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Abstract

The immense volume of data which is now available from experiments in molecular biology has led to an explosion in reported
results most of which are available only in unstructured text format. For this reason there has been great interest in the task of text
mining to aid in fact extraction, document screening, citation analysis, and linkage with large gene and gene-product databases. In
particular there has been an intensive investigation into the named entity (NE) task as a core technology in all of these tasks which
has been driven by the availability of high volume training sets such as the GENIA v3.02 corpus. Despite such large training sets
accuracy for biology NE has proven to be consistently far below the high levels of performance in the news domain where F scores
above 90 are commonly reported which can be considered near to human performance. We argue that it is crucial that more rig-
orous analysis of the factors that contribute to the model�s performance be applied to discover where the underlying limitations are
and what our future research direction should be. Our investigation in this paper reports on variations of two widely used feature
types, part of speech (POS) tags and character-level orthographic features, and makes a comparison of how these variations influ-
ence performance. We base our experiments on a proven state-of-the-art model, support vector machines using a high quality subset
of 100 annotated MEDLINE abstracts. Experiments reveal that the best performing features are orthographic features with F score
of 72.6. Although the Brill tagger trained in-domain on the GENIA v3.02p POS corpus gives the best overall performance of any
POS tagger, at an F score of 68.6, this is still significantly below the orthographic features. In combination these two features types
appear to interfere with each other and degrade performance slightly to an F score of 72.3.
� 2004 Elsevier Inc. All rights reserved.
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1. Introduction

The immense volume of data which is now available
from experiments in molecular biology has led to an
explosion in reported results. Most experimental results
in the scientific literature, however, are still recorded in
free-text format which requires time-consuming analysis
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and synthesis of the texts by human experts for under-
standing. Taken together with the fact that electronic
versions of articles are now easily available to research-
ers online we are facing new challenges related to infor-
mation filtering and navigation. In this context text
mining has become an actively pursued goal of the bio-
informatics community [1–14], i.e., the task of finding
useful information by automatically mapping from
unstructured text to a fully structured knowledge repre-
sentation which can be stored and efficiently searched
for in online databases. Several wider goals of text
mining in scientific domains are now also becoming
clear such as aiding in the screening of documents by
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scientists, performing citation analysis, and in the inte-
gration of various types of specialized databases (e.g.,
Genbank [15], Swissprot [16], Protein Data Bank
(PDB) [17,18], and Structural Classification of Proteins
(SCOP) [19]) with facts contained in literature databases
such as PubMed�s MEDLINE [20].

A core component in each of the above tasks is the
identification and classification of named entities in the
texts. The named entity (NE) task is essentially to find
the boundaries of technical terms and to classify them
according to classes in a pre-determined taxonomy.
The task is made more complex by several factors
which are common to scientific and technical domains
including the large size of the vocabulary [21], an open
growing vocabulary [22], irregular naming conventions,
as well as extensive cross-over in vocabulary between
NE classes. The irregular naming arises in part because
of the number of researchers and practitioners from dif-
ferent fields who are working on the same knowledge
discovery area as well as the large number of entities
that need to be named. Despite the best efforts of major
journals to standardize the terminology, there is also a
significant problem with synonymy so that often an en-
tity has more than one name that is widely used. For
example, class cross-over of terms may arise because
many DNA and RNA are named after the protein with
which they transcribe. This explains in part the diffi-
culty for re-using existing term lists and vocabularies
such as MeSH [23], UMLS [21] or those found in dat-
abases such as SwissProt. An additional obstacle to re-
use is that the classification scheme used within an
existing thesaurus or database may not be the same
as the one in the users� ontology which may change
from time to time as the consensus view of the structure
of knowledge is refined.

This problem of NE recognition (terminology identi-
fication and classification) for biological NEs has re-
ceived intense investigation [24,25,7,8,11,14,26] in the
literature over the last 5 years. Due to recent improve-
ments in the availability of large volume training sets,
notably the GENIA corpus [27], for methods that use
machine learning we now have a hope to achieve the
same level of performance for accuracy (in the high
90�s measured in F score) in the biology domain as in
the news domain which is widely used in evaluation
exercises within the natural language processing re-
search community (e.g., the Sixth Message Understand-
ing Conferences [28], the Seventh Conference on
Natural Language Learning [29], and the Multilingual
Entity Tasks (MET)). This, however, has not so far pro-
ven to be the case and it is becoming clear that more rig-
orous analysis of the factors that contribute to the
model�s performance is necessary to discover where the
underlying limitations are. Our investigation in this pa-
per reports on variations and interactions of two widely
used feature types, part of speech (POS) tags and char-
acter-level orthographic features, and makes a compar-
ison of how these variations influence performance.
These features are linguistically shallow but have the
advantage of being relatively cheap and accurate to as-
sign. We base our experiments on a proven state-of-
the-art model called support vector machines (SVMs)
[30] (see also [31] for a good overview) and a small high
quality subset of 100 MEDLINE abstracts that were
used as the basis for development of the large GENIA
collection but were not included in the 2000 released
abstracts.

