is as given by (7). SinceQQQ is positive–definite, so is the matrix
at the right-hand side of (8). As ~QQQ is a submatrix of a positive–definite
matrix, the result follows.

Lemma 2: Let ~���� be the solution of ~QQQ � ~��� = ~yyy � yn � 1n�1 with
~yyy = [y1; y2; . . . ; yn�1]

T and ~QQQ as given by (7). Then the vector ���� =
~����

�1Tn�1 � ~���
�

and b� = yn +QQQ
nn

� (1Tn�1 � ~���
�) � qqqT � ~���� are the

solution of the optimization problem (2)–(3).
Proof: Since ~QQQ is positive–definite, ~���� is unique. Using ~QQQ from

(7) and ~QQQ � ~���� = ~yyy � yn � 1n�1, we have

�QQQ � ~���� � qqq � 1Tn�1 � ~���
� � ~yyy

=(qqqT � ~���� �QQQ
nn

� (1Tn�1 � ~���
�)� yn) � 1n�1

= � b� � 1n�1 (9)

where we have used

b� = yn +QQQ
nn

� (1Tn�1 � ~���
�)� qqqT � ~����: (10)

Rewriting (9) and (10) into matrix form, we have

QQQ � ���� + b� � 1n = yyy: (11)

From (11) and the fact that 1Tn � ���
� = 0, it follows that ���� and b� are

the solution of (6) and, hence, satisfy the optimization problem (2)–(3).
Following Lemma 2, we can use the standard CG algorithm [8] for

the solution of the reduced linear system ~QQQ � ~��� = ~yyy � yn � 1n�1.
Clearly, compared with the scheme proposed by Suykens et al. [1], our
algorithm can save at least 50% of the computational effort. In addition,
~QQQ is positive–definite and the numerical stability of our approach is the
similar to that proposed by Suykens et al. [1].

III. NUMERICAL EXPERIMENTS

For comparison purpose, we implemented our proposed algorithm
with standard CG methods, the algorithm proposed by Suykens et al.
[1], and the SMO algorithm given by Keerthi and Shevade [6]. The
stopping conditions used in all three algorithms are the same, and is

TABLE II
COMPUTATIONAL COSTS FOR SMO AND CG ALGORITHMS (��� = 0

INITIALIZATION) ON LARGE-SIZE DATA SETS. COMPUTER ACTIVITY IS A

REGRESSION PROBLEM. KERNEL DENOTES THE NUMBER OF KERNEL

EVALUATIONS, IN WHICH EACH UNIT DENOTES 10 EVALUATIONS. CPU
DENOTES THE CPU TIME IN SECONDS CONSUMED BY THE OPTIMIZATION.
D(���) DENOTES THE DUAL FUNCTIONAL AT THE OPTIMAL SOLUTION. � IS

THE PARAMETER IN GAUSSIAN KERNEL, WHICH IS SET TO AN APPROPRIATE

VALUE. C IS THE REGULARIZATION FACTOR IN (2)

based on the value of the duality gap, i.e.,P (www; b; ���)�D(���) � �D(���),
where P (www; b; ���) is defined as in (2),D(���) is the dual functional given
by D(���) = (1=2) � ���T � QQQ � ��� � ���T � yyy, and � = 10�6. Note
that this is not the traditional stopping condition for CG algorithm.
We have discounted the extra cost caused by computing the stopping
condition in CG for a fair comparison. In the implementations, the di-
agonal entries of QQQ were cached for efficiency, and we also cached
the vector qqq for our improved CG scheme. The programs used in the
experiments were written in ANSI C and executed on a Pentium III
866 PC running on Windows 2000 platform.2 Six benchmark data sets
were used in these experiments: Banana, Waveform, Image, Splice,
MNIST, and Computer Activity.3 The Gaussian kernel K(x; x0) =
exp �(kx� x0k2=2�2) was used as the kernel function. The values
of �2 used are based on the suggested values given in Duan et al. [9].
We carried out the numerical experiments on the six data sets with

several different regularization factor C , and recorded their results in
Tables I and II, respectively. All the algorithms are stable and closely
reach the same dual functional D(���). The computational cost of our
approach is about half of that used by the algorithm in [1]. The increase
in computational cost of the SMO algorithm at large C values (greater
than 103) is sharp as seen from the results on Banana and Image data
sets.4 For small to medium data sets, the CG algorithm is more efficient
than SMO. Experimentally, SMO scales better than the CG methods
based on the two large data sets that we have solved. Consequently,
there is no clear overall superiority in the performance for either of the
methods. We suggest that CG algorithm is suitable for small to mod-
erate data sets, i.e., the number of samples is less than two thousands,
while SMO is suitable for large data sets.

