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An Improved Conjugate Gradient Scheme
to the Solution of Least Squares SVM

Wei Chu, Chong Jin Ong, and S. Sathiya Keerthi

Abstract—The least square support vector machines (LS-SVM) formu-
lation corresponds to the solution of a linear system of equations. Several
approaches to its numerical solutions have been proposed in the literature.
In this letter, we propose an improved method to the numerical solution of
LS-SVM and show that the problem can be solved using one reduced system
of linear equations. Compared with the existing algorithm for LS-SVM, the
approach used in this letter is about twice as efficient. Numerical results
using the proposed method are provided for comparisons with other ex-
isting algorithms.

Index Terms—Conjugate gradient (CG), least square support vector ma-
chines (LS-SVM), sequential minimal optimization (SMO).

I. INTRODUCTION

As an interesting variant of the standard support vector machines
(SVMs) [2], least squares support vector machines (LS-SVM) have
been proposed by Suykens and Vandewalle [3] for solving pattern
recognition and nonlinear function estimation problems. The links
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between LS-SVM classifiers and kernel Fisher discriminant analysis
have also been established by Van Gestel et al. [4]. The LS-SVM
formulation has been further extended to kernel principal component
analysis, recurrent networks and optimal control [5]. As for the training
of the LS-SVM, Suykens et al. [1] proposed an iterative algorithm
based on the conjugate gradient (CG) algorithm. Keerthi and Shevade
[6] adapted the sequential minimal optimization (SMO) algorithm for
SVM [7] for the solution of LS-SVM.

In this letter, we propose an improved algorithm with CG methods
for LS-SVM. We first show the optimality conditions of LS-SVM, and
establish its equivalence to a reduced linear system. CG methods can
then be employed for its solution. Compared with the algorithm pro-
posed by Suykens et al. [1], our algorithm is equally robust and is at
least twice as efficient.

We adopt the following notations. z € R?, D € R™*™ are d-di-
mensional column vector and n X m matrix of real entries, respectively;
2T is the transpose of x; 1,, and O, are n-column vectors of entries
1 and 0, respectively. This letter is organized as follows. In Section II,
we review the optimization formulation of LS-SVM, and then show the
simplification of the optimality conditions to a reduced linear system.
In Section III, we present the results of numerical experiments using
our proposed algorithm on some benchmark data sets of different sizes,
and compare with the results obtained using the conjugate method by
Suykens et al. [1] and the SMO algorithm by Keerthi and Shevade [6].
We conclude in Section IV.

II. LS-SVM AND ITS SOLUTION

Suppose that we are given a training data set of n data points
{@i,y:}7—1, where #; € R" is the ith input vector and y; is the
corresponding :th target. For binary classification problems y; takes
only two possible values {—1,+1}, whereas y; € R for regression
problems. We employ the idea to transform the input patterns into
the reproducing kernel Hilbert space (RKHS) by a set of mapping
functions ¢(x) [5]. The reproducing kernel K (2, »') in the RKHS is
the dot product of the mapping functions at = and ', i.e.

K(z,2') = (¢(x) - $(")). M

In the RKHS, a linear classification/regression is performed. The dis-
criminant function takes the form f(x) = Y"1 {(w - ¢(x)) + b, where
w is the weight vector in the RKHS, and b € R is called the bias term.
The discriminant function of LS-SVM classifier [3] is constructed by
solving the following minimization problem:

min P(w,b,&) = %(w cw) + g 2&2 )
=1

w,b,

stoyi — ((w-o(wi))y+b)=¢& i=1...,n 3)

where C' > 0 is the regularization factor and ¢; is the difference be-
tween the output y; and f(xz;). Using standard techniques [8], the La-
grangian for (2)—(3) is