In the remainder of this paper in Section 2 we outline
the data set used in our experiments and then discuss the
basic advantages of SVMs together with implementa-
tion-specific issues such as the choice of feature set. In
Section 3 we provide extensive results using variations
of POS and orthographic features. This is followed in
Section 4 by a brief discussion of the important trends
that we found and their implications for future
modelling.
2. Materials and methods

2.1. Data set

To show the application of SVMs to term extraction
in unstructured texts related to the medical sciences we
are using a collection of abstracts from PubMed�s
MEDLINE [20]. The MEDLINE database is an online
collection of abstracts for published journal articles in
biology and medicine and contains more than 14 million
articles with on average 1000 articles being added daily
(as of 2004). The annotated abstract collection [32] we
used in our experiments is called Bio12 and comes from
a sub-domain of molecular biology that we formulated
by searching under the terms human, blood cell, and
transcription factor in the PubMed database. From the
retrieved abstracts 100 were randomly chosen for anno-
tation by a human expert according to classes in a small
top-level ontology. These were then annotated by a doc-
toral-qualified expert.

Our work has focussed on identifying names belong-
ing to the classes shown in Table 1 and the total number
of tokens in the corpus is 28,779. Example sentences
from a marked up abstract are given in Fig. 1. The
ontology [32] that underlies this classification scheme de-
scribes a simple top-level model which is almost flat ex-
cept for the source class which shows locations where
genetic events occur and has a number of sub-types.

For purposes of bench-marking and comparing our
approach with others we have also provided results for

http://www.ncbi.nlm.nih.gov/PubMed/
http://www.ncbi.nlm.nih.gov/PubMed/


Table 1
Annotatable class used in Bio1 with the number of word tokens

Class # Description

protein 2125 Proteins, protein groups,
families, complexes, and
substructures

dna 358 DNAs, DNA groups,
regions, and genes

rna 30 RNAs, RNA groups,
regions, and genes

source.cl 93 Cell line
source.ct 417 Cell type
source.mo 21 Mono-organism
source.mu 64 Multiorganism
source.vi 90 Virus
source.sl 77 Sublocation
source.ti 37 Tissue

Table 2
Annotatable class used in the GENIA 3.02 corpus

Class Class

Amino acid monomer Multi-cell organism
Atom Mono-cell organism
Body part Nucleotide
Carbohydrate Other (artificial source)
Cell line Other (organic compound)
Cell type Other name
Cell component Peptide
DNA family or group Polynucleotide
DNA substructure Protein complex
Domain or region of DNA Protein family or group
Domain or region of protein Protein subunit
Domain or region of RNA RNA family or group
Individual DNA molecule RNA substructure
Individual protein molecule Multi-cell organism
Individual RNA molecule Tissue
Inorganic compound Virus
Lipid
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our model using combined feature sets on the GENIA
version 3.02 corpus which is well documented else-
where, e.g. [33]. Bio1 and GENIA v3.02 both come
from the same source and sub-domain but do not
overlap in content. The most noticeable difference be-
tween Bio1 and GENIA v3.02 is in size (2000 MED-
LINE abstracts and 400,000 words, 528,113 tokens,
for GENIA and 100 abstracts and 28,779 tokens for
Bio1) and the number of classes (33 for GENIA
v3.02 and 10 for Bio1). The 36 GENIA classes are ta-
ken from the leaf nodes of a top-level taxonomy of 48
classes based on a chemical classification. These are
listed in Table 2.

The GENIA corpus is important for two major rea-
sons: the first is that it provides the largest single source
of annotated training data for the NE task in molecular
biology and the second is in the breadth of classification.
Although 36 classes is only a fraction of the classes con-
tained in major taxonomies it is still the largest class set
that has been attempted so far for the NE task. In this
respect it is an important test of the limits of human
and machine annotation capability.
Fig. 1. Example MEDLINE sentence marked up with square brackets to s
2.2. Support vector machines

SVMs [34,35] have emerged as one of the leading
trainable models for many classification tasks that in-
volve discriminative learning from positive and nega-
tive examples. In their relatively short history they
have been widely used in natural language processing
for various tasks related to text mining including text
categorization [36], noun phrase chunking [37], POS
tagging [38], as well as NE recognition [39,26,40–43].
Their use has not just been confined to text mining,
however, and SVMs have seen wide usage in bioinfor-
matics [44] in tasks such as the recognition of transla-
tion initiation sites [45], protein structure predication
and gene expression pattern discovery [46,47], predica-
tion of protein–protein interactions [48], and protein
subcellular localization [49].

The success of SVMs is due in part to their capability
to handle very large feature sets up to the order of hun-
dreds of thousands of features [43] for capturing subtle
how the boundary and classes for molecular biology named-entities.



Fig. 2. Example feature window used in the classification decision.
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distinctions in the classifier. This capability has been
empirically proven to work even when the number of
patterns is relatively low.

The basic approach adopted by SVMs is to construct
a simple binary classification function by mapping the
input patterns to a higher dimensional feature space if
the patterns cannot be linearly separated in input space.
The mapping function uses a dot product of the input
space pattern vectors transformed according to a kernel
function. The decision function implemented by the
SVM is

f ð~xÞ ¼ sign
XN
i¼1

aikð~x;~xiÞ þ b

 !
: ð1Þ

For the N labelled input patterns the ai co-efficients
are positive real numbers that are derived from the
learning process and can be regarded as a measure of
the strength with which the input pattern i is embedded
in the final decision function. In fact only those patterns
that contribute to defining the final decision function
(called support vectors) will have non-zero ai after train-
ing has completed. The final decision function will be
non-linear in input space but a hyper-plane in the fea-
ture space. Moreover, the SVM learning process guaran-
tees that the hyper-plane in maximally distant from each
of the support vectors—thus minimizing a bound on
testing error that comes out of Vapnik�s work on statis-
tical learning theory [34].

The kernel function we explored in our experiments
was the polynomial function kð~xi;~xjÞ ¼ ð~xi �~xj þ 1Þd for
d = 2 which was found to be the best [39] for the same
task in preliminary experiments by the authors.

