
ARTICLE
doi:10.1038/nature10983

The genomic and transcriptomic
architecture of 2,000 breast tumours
reveals novel subgroups
Christina Curtis1,2{*, Sohrab P. Shah3,4*, Suet-Feung Chin1,2*, Gulisa Turashvili3,4*, Oscar M. Rueda1,2, Mark J. Dunning2,
Doug Speed2,5{, Andy G. Lynch1,2, Shamith Samarajiwa1,2, Yinyin Yuan1,2, Stefan Gräf1,2, Gavin Ha3, Gholamreza Haffari3,
Ali Bashashati3, Roslin Russell2, Steven McKinney3,4, METABRIC Group{, Anita Langerød6, Andrew Green7, Elena Provenzano8,
Gordon Wishart8, Sarah Pinder9, Peter Watson3,4,10, Florian Markowetz1,2, Leigh Murphy10, Ian Ellis7, Arnie Purushotham9,11,
Anne-Lise Børresen-Dale6,12, James D. Brenton2,13, Simon Tavaré1,2,5,14, Carlos Caldas1,2,8,13 & Samuel Aparicio3,4

The elucidation of breast cancer subgroups and their molecular drivers requires integrated views of the genome and
transcriptome from representative numbers of patients. We present an integrated analysis of copy number and gene
expression in a discovery and validation set of 997 and 995 primary breast tumours, respectively, with long-term clinical
follow-up. Inherited variants (copy number variants and single nucleotide polymorphisms) and acquired somatic copy
number aberrations (CNAs) were associated with expression in 40% of genes, with the landscape dominated by cis-
and trans-acting CNAs. By delineating expression outlier genes driven in cis by CNAs, we identified putative cancer
genes, including deletions in PPP2R2A, MTAP and MAP2K4. Unsupervised analysis of paired DNA–RNA profiles revealed
novel subgroups with distinct clinical outcomes, which reproduced in the validation cohort. These include a high-risk,
oestrogen-receptor-positive 11q13/14 cis-acting subgroup and a favourable prognosis subgroup devoid of CNAs.
Trans-acting aberration hotspots were found to modulate subgroup-specific gene networks, including a TCR
deletion-mediated adaptive immune response in the ‘CNA-devoid’ subgroup and a basal-specific chromosome 5
deletion-associated mitotic network. Our results provide a novel molecular stratification of the breast cancer
population, derived from the impact of somatic CNAs on the transcriptome.

Inherited genetic variation and acquired genomic aberrations contrib-
ute to breast cancer initiation and progression. Although somatically
acquired CNAs are the dominant feature of sporadic breast cancers, the
driver events that are selected for during tumorigenesis are difficult to
elucidate as they co-occur alongside a much larger landscape of random
non-pathogenic passenger alterations1,2 and germline copy number
variants (CNVs). Attempts to define subtypes of breast cancer and to
discern possible somatic drivers are still in their relative infancy3–6, in
part because breast cancer represents multiple diseases, implying that
large numbers (many hundreds or thousands) of patients must be
studied. Here we describe an integrated genomic/transcriptomic
analysis of breast cancers with long-term clinical outcomes composed
of a discovery set of 997 primary tumours and a validation set of 995
tumours from METABRIC (Molecular Taxonomy of Breast Cancer
International Consortium).

A breast cancer population genomic resource
We assembled a collection of over 2,000 clinically annotated primary
fresh-frozen breast cancer specimens from tumour banks in the UK

and Canada (Supplementary Tables 1–3). Nearly all oestrogen receptor
(ER)-positive and/or lymph node (LN)-negative patients did not receive
chemotherapy, whereas ER-negative and LN-positive patients did.
Additionally, none of the HER21 patients received trastuzumab. As such,
the treatments were homogeneous with respect to clinically relevant
groupings. An initial set of 997 tumours was analysed as a discovery group
and a further set of 995 tumours, for which complete data later became
available, was used to test the reproducibility of the integrative clusters
(described below). An overview of the main analytical approaches is
provided in Supplementary Fig. 1. Details concerning expression and
copy number profiling, including sample assignment to the PAM50
intrinsic subtypes3,4,7 (Supplementary Fig. 2), copy number analysis
(Supplementary Tables 4–8) and validation (Supplementary Figs 3 and
4 and Supplementary Tables 9–11), and TP53 mutational profiling
(Supplementary Fig. 5) are described in the Supplementary Information.