L{w, b, & a) = %(w -w) + g ZE?
- =1

£ = () + 0 - &) @
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TABLE 1
COMPUTATIONAL COSTS FOR SMO AND CG ALGORITHMS (¢ = 0 INITIALIZATION) ON SMALL-SIZE AND MEDIUM-SIZE DATA SETS. KERNEL DENOTES
THE NUMBER OF KERNEL EVALUATIONS, IN WHICH EACH UNIT DENOTES 10°% EVALUATIONS. CPU DENOTES THE CPU TIME IN SECONDS
CONSUMED BY THE OPTIMIZATION. D () DENOTES THE DUAL FUNCTIONAL AT THE OPTIMAL SOLUTION. 02 IS THE PARAMETER IN GAUSSIAN
KERNEL, WHICH IS CHOSEN AS IN [9]. C' IS THE REGULARIZATION FACTOR IN (2)

Banana Dataset, 400 samples with 2-dimensional inputs, o2 = 1.8221,
Suyken et al.’s CG Our CG Approach SMO
log,o C' Kernel CPU D(xx) Kernel CPU D(a) Kernel CPU D(cx)
-4 0.320 0.080 0.0198 0.239 0.070 0.0198 0.902 0.290 0.0198
-3 0.479 0.120 0.197 0.239 0.070 0.197 0.825 0.260 0.197
-2 0.639 0.160 1.881 0.398 0.111 1.881 0.530 0.171 1.881
-1 1.277 0.380 15.544 0.715 0.221 15.546 0.509 0.160 15.546
0 2.235 0.641 97.214 1.192 0.320 97.232 0.710 0.200 97.232
+1 3.990 1.153 665.313 1.986 0.592 665.397 3.496 1.122 665.396
+2 7.821 2.294 5668911 3.733 1.013 5669.293 31.350 10.054 5669.291
+3 15.641 4.444 52684.905 7.067 2.104 52687.397 319.759 103.199 52687.378
+4 32.718 9.484 494210.847 15.563 4.616 494245928 | 3306.155 1070.269 | 494245.799
Waveform Dataset, 400 samples with 21-dimensional inputs, o2 =24.5325
Suyken et al’s CG Our CG Approach SMO
log;o C Kernel CPU D(ex) Kernel CPU D(ex) Kernel CPU D(«xx)
-4 0.320 0.150 0.0176 0.239 0.110 0.0176 0.929 0.450 0.0176
-3 0.479 0.210 0.173 0.239 0.090 0.173 0.910 0.441 0.173
-2 0.639 0.331 1.477 0318 0.140 1.477 0.517 0.251 1.477
-1 1.118 0.501 9.398 0.636 0.291 9.398 0.413 0.200 9.398
0 2.394 1.112 55.415 1.192 0.560 55.415 0.557 0.250 55.415
+1 6.225 3.025 304.430 2.939 1.485 304.431 2.355 1.141 304.430
+2 14.684 6.541 972.925 7.147 3.183 972.925 10.600 5.138 972.925
+3 23.462 10.447 1428.193 11514 5.327 1428.192 21.774 10.575 1428.193
+4 27.611 12.316 1510.109 13.340 6.101 1510.110 28.214 14.040 1510.110
Image Dataset, 1300 samples with 18-dimensional inputs, 02 = 2.7183
Suyken et al.’s CG Our CG Approach SMO
log,q C Kernel CPU D(xx) Kernel CPU D(ax) Kernel CPU D(ex)
-4 3.379 1.983 0.0635 2,532 1.642 0.0635 9.301 6.830 0.0635
-3 5.067 2.654 0.618 2.532 1.572 0.618 7.444 5.367 0.618
2 8.445 4.897 5.050 4218 2.364 5.050 5.166 3.776 5.050
-1 20.266 11.466 28.671 10.962 6.350 28.671 4.833 3.505 28.671
0 48.974 28.452 133.878 26.980 16.873 133.878 7.036 4.997 133.878
+1 135.097 78.922 574.150 70.819 39.212 574.150 33.935 24.225 574.150
+2 417.110 243.238 2554.951 216.667 137.470 2554.951 253.361 187.459 2554.950
+3 1269.904 | 740.442 11554.667 705.636 450.154 11554.666 1910.307 2802.560 11554.662
+4 4186.289 | 2446.655 | 39458.945 | 2256.850 | 1436.888 | 39458.946 11806.379 | 17331.135 | 39458.943
Splice Dataset, 1000 samples with 60-dimensional inputs, o2 = 29.9641
Suyken et al.’s CG Our CG Approach SMO
logo C Kernel CPU t D(ex) Kernel CPU | D(a) Kernel CPU | D(cx)
-4 1.000 2.113 0.0499 0.999 2.143 0.0499 4.726 8.262 0.0499
-3 1.999 4.216 0.497 1.498 3215 0.497 4.364 7.551 0.497
-2 2.998 6.319 4.775 1.996 4.325 4.775 2.925 5.088 4.775
-1 5.995 12.628 36.459 3.492 7.531 36.459 3.120 5.408 36.459
0 12.988 27.350 159.990 6.483 14.001 159.990 3.120 5.348 159.990
+1 29.971 63.261 309.340 16.951 36.816 309.340 5.391 9.464 309.340
+2 65.935 138.911 348.659 35.396 71.757 348.659 10.767 18.697 348.659
+3 89.911 189.836 353.380 55.834 120.547 353.380 32722 56.892 353.380
+4 111.889 232.535 353.866 62.813 134.298 353.865 119.222 207.278 353.866