The cost of training SVMs using large feature sets,
particularly for large training sets on higher order ker-
nels has been found to be prohibitive (e.g. [40]). There
are several working solutions to this including improve-
ments in the modelling and internal data representations,
as well as methodological improvements to detect non-
contributing features before they are given to the learner.
Clearly it is of benefit to the modeler to have a previous
knowledge of the relative contributions of major feature
types before embarking on training using complex com-
binations of features. The study which we report here
aims to develop a more considered understanding of
two of the most commonly used features available and
their relative contributions to expected performance. In
this respect we are less interested in absolute perfor-
mance of our approach (although it does in fact compare
very well with others such as [26]) than in the relative dif-
ference yielded by using different feature sets.

We implemented our method using the Tiny SVM
package from NAIST3 which is an implementation of
3 Tiny SVM is available from http://cl.aist-nara.ac.jp/~taku-ku/
software/TinySVM/.
Vladimir Vapnik�s SVM combined with an optimization
algorithm [50]. The algorithm proceeds to classify word
by word using features within the context window as
shown in Fig. 2.

Before continuing it is important to note two further
implementation details. The first relates to the combina-
tion of binary classifiers in order to form a multi-class
model. In Tiny SVM this is accomplished by construct-
ing M · (M � 1)/2 classifiers for the M classes. The final
class decision is given by majority voting. Kudoh and
Matsumoto [37] in their description of Tiny SVM men-
tion a number of advantages which motivates their
choice including empirical evidence from experiments
that shows a performance increase compared to other
methods. The second concerns the optimization of class
assignments over a sequence of word tokens in a sen-
tence. Although dynamic programming could have been
used to simulate a Viterbi-style sequence optimization
algorithm this was not considered in our approach at
this time. Instead we follow conventional practice by
allowing the decision about the current word token to
be conditioned dynamically on the previous class assign-
ments within a fixed window.

2.3. Generalizing with features

In order for the model to be successful it must recog-
nize regularities in the training data that relate pre-clas-
sified examples of terms with unseen terms that will be
encountered in testing. For example, the learner might
easily be able to infer that the string E2F-1 was some
sort of genetic product if it was told that Saos-2 and
HIV-1 were genetic products, based on the pattern of
characters such as upper case, numbers, and hyphens.

Two of the most widely used features in previous
studies have been POS and character-level orthographic
features. Unlike more sophisticated parsing methods
which provide dependency or constituency information,
both these features have the advantage of being compu-
tationally inexpensive, freely available in many forms
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and also powerful [7]. In this investigation we look more
deeply into the relative merits of these and compare sev-
eral commonly used variations.

POS define a word�s lexical class (or more often
classes in the case of ambiguous words) in a grammati-
cal context. For example, table is a noun in He found it
on the table and a verb in He tabled the motion. In addi-
tion to the major POS classes such as noun, verb, adjec-
tive, and adverb there are finer distinctions—the exact
number varying according to the annotation scheme,
e.g., 45 in the Penn Treebank (PTB) and 87 for the
Brown corpus. These tags serve as the building blocks
for a higher-level grammatical understanding of the text
and, most important for the present study, as a clue to
disambiguate the word sense and to help identify the
boundaries of phrases. For an introduction to the fun-
damental aspects of POS tagging and pointers to further
sources of general information we refer the reader to
[51].

POS taggers based on supervised learning from la-
belled training data tend to suffer degraded performance
when trained on out of domain data. It is therefore nat-
ural to expect that performance in tagging accuracy can
be improved by customizing the POS tagger to a do-
main. The critical point though is the cost of doing this
as it requires creating large amounts of hand annotated
data and this must be considered against the gain in tag-
ging accuracy. Improvements arise because of the great-
er overlap in vocabulary between what the tagger has
seen before in training and the text currently being
Fig. 3. Illustration of the differences between POS assign
tagged. Also the tagger will be able to make more intel-
ligent guesses about so-called unknown words, i.e., words
which were never seen in the tagged training corpus,
which must be tagged based on their similarities to seen
words and contexts.

In our study we compared two widely used systems:
the Brill tagger [52] and the Conexor FDG parser [53].
Brill is a combination of a rule-based and a stochastic-
based method and is supplied with a knowledge base de-
rived from both the Wall Street Journal and the Brown
corpora using the Penn Treebank (PTB) tag set [54]. In
order to explore the effects of in-domain POS tagging on
NE accuracy we have taken the POS tags from the
GENIA corpus (3.02p) and used these to retrain the
Brill tagger. We have also derived a custom lexicon from
the GENIA POS corpus for the FDG parser. In this
case we converted the original POS codes, which follow
a slightly modified version of the PTB tags, to their sim-
ple top-level forms such as A for adjectives, N for noun
or V for verb. In theory the use of a special in-domain
lexicon should constrain the parser in the choice it
makes and thereby improve performance, e.g., by forc-
ing it to consider I (as in I kappa B) as a common noun
rather than a first person singular pronoun.

Examples can be seen in Fig. 3. Some noticeable
points of difference are that the FDG POS tagger is
more likely to assign an abbreviation tag to parts of pro-
tein names such as Rel or B than the FDG GENIA tag-
ger which assigns common noun tags. The Brill WSJ
tagger trained on the Wall Street Journal, like the
ments. Note that NE annotations are not shown.
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FDG POS tagger, assigns the token I a tag for first per-
son singular pronoun unlike the FDG GENIA tagger
and the retrained in-domain Brill GENIA tagger. In
contrast to the other taggers the Brill WSJ tagger mis-
takenly considers the second mention of NF-kappa to
be an adjective rather than a singular noun. This is cor-
rected when Brill is retrained on GENIA. In general the
annotation scheme for FDG is more detailed than that
for Brill with 16 main POS tags and a large number of
minor ones for use in combination with the main ones
making a total of 140 variations versus 46 tags for Brill.
Returning to the example we notice that in the PTB
annotation scheme for Brill there is no provision for
considering abbreviations.