2The programs and their source code can be accessed at
http://guppy.mpe.nus.edu.sg/~chuwei/code/lssvm.zip.

3Image and Splice datasets can be accessed at http://ida.first.gmd.de/
~raetsch/data/benchmarks.htm. We used the first partition in the twenty
partitions. MNIST is available at http://yann.lecun.com/exdb/mnist/, and
we selected the samples of the digit 0 and 8 only to set up the binary
classification problem. Computer Activity dataset is available in DELVE at
http://www.cs.toronto.edu/~delve/, and it corresponds to a regression problem.

4Keerthi and Shevade [6] argued that too largeC values might actually be out
of our interest since the optimal C is seldom greater than 10 in practice.
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IV. CONCLUSION

In this letter, we proposed a new scheme for the numerical solution of
LS-SVM using CG methods. The new scheme is simple and efficient
and involves the solution of the linear system of equations of n � 1

order. Numerical results provided shows that the proposed scheme is
at least twice as efficient when compared with the algorithm proposed
by Suykens et al. [1]. It also has a comparable performance when com-
pared with the SMO approach by Keerthi and Shevade [6].
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Solving Systems of Linear Equations Via Gradient Systems
With Discontinuous Righthand Sides:

Application to LS-SVM

Leonardo V. Ferreira, Eugenius Kaszkurewicz, and Amit Bhaya

Abstract—A gradient system with discontinuous righthand side that
solves an underdetermined system of linear equations in the norm
is presented. An upper bound estimate for finite time convergence to a
solution set of the system of linear equations is shown by means of the
Persidskii form of the gradient system and the corresponding nonsmooth
diagonal type Lyapunov function. This class of systems can be interpreted
as a recurrent neural network and an application devoted to solving least
squares support vector machines (LS-SVM) is used as an example.

Index Terms—Diagonal type functions, gradient systems, least absolute
deviation, neural networks, nonsmooth systems, Persidskii systems, sup-
port vector machines (SVMs), systems of linear equations.

I. INTRODUCTION

This letter proposes the use of a gradient dynamical system to solve
underdetermined systems of linear equations in the L1 norm. The
system of linear equations is associated to an unconstrained convex
optimization problem, which has the same solution set as the linear
system. The unconstrained optimization problem, in turn is mapped
into a gradient system with a discontinuous righthand side, which can
be considered as a neural network with discontinuous activation func-
tions [1]. The advantage of using this class of gradient systems is that
convergence to the solution set of the system of linear equations occurs
in finite time, and an upper bound for the latter is easily obtained. In
addition, hardware implementation of this class of systems is simple.
Gradient systems were used to solve optimization problems for the

first time in [2], where a method for solving linear programming prob-
lems on an analog computer is presented. Since then, this approach has
been widely used [3]–[7].
Convergence analysis is performed by means of a Persidskii form

of the gradient system in conjunction with a diagonal type Lyapunov
function [8], [9]. The approach used in this letter has been already used
in [10] and [11], where Persidskii systems, together with the associ-
ated diagonal type Lyapunov functions were used to derive conver-
gence conditions of discontinuous gradient systems that solve linear
programming problems and in [12], where a class of Persidskii sys-
tems with discontinuous righthand sides is analyzed.
The proposed gradient dynamical system can be solved using stan-

dard ordinary differential equation (ODE) software and this could be an
advantage, when the number of unknowns is large. Furthermore, imple-
mentations of these standardODEmethods on parallel computers could
be used, in order to make it possible to deal with large datasets. In ad-
dition, gradient dynamical systems can be implemented as an analog
circuit using only resistors, amplifiers and switches, which is appro-
priate for real time processing using VLSI technology [1].
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