where a;,¢ = 1,...,n are the Lagrangian multipliers corresponding
to (3). The Karush—-Kuhn-Tucker (KKT) conditions (2) are

n

;},5‘, =0 — w= ;ald)(.@)

9g=0 — ;a =0 )
g—é =0 - o =0¢ Vi

S =0 = G=yi-(w-ga))+b) Vi

In the numerical solution proposed by Suykens et al. [1], the KKT
conditions of (5) are reduced to a linear system by eliminating w and

&, resulting in
5= ®

[y

where @ € R™ " with ijtheentry Q,; = K(x;,2;) 4+ (1/C)&;",
¥ = [y1.92,....9n)" and @ = [ay, qa,...,a,]". Note that Q is
symmetric and positive—definite since the matrix K € R"™*" with
K;; = K (x;,x;) is semipositive-definite and the diagonal term 1/C
is positive. Solving (6) for @ and b, the discriminant function can be
obtained from f(x) = > 0 | a;K(wi, )+ b.

Suykens et al. [1] suggested the use of the CG method for the
solution of (6). In addition, they reformulated (6) so as to exploit
the positive—definiteness of ¢ and proposed to solve two systems of
linear equations for a. More exactly, their algorithm can be described
as

1§,; is 1 only when 7 = j, otherwise 0.
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1) Solve the intermediate variables 7 and

v from Q@ -7 = yand Q -v = 1, using CG
methods.
2) Find solution b = (11 .9)/(11 -v), and a =
n—>b-v.

In step 1, the nth-order linear equations are solved twice, using CG
method, for the solutions of 7 and ». In the following, we propose a
single step approach that solves the linear system having n — 1 order.
We begin by stating some known results.

Lemma 1: Consider the partition of the symmetric and positive—def-

inite matrix Q := C{ g , where @ € R»=Dx(n=1) 4 ¢

q Q}
R"~"and Q,, € R.Then

Q =Q -1, 'qT -q- 1+ Q.. l._1- 1., 7

is positive—definite.

In— OVL—
Proof: Let M = { 11,1 1 1} and note that
e |
T _ Infl _lnfl Q q Infl Onfl
M QM_{OZ—l 1 qT an —15—1 1
Q 1 ]
=|. 3
LIT Q.

where Q is as given by (7). Since @ is positive—definite, so is the matrix
at the right-hand side of (8). As Q is a submatrix of a positive—definite
matrix, the result follows.

Lemma 2: Let &* be the solution of Q - & = § — yn - Lo with
= [y Y20 Yn 1" and Q as given by (7). Then the vector a* =

and b* =y, +Q,,, - (11_; - &*) — ¢* - &" are the

— R

~1, -a
olution of the optimization problem (2)-(3). .

Proof: Since @ is positive—definite, a” is unique. Using @ from
Nand Q -&* = 9 — yn - 1,1, we have

l°d

Q& —q1, -6 -3
(¢ & —Q,, (Li_1 &) —yn) L,
= —b - 1,_q )

where we have used

b =yn+ Q- (Luoy-a") — g -a (10)
Rewriting (9) and (10) into matrix form, we have
Q-a" +b"-1,=y. (11)

From (11) and the fact that 12 - a* = 0, it follows that &* and b* are
the solution of (6) and, hence, satisfy the optimization problem (2)—(3).