Previous NE studies that have used POS in news and
molecular biology have reported mixed findings and
have generally concluded that it offers little benefit or
degrades performance. For example, Bikel et al. [55]
found in early experiments on the news domain using
a backoff hidden Markov model (HMM) that POS hid
the signal from more informative orthographic features.
Nobata et al. [56] found performance on a biology NE
task to be degraded using an out of domain trained
POS tagger with a decision tree (C4.5) model. In a fur-
ther study using decision trees (C4.5) on news texts with
the Brill tagger trained in-domain, Baluja et al. [57]
show that although POS features individually perform
better than orthographic features, in combination
dictionary and word-level features outperform POS in
almost every context window size.

Two recent studies [41,58], however, have shown that
POS tags derived from GENIA v3.0 have led in some
cases to very large improvements in performance of as
much as 22.8 points of F score in Zhou et al. The impact
of POS in these studies seems to have been to improve
boundary identification which is notably difficult for
biological entities where the names are often highly
descriptive leading to uncertainties about where the left
boundary should be placed. This implies a complex
interaction between the boundary identification and
classification tasks as the ambiguity regarding a term�s
boundary will in some cases be dependent on the class
to which it has been assigned.

There is one further thought to add to these studies.
This is that there is a clear difference between NEs in
Fig. 4. The Sound
the news domain where the entities of interest are mostly
proper nouns and character-based features have been
shown to outperform POS, e.g., in the identification of
words with initial capitals. This hints that POS should
make a greater contribution in biology due to its contri-
bution in the detection of noun phrase constituency
boundaries. We can draw an analogy here with work
done in multilingual NE in which POS has been found
to make a significant contribution to German news
NE [59] and there are known problems with arbitrarily
long nominalizations.

Returning to feature types, orthographical informa-
tion has been widely used in most NE systems both in
molecular biology and in the news domain. We have de-
rived a small set of orthographic features from earlier
studies [60,7,58] and shown in Table 4 ranked according
to their probabilities of predicting a class (values at the
top and bottom of the table are more informative). We
notice that while none of the feature values uniquely
predict a particular NE class they are still in almost all
cases except TwoCaps and InitCap very strong indica-
tors, e.g., a word tagged as a string of CapsAndDigits
has a 513 chance in 577 (88%) of being one of five pos-
sible NE classes. The clue becomes even stronger for
GreekLetter where a token has a 145 chance in 151
(96%) of belonging to just three possible NE classes.
As we would hope also, one of the feature values Low-
erCase corresponds strongly to none NEs, with a chance
of 15,942 in 17,991 (89%) that the token is not an NE.

Orthographical information allows strings to be com-
pared based on their spelling characteristics as shown in
the example at the beginning of this section, this should
be contrasted to phonological information which com-
pares strings based on their sound. The orthographic fea-
tures are contrasted with phonological features from the
Soundex algorithm. Soundex is the oldest of the pho-
netic string matching algorithms, originally developed
by Odell and Russell and used traditionally in applica-
tions involving name matching [61]. The algorithm uses
codes based on the sound of each letter to map a surface
string into a canonical form of up to four characters
including the first letter of the string. The algorithm is
in Fig. 4 using the phonetic lookup Table 3 and the
implementation we used comes from the version in the
Perl programming language library. Due to their sim-
ex algorithm.



Table 4
Orthographic feature values with examples, showing (a) the number of content classes in which the value was used—ignoring differences of the
beginning and inside NE, (b) the number of NE tokens that were tagged with the value, (c) the number of non-NE tokens that were tagged with the
value, and (d) probability of a value predicting a content class taken as b/(b + c)

Feature Example a b c d

GreekLetter kappa 3 145 6 0.96
CapsDigitHyphen Oct-1 6 560 24 0.96
CapsAndDigits STAT1 5 514 63 0.91
SingleCap B 5 442 49 0.90
LettersAndDigits p105 2 186 21 0.90
LowCaps pre-BI 5 149 30 0.83
OneDigit 2 4 62 24 0.72
TwoCaps EBV 8 975 505 0.66
InitCap Sox 7 302 843 0.26
HyphenDigit 95- 2 6 36 0.14
LowerCase kinases 10 2049 15,942 0.11
HyphenBackslash - 5 65 530 0.11
Punctuation ( 4 118 2404 0.05
DigitSequence 98401159 1 1 135 0.01
TwoDigit 37 0 0 37 0
FourDigit 1997 0 0 4 0
NucleotideSequence 0 0 0 0

Table 3
Soundex lookup table of phonetic codes

Code 0 1 2 3 4 5 6
Letters aeiouyhw bpfv cgjkqsxz dt l mn r
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plicity both types of orthographic features are computa-
tionally inexpensive to calculate making their use advan-
tageous for many applications.

The intuition for the use of Soundex in the NE task is
the same for its use in many other applications, i.e., that
we want to capture the fact that phonetically similar but
orthographically variant name forms should indicate sim-
ilar objects. For example, variants on the protein name
JAK such as JAKs, JAK1, and JAK3 all receive the same
code J200 as do variants of STAT and LMP (see Fig. 4).

Additionally we have looked at the effects of deter-
minism, i.e., choosing just one orthographic feature va-
lue, and have modified Collier et al.�s approach [7] to
allow for a set of non-deterministic (conjoined) ortho-
graphic tags. For example, whereas the token p105-p50

would receive only a single orthographic tag of Letter-
sAndDigits in the deterministic lookup table it would
receive orthographic tags LettersAndDigits as well asHy-
phen in the non-deterministic version. In the approach
we tried the non-deterministic features are encoded in a
single binary pattern rather than as individual features.
3. Results and discussion

3.1. Assessment

Results are given as F scores [62] using the CoNLL
evaluation script and are defined as F = (2PR)/
(P + R). where P denotes Precision and R Recall. P is
the ratio of the number of correctly found NE chunks
to the number of found NE chunks, and R is the ratio
of the number of correctly found NE chunks to the
number of true NE chunks. All results are calculated
using 10-fold cross-validation using a variety of context
windows given generally as �n + m where n and m,
respectively, show the size of the context window to
the left and right of the token under consideration.
For example, �10 provides features for the previous
and current word, and �1 + 1, provides features for
the previous word, current word and next word, and
so on. This is to show the effects of the context window
on the classifier�s performance. The baseline model
(shown as base) includes surface word, lemma, and the
previous two class assignments. It should be noted that
the two previous class assignments are used throughout
all experiments and are not changed according to the
context window size.

3.2. Comparison of character-level features

Precision, recall, and F scores for large-scale experi-
ments are shown in Table 5 for the base model in com-
bination with deterministic and non-deterministic
orthographic features as well as Soundex features. If
we focus on the results at the largest data size used in
the experiments we see that the best performing model
is BaseNDO (Base plus non-deterministic orthographic



Table 5
Precision, recall, and F scores on Bio1 showing the effects of training set size, character-level feature sets, and context window sizes

Feature set and window size Percentage of data used in experiment

20 40 60 80 100

Base �10 66.6,38.1 69.5,41.7 68.5,41.1 68.5,42.1 70.9,47.2
48.5 52.1 51.4 52.1 56.7

Base �1 + 1 68.7,36.1 73.5,42.5 74.5,44.8 76.5,46.9 77.8,52.0
47.4 53.8 56.0 58.1 62.3

Base �2 + 2 72.6,27.6 76.3,37.1 75.2,40.7 76.1,44.7 78.5,49.8
40.0 50.0 52.8 56.3 60.7

Base �3 + 3 74.7,21.5 74.9,30.3 72.0,34.3 74.0,38.6 76.9,44.6
33.3 43.1 46.5 50.8 56.4

BaseDO �10 62.5,56.1 67.2,62.6 65.5,62.4 64.6,62.9 66.2,64.6
59.1 64.8 63.9 63.7 65.4

BaseDO �1 + 1 66.2,56.4 71.2,63.1 71.1,65.9 71.6,67.2 74.2,70.6
60.9 66.9 68.4 69.4 72.3

BaseDO �2 + 2 65.7,51.8 72.0,62.7 70.5,63.2 72.7,66.0 74.9,69.1
57.9 67.1 66.6 69.2 71.9

BaseDO �3 + 3 64.4,48.7 67.8,57.9 68.8,60.6 71.7,63.6 74.2,67.0
55.5 62.5 64.4 67.4 70.4

BaseNDO �10 63.4,54.8 66.6,61.8 64.7,61.5 64.6,62.6 67.2,65.4
58.8 64.1 63.1 63.6 66.3

BaseNDO �1 + 1 67.3,55.6 71.7,63.9 71.3,65.7 72.0,67.4 74.7,70.6
60.9 67.6 68.4 69.7 72.6

BaseNDO �2 + 2 67.0,52.0 71.6,62.0 70.9,63.1 73.2,66.2 75.3,69.0
58.6 66.5 66.7 69.6 72.0

BaseNDO �3 + 3 64.9,47.4 67.4,57.5 68.8,60.1 71.0,62.4 74.5,66.8
54.8 62.0 64.2 66.4 70.4

BaseSoundex �10 65.4,38.1 68.9,44.3 68.5,45.4 68.8,46.5 72.3,52.6
48.2 53.9 54.6 55.5 60.9

BaseSoundex �1 + 1 70.5,38.3 75.0,46.0 75.3,48.3 77.6,51.5 79.5,57.0
49.6 57.0 58.9 61.9 66.4

BaseSoundex �2 + 2 72.0,28.1 78.3,38.4 75.1,42.6 77.3,47.1 79.9,52.7
40.4 51.5 54.4 58.5 63.5

BaseSoundex �3 + 3 74.3,21.5 75.4,31.1 71.5,35.3 74.6,40.1 77.6,46.8
33.3 44.1 47.3 52.2 58.4

Base: surface word, lemma, and previous two SVM class assignments; DO: deterministic orthographic features; NDO: non-deterministic ortho-
graphic features; and Soundex: Soundex features.
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features) with a �1 + 1 window. This slightly outper-
forms the deterministic model by 0.3 points of F score
with a �1 + 1 window. Since the size of the data set
makes accurate comparisons at this level difficult we
make only a tentative conclusion from this.

With regard to a comparison with Soundex we find
that while the use of phonetic features has improved per-
formance consistently above the baseline, the phonetic
features do not offer the same contribution to perfor-
mance as the orthographic features. In error analysis
one reason we found for this was the wide range of sur-
face forms that could be included in some Soundex
codes. For example, the algorithm discovers spurious
relationships such as the code I536 which includes inter-
leukin-2, interactions, interact, and intermediates. While
Soundex does help discover some useful orthographic
variations such as those described earlier for protein
abbreviations, it seems also to introduce noise. This sup-
ports an earlier study [63] that report the poor applica-
bility of phonetic matching methods such as Soundex
and a variant called Phonix to string matching in an
information retrieval task setting.