Following Lemma 2, we can use the standard CG algorithm [8] for
the solution of the reduced linear system Q o = Y —Yp - Lpo1.
Clearly, compared with the scheme proposed by Suykens et al. [1], our
algorithm can save at least 50% of the computational effort. In addition,
Qis positive—definite and the numerical stability of our approach is the
similar to that proposed by Suykens e? al. [1].

III. NUMERICAL EXPERIMENTS

For comparison purpose, we implemented our proposed algorithm
with standard CG methods, the algorithm proposed by Suykens et al.
[1], and the SMO algorithm given by Keerthi and Shevade [6]. The
stopping conditions used in all three algorithms are the same, and is
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TABLE 1I
COMPUTATIONAL COSTS FOR SMO AND CG ALGORITHMS (x = 0
INITIALIZATION) ON LARGE-SIZE DATA SETS. COMPUTER ACTIVITY IS A
REGRESSION PROBLEM. KERNEL DENOTES THE NUMBER OF KERNEL
EVALUATIONS, IN WHICH EACH UNIT DENOTES 10¢ EVALUATIONS. CPU
DENOTES THE CPU TIME IN SECONDS CONSUMED BY THE OPTIMIZATION.
D(ar) DENOTES THE DUAL FUNCTIONAL AT THE OPTIMAL SOLUTION. ¢ 1S
THE PARAMETER IN GAUSSIAN KERNEL, WHICH IS SET TO AN APPROPRIATE
VALUE. C' IS THE REGULARIZATION FACTOR IN (2)

MNIST Dataset, 11739 samples with 400-dimensional inputs, o2 =0.0025
Our CG Approach SMO
log,o C Kernel CPU D(ax) Kernel CPU D(cx)
2 413.302 5611.010 56.136 401.397 3515.685 56.136
-1 757.752 10284.239 493.689 403.956 3540.721 493.689
0 1722.135 23495.622 | 2685.667 | 420.814 3688.304 | 2685.668
+1 4064.206 56682.010 | 4965.833 | 669.879 5872.334 | 4965.836
+2 9643.847 134222.101 | 5558.749 | 1257.794 | 11027.597 | 5558.752
Computer Activity, 8192 samples with 21-dimensional inputs, 02 = 20
Our CG Approach SMO
log,o C Kernel CPU D(a) Kernel CPU D(a)
2 335.438 423.450 19.510 158.590 149.785 19.510
-1 805.028 1021.007 80.608 159.148 150.226 80.608
0 1710.666 2185.105 275.971 220.706 207.939 275.971
+1 4662.375 5880.373 1002.054 | 845.302 798.177 1002.054
+2 14221.886 17926.644 | 5453.505 | 6382.203 | 6028.509 | 5453.501

based on the value of the duality gap, i.e., P(w. b, £)— D(e) < eD(a),
where P(w, b, £) is defined as in (2), D(a) is the dual functional given
by D(a) = (1/2)-a’ - Q- a—a’ -y, and e = 107°. Note
that this is not the traditional stopping condition for CG algorithm.
We have discounted the extra cost caused by computing the stopping
condition in CG for a fair comparison. In the implementations, the di-
agonal entries of @) were cached for efficiency, and we also cached
the vector ¢ for our improved CG scheme. The programs used in the
experiments were written in ANSI C and executed on a Pentium III
866 PC running on Windows 2000 platform.? Six benchmark data sets
were used in these experiments: Banana, Waveform, Image, Splice,
MNIST, and Computer Activity.> The Gaussian kernel K (x,2') =
exp (—=(|lz — 2[|*/20*)) was used as the kernel function. The values
of o used are based on the suggested values given in Duan ef al. [9].