A further point that we note from the precision and
recall figures for the Base model is that as the context
window increases both precision and recall improve
moving from �10 to the �1 + 1 context windows. Once
this optimal model is reached, however, recall falls rap-
idly indicating over-fitting of the model due to the highly
specific contexts seen in training. This is particularly
prominent when we observe that precision keeps on ris-
ing with more specific contexts. This underlying trend is
present in all the other results for BaseDO, BaseDNO,
and BaseSoundex although here too we observe that pre-
cision also degrades in these models while recall de-
grades less quickly.

3.3. Comparison of part of speech features

Results for comparing the contribution made by
FDG, GENIA, and Brill POS are shown in Table 6.



Table 6
Precision, recall, and F scores on Bio1 showing the effects of training set size, POS feature sets, and context window sizes

Feature set and window size Percentage of data used in experiment

20 40 60 80 100

Base �10 66.6,38.1 69.5,41.7 68.5,41.1 68.5,42.1 70.9,47.2
48.5 52.1 51.4 52.1 56.7

Base �1 + 1 68.7,36.1 73.5,42.5 74.5,44.8 76.5,46.9 77.8,52.0
47.4 53.8 56.0 58.1 62.3

Base �2 + 2 72.6,27.6 76.3,37.1 75.2,40.7 76.1,44.7 78.5,49.8
40.0 50.0 52.8 56.3 60.7

Base �3 + 3 74.7,21.5 74.9,30.3 72.0,34.3 74.0,38.6 76.9,44.6
33.3 43.1 46.5 50.8 56.4

BaseFDG �10 61.6,38.5 66.4,43.1 65.4,42.7 66.2,43.8 68.8,48,7
47.4 52.2 51.7 52.7 57.1

BaseFDG �1 + 1 61.6,40.8 68.9,50.2 70.1,55.0 72.7,57.6 74.5,61.7
49.1 58.1 61.7 64.3 67.5

BaseFDG �2 + 2 64.5,39.3 67.1,47.8 68.7,54.3 72.4,57.1 73.5,60.1
48.8 55.8 60.7 63.8 66.2

BaseFDG �3 + 3 61.5,33.5 62.4,43.1 65.7,49.8 69.0,62.6 72.6,57.8
43.4 51.0 56.6 59.7 64.4

BaseFDG(GENIA) �10 64.6,40.5 67.1,42.1 67.0,42.5 67.5,44.0 70.1,49.1
49.8 51.7 52.0 53.3 57.8

BaseFDG(GENIA) �1 + 1 65.0,40.6 67.4,49.7 68.3,55.1 70.8,57.9 74.1,62.0
50.0 57.2 61.0 63.7 67.5

BaseFDG(GENIA) �2 + 2 63.2,36.7 66.2,47.9 67.9,54.1 71.8,57.2 73.4,60.4
46.4 55.5 60.2 63.7 66.3

BaseFDG(GENIA) �3 + 3 63.5,33.7 63.6,44.0 66.4,51.1 68.8,53.0 72.1,57.9
44.0 52.1 57.8 59.9 64.2

BaseBrill(WSJ) �10 64.1,38.2 67.5,41.6 67.5,42.3 68.0,46.6 70.8,48.9
47.8 51.5 52.0 53.2 57.9

BaseBrill(WSJ) �1 + 1 70.0,39.5 69.1,47.7 69.7,52.3 71.0,55.7 74.4,60.9
50.5 56.4 59.8 62.5 67.0

BaseBrill(WSJ) �2 + 2 66.2,34.2 67.7,45.5 69.6,53.0 70.9,55.4 73.8,59.8
45.1 54.4 60.2 62.2 66.1

BaseBrill(WSJ) �3 + 3 63.8,29.6 63.7,40.7 66.7,48.1 69.1,51.1 72.0,55.3
40.5 49.7 55.9 58.7 62.6

BaseBrill(GENIA) �10 63.9,40.3 67.7,42.3 66.0,43.0 68.1,44.5 70.8,49.4
49.4 52.5 52.1 53.8 58.2

BaseBrill(GENIA) �1 + 1 67.0,42.6 69.9,50.4 72.0,56.2 72.4,57.8 75.2,63.0
52.1 58.6 63.1 64.3 68.6

BaseBrill(GENIA) �2 + 2 65.1,36.6 68.4,47.1 70.4,54.6 73.4,57.0 74.4,61.6
56.9 55.8 61.5 64.2 67.4

BaseBrill(GENIA) �3 + 3 65.6,32.7 65.4,42.8 67.8,50.6 70.7,52.3 72.8,57.5
43.6 51.8 57.9 60.1 64.3

Base: surface word, lemma, and previous two SVM class assignments; DO: deterministic orthographic features; NDO: non-deterministic ortho-
graphic features; Soundex: Soundex features; FDG POS: FDG POS features; FDG(GENIA): FDG POS supplemented by a custom lexicon from
GENIA v3.02p; Brill(WSJ): Brill POS from PTB; and Brill(GENIA): Brill POS from GENIA v3.02p.
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In almost every case the model with context window
�1 + 1 performs better than any other. The trend for
increasing sizes of training data remains consistently
that the Brill GENIA tags provide the best performance
followed by FDG and FDG with GENIA. The overall
difference between FDG and FDG with GENIA is not
very large, at approximately a 0.56 per cent drop in F

score at 100 per cent data. The relative differences be-
tween both FDG models and Brill though is more obvi-
ous, e.g., at 100 per cent of data Brill GENIA performs
2.2 per cent better than FDG GENIA and 2.4 per cent
better than Brill WSJ.
3.4. Combining part of speech with complex feature sets

We observed earlier that it is not simply enough to
measure the effects of individual features used in isola-
tion as the features interact in complex ways in the
SVM learning process. For this reason we have tested
performance using a complex feature set plus each of
the POS schemes.

Results are shown in Table 7 and indicate agreement
with earlier studies showing that POS and orthographic
features do not mix well. F scores for BaseNDO

Brill(GENIA) at 72.3 on a �1 + 1 context window are



Table 7
Precision, recall, and F scores on Bio1 showing the effects of training set size, POS feature sets, and context window sizes

Feature set and window size Percentage of data used in experiment

20 40 60 80 100

BaseNDOBrill(GENIA) �10 62.7,54.6 66.6,61.3 66.0,62.2 64.9,62.2 66.7,64.4
58.4 63.9 64.1 63.5 65.5

BaseNDOBrill(GENIA) �1 + 1 64.6,54.5 70.3,63.6 71.4,66.0 71.8,66.9 74.1,70.5
59.1 66.8 68.6 69.3 72.3

BaseNDOBrill(GENIA) �2 + 2 65.6,51.8 71.6,61.4 71.0,64.4 72.3,65.7 75.7,69.4
57.9 66.1 67.5 68.8 72.4

BaseNDOBrill(GENIA) �3 + 3 65.3,48.8 67.0,57.5 68.5,60.7 71.1,63.2 74.3,67.0
55.9 61.9 64.3 67.0 70.5

BaseSoundexBrill(GENIA) �10 63.1,40.1 68.6,48.7 68.1,49.7 67.4,49.8 70.2,55.4
49.0 57.0 57.5 57.3 61.9

BaseSoundexBrill(GENIA) �1 + 1 68.7,43.1 72.3,52.2 72.7,56.6 73.7,58.7 76.0,63.3
52.9 60.6 63.7 65.4 69.1

BaseSoundexBrill(GENIA) �2 + 2 67.0,36.0 71.1,48.4 71.8,54.4 74.6,57.4 75.8,61.1
46.8 57.6 61.9 64.9 67.7

BaseSoundexBrill(GENIA) �3 + 3 69.5,32.0 67.2,42.8 69.5,50.1 72.7,52.4 75.0,58.3
43.8 52.3 58.2 60.9 65.6

BaseNDOSoundex �10 63.3,55.0 67.5,63.3 64.8,61.8 65.2,62.9 67.6,65.6
58.8 65.3 63.3 64.0 66.6

BaseNDOSoundex �1 + 1 68.7,57.1 71.7,64.1 71.1,65.8 72.0,67.2 75.1,70.9
62.3 62.7 68.4 69.5 73.0

BaseNDOSoundex �2 + 2 69.3,51.0 72.3,62.3 71.1,63.7 73.1,66.3 75.5,68.8
58.8 66.9 67.2 69.5 72.0

BaseNDOSoundex �3 + 3 68.1,45.9 67.5,56.7 68.5,59.8 71.1,62.8 74.6,66.8
54.8 61.6 63.8 66.7 70.5

Base: surface word, lemma, and previous two SVM class assignments; DO: deterministic orthographic features; NDO: non-deterministic ortho-
graphic features; Soundex: Soundex features; FDG POS: FDG POS features; FDG(GENIA): FDG POS supplemented by a custom lexicon from
GENIA v3.02p; Brill(WSJ): Brill POS from PTB; and Brill(GENIA): Brill POS from GENIA v3.02p.
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below the 72.6 achieved by the BaseNDO model alone.
The best result for BaseNDOBrill(GENIA) is seen at a
�2 + 2 context window and is still below the best
reported BaseNDO result. Surprisingly though the best
result of mixing features comes from BaseNDOSoundex

at a �1 + 1 context window with 73.0 F score.
The trend which we observed is consistent with the

observations made in [55,64] which is that POS seems
to contribute significantly less than orthographic fea-
tures. From Tables 5 and 6 it seems clear the ortho-
graphic features have a strong advantage in gaining
recall with little loss in precision, thus contributing to
comparatively high F scores. For all of the POS taggers
the final F score at 100 per cent of data using the best
context window is below all but one of the orthographic
feature models in Table 5 using a comparable training
data set and context window.

3.5. Benchmark GENIA test

In order to make our results comparable with others
such as [26,58] we have provided benchmark results for
the GENIA version 3.02 collection in Table 8. While it is
not possible to directly compare our results with those
of Kazama et al. who used an earlier version of the
GENIA corpus and achieving about 54.4 F score with
an SVM we believe that our results (65.4 using a rich
feature set) reflect well against the state-of-the-art in this
area. The results reported by Zhoe et al. of 66.6 F score
on GENIA v3.0 using a variant of the hidden Markov
model enhanced for rich feature sets are the closest com-
parable to ours although they used a simplified subset of
the 33 classes by ignoring subclasses of protein, DNA,
and RNA. This is reasonable due to possible human
annotation errors which they mention in their article,
but we wanted to test our system against human perfor-
mance on all classes, even where there is noise.