We carried out the numerical experiments on the six data sets with
several different regularization factor C', and recorded their results in
Tables I and II, respectively. All the algorithms are stable and closely
reach the same dual functional D (). The computational cost of our
approach is about half of that used by the algorithm in [1]. The increase
in computational cost of the SMO algorithm at large C' values (greater
than 10?) is sharp as seen from the results on Banana and Image data
sets.* For small to medium data sets, the CG algorithm is more efficient
than SMO. Experimentally, SMO scales better than the CG methods
based on the two large data sets that we have solved. Consequently,
there is no clear overall superiority in the performance for either of the
methods. We suggest that CG algorithm is suitable for small to mod-
erate data sets, i.e., the number of samples is less than two thousands,
while SMO is suitable for large data sets.

2The programs and their source code can be accessed at

http://guppy.mpe.nus.edu.sg/~chuwei/code/Issvm.zip.

3Image and Splice datasets can be accessed at http:/ida.first.gmd.de/
~raetsch/data/benchmarks.htm. We used the first partition in the twenty
partitions. MNIST is available at http://yann.lecun.com/exdb/mnist/, and
we selected the samples of the digit 0 and 8 only to set up the binary
classification problem. Computer Activity dataset is available in DELVE at
http://www.cs.toronto.edu/~delve/, and it corresponds to a regression problem.

4Keerthi and Shevade [6] argued that too large C' values might actually be out
of our interest since the optimal C' is seldom greater than 102 in practice.
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IV. CoNCLUSION

In this letter, we proposed a new scheme for the numerical solution of
LS-SVM using CG methods. The new scheme is simple and efficient
and involves the solution of the linear system of equations of n — 1
order. Numerical results provided shows that the proposed scheme is
at least twice as efficient when compared with the algorithm proposed
by Suykens et al. [1]. It also has a comparable performance when com-
pared with the SMO approach by Keerthi and Shevade [6].
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Solving Systems of Linear Equations Via Gradient Systems
With Discontinuous Righthand Sides:
Application to LS-SVM

Leonardo V. Ferreira, Eugenius Kaszkurewicz, and Amit Bhaya

Abstract—A gradient system with discontinuous righthand side that
solves an underdetermined system of linear equations in the L; norm
is presented. An upper bound estimate for finite time convergence to a
solution set of the system of linear equations is shown by means of the
Persidskii form of the gradient system and the corresponding nonsmooth
diagonal type Lyapunov function. This class of systems can be interpreted
as a recurrent neural network and an application devoted to solving least
squares support vector machines (LS-SVM) is used as an example.

Index Terms—Diagonal type functions, gradient systems, least absolute
deviation, neural networks, nonsmooth systems, Persidskii systems, sup-
port vector machines (SVMs), systems of linear equations.

I. INTRODUCTION

This letter proposes the use of a gradient dynamical system to solve
underdetermined systems of linear equations in the L; norm. The
system of linear equations is associated to an unconstrained convex
optimization problem, which has the same solution set as the linear
system. The unconstrained optimization problem, in turn is mapped
into a gradient system with a discontinuous righthand side, which can
be considered as a neural network with discontinuous activation func-
tions [1]. The advantage of using this class of gradient systems is that
convergence to the solution set of the system of linear equations occurs
in finite time, and an upper bound for the latter is easily obtained. In
addition, hardware implementation of this class of systems is simple.

Gradient systems were used to solve optimization problems for the
first time in [2], where a method for solving linear programming prob-
lems on an analog computer is presented. Since then, this approach has
been widely used [3]-[7].

Convergence analysis is performed by means of a Persidskii form
of the gradient system in conjunction with a diagonal type Lyapunov
function [8], [9]. The approach used in this letter has been already used
in [10] and [11], where Persidskii systems, together with the associ-
ated diagonal type Lyapunov functions were used to derive conver-
gence conditions of discontinuous gradient systems that solve linear
programming problems and in [12], where a class of Persidskii sys-
tems with discontinuous righthand sides is analyzed.

The proposed gradient dynamical system can be solved using stan-
dard ordinary differential equation (ODE) software and this could be an
advantage, when the number of unknowns is large. Furthermore, imple-
mentations of these standard ODE methods on parallel computers could
be used, in order to make it possible to deal with large datasets. In ad-
dition, gradient dynamical systems can be implemented as an analog
circuit using only resistors, amplifiers and switches, which is appro-
priate for real time processing using VLSI technology [1].
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