3.6. Discussion

The results presented so far have shown empirically
some interesting trends in the use of orthographic and
part of speech features. In order to get a deeper insight
into what is happening we performed error analysis on
the output of BaseNDO �1 + 1 and BaseBrill(GENIA)

�1 + 1. Several points emerged:

� In many cases where there is a noun phrase involving
three or more word tokens, there is a complex rela-
tionship between syntax and semantics caused by
the ontological view. This means that the right- or
left-hand boundary is not always easy to define



Table 8
Benchmark F scores on GENIA v3.02 showing the effects of training set size, complex features sets including POS features, and context window sizes

Feature set and window size Percentage of data used in experiment

20 40 60 80 100

Base �2 + 2 51.4 54.6 56.6 57.5 58.0
BaseNDO �2 + 2 54.0 56.5 58.2 59.1 59.4
BaseSoundex �2 + 2 52.2 55.3 57.2 58.1 58.7
BaseFDG �2 + 2 53.4 56.1 57.8 58.6 59.0
BaseFDG(GENIA) �2 + 2 52.8 55.4 54.4 58.2 58.7
BaseBrill(GENIA) �2 + 2 53.8 56.6 58.0 59.2 59.6
BaseBrill(WSJ) �2 + 2 55.1 57.2 59.0 59.7 60.1
BaseFDGOthers �1 + 1 62.8 64.6 65.2 65.7 65.4

Base: surface word, lemma, and previous two SVM class assignments; DO: deterministic orthographic features; NDO: non-deterministic ortho-
graphic features; Soundex: Soundex features; and FDG POS: Others: head noun and dependency features from the FDG parser, deterministic
orthographic feature and Soundex feature.
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despite syntactic evidence from the POS tagger. For
example, in ‘‘[early B-cell]source.ct development’’ even
though the Brill tagger identifies the NP boundary
correctly, ‘‘development’’ should not be annotated
as the full NP is not an instance of any of the classes.
A similar case is found with [‘‘beta-globin gene]DNA

activation.’’
� ‘‘[EKLF]protein null [mice]source.mu,’’ shows a different

problem whereby the annotator has chosen to ignore
‘‘null.’’ We find this again with ‘‘ [Pax-5]protein mutant
[bone marrow]source.ti.’’

� A further problem is where the noun phrase contains
an embedding of words belonging to different classes
and the annotation scheme requires us to find the
outer most bracket. For example, ‘‘[transferrin recep-
tor mRNAs]RNA’’ contains a potential ‘‘[transferrin
receptor]protein.’’ Also ‘‘[T cell enhancer]protein contains
a potential ‘‘[T cell]source.ct.’’ Neither of these inner
names are required to be annotated in the simple
annotation scheme but are found and wrongly
assigned by both models.

� In most cases word feature information (i.e., the sur-
face form of the word itself) is the most informative
but this sometimes biases the classifier into a wrong
decision where the expression being considered is a
rare case. For example in ‘‘[NF-kappa B motif]DNA,’’
the word ‘‘motif’’ appears tagged as a DNA whereas
in most of the rest of the corpus it is not tagged as a
content class. Both models failed to recognize this
correctly and close the right-hand boundary at ‘‘B.’’

� On the whole the orthographic models were more
aggressive at assigning content classes where the Brill
(GENIA) model chose to not assign them.

� Long phrases remain a source of low accuracy for
both models. For example, neither assigned any label
to ‘‘[Schizosaccharomyces pombe Mc mating type
gene]DNA.’’

� Phrases which contain embedded abbreviations are a
problem and require special treatment to resolve local
syntactic ambiguities. For example, ‘‘[human immu-
nodeficiency virus 1]source.vi ([HIV-1]source.vi) [long ter-
minal repeat]DNA ([LTR]DNA).’’ Both models made
surprisingly good attempts at this but the Brill
(GENIA) model mis-tagged ‘‘[human]source.mu.’’
4. Conclusion

Large-scale evaluation of the influence of various
orthographic and POS features has revealed some
insightful trends which should make the work of lan-
guage modelling easier for the NE task in the molec-
ular biology domain. Simple orthographic features
have consistently been proven to be a valuable contri-
bution to the classification performance of most mod-
els either used in combination or separately. This is in
contrast to simple phonetic algorithms like Soundex
which seem to introduce an element of noise into
the model.

POS appears to be less useful than orthography due
to the complex relationship between name boundaries,
local syntactic ambiguities, and class semantics and
has shown to detract from accuracy in combination with
orthography. The question remains though about why
some authors have observed improved performance. In
the case of Zhou et al. for which we have the clearest
analysis there may be several possible reasons: the first
is that there are strong influences from the POS tagging
algorithm. In their experiments they tried nine different
POS tagging models, all of which were trained on GEN-
IA v3.0p. We have increased this coverage of models to
Brill and FDG but we did not observe the large in-
creases in performance that they noted in the NE tagger.
The second possibility which we must conclude is the
reason is that their NE tagger could incorporate the evi-
dence from POS and combine it in a highly sophisticated
way with that from the other feature types, including
orthographic information. Zhoe et al. approach this by
using a k-NN algorithm to resolve the problem of a
fragmented probability space when their HMM is faced
with large feature sets.
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Although shallow, lexical, and orthographic features
are key components in the goal of improving NE anno-
tation accuracy in the molecular biology domain we be-
lieve that future progress towards high accuracy is most
likely to come from interaction between machine learn-
ing models with constraints (either learnt or given)
about the event model of the biological process (for
example, cell growth and maintenance, signal transduc-
tion, etc.). This should help to resolve many of the con-
textual ambiguities which often plague NE recognizers
in this domain and will be the focus of our future work.
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