Genome variation affects tumour expression architecture
Genomic variants are considered to act in cis when a variant at a locus
has an impact on its own expression, or in trans when it is associated
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with genes at other sites in the genome. We generated a map of CNAs,
CNVs (Supplementary Fig. 6, Supplementary Tables 12–15) and
single nucleotide polymorphisms (SNPs) in the breast cancer genome
to distinguish germline from somatic variants (see Methods), and
to examine the impact of each of these variants on the expression
landscape. Previous studies8 have shown that most heritable gene
expression traits are governed by a combination of cis (proximal) loci,
defined here as those within a 3-megabase (Mb) window surrounding
the gene of interest, and trans (distal) loci, defined here as those
outside that window. We assessed the relative influence of SNPs,
CNVs and CNAs on tumour expression architecture, using each of
these variants as a predictor (see Methods) to elucidate expression
quantitative trait loci (eQTLs) among patients.

Both germline variants and somatic aberrations were found to
influence tumour expression architecture, having an impact on
.39% (11,198/28,609) of expression probes genome-wide based on
analysis of variance (ANOVA; see Methods), with roughly equal
numbers of genes associated in cis and trans. CNAs were associated
with the greatest number of expression profiles (Fig. 1, Supplementary
Figs 7–13 and Supplementary Tables 16–20), but were rivalled by
SNPs to explain a greater proportion of expression variation on a
per-gene basis genome-wide, whereas the contribution from CNVs
was more moderate (Fig. 1b and Supplementary Table 21). The true
ratio of putative trans versus cis eQTLs is hard to estimate9; however,
the large sample size used here allowed the detection of small effects,
with 5,401 and 5,462 CNAs significantly (Šidák adjusted P value
,0.0001) associated in cis or in trans, respectively. Whereas cis-
associations tended to be stronger, the trans-acting loci modulated
a larger number of messenger RNAs, as described below.

Expression outliers refine the breast cancer landscape
As shown above, ,20% of loci exhibit CNA-expression associations in
cis (Supplementary Fig. 14). To refine this landscape further and identify
the putative driver genes, we used profiles of outlying expression (see
Methods and ref. 10) and the high resolution and sensitivity of the

Affymetrix SNP 6.0 platform to delineate candidate regions. This
approach markedly reduces the complexity of the landscape to 45 regions
(frequency . 5, Fig. 2) and narrows the focus, highlighting novel regions
that modulate expression. The full enumeration of regions delineated by
this approach and their subtype-specific associations (Supplementary
Figs 15 and 16 and Supplementary Tables 22–24) includes both known
drivers (for example, ZNF703 (ref. 11), PTEN (ref. 12), MYC, CCND1,
MDM2, ERBB2, CCNE1 (ref. 13)) and putative driver aberrations (for
example, MDM1, MDM4, CDK3, CDK4, CAMK1D, PI4KB, NCOR1).

The deletion landscape of breast cancer has been poorly explored,
with the exception of PTEN. We illustrate three additional regions of
significance centred on PPP2R2A (8p21, Fig. 2, region 11), MTAP
(9p21, Fig. 2, region 15) and MAP2K4 (17p11, Fig. 2, region 33),
which exhibit heterozygous and homozygous deletions (Supplemen-
tary Figs 15, 17–19 and Supplementary Table 24) that drive expres-
sion of these loci. We observe breast cancer subtype-specific (enriched
in mitotic ER-positive cancers) loss of transcript expression in
PPP2R2A, a B-regulatory subunit of the PP2A mitotic exit holoenzyme
complex. Somatic mutations in PPP2R1A have recently been reported
in clear cell ovarian cancers and endometrioid cancers14,15, and
methylation silencing of PPP2R2B has also been observed in colorectal
cancers16. Thus, dysregulation of specific PPP2R2A functions in luminal
B breast cancers adds a significant pathophysiology to this subtype.

MTAP (9p21, a component of methyladenosine salvage) is fre-
quently co-deleted with the CDKN2A and CDKN2B tumour suppressor
genes in a variety of cancers17 as we observe here (Supplementary Figs
17c and 18). The third deletion encompasses MAP2K4 (also called
MKK4) (17p11), a p38/Jun dual specificity serine/threonine protein
kinase. MAP2K4 has been proposed as a recessive cancer gene18, with
mutations noted in cell lines19. We show, for the first time, the recurrent
deletion of MAP2K4 (Supplementary Figs 17d and 19) concomitant
with outlying expression (Supplementary Fig. 15) in predominantly
ER-positive cases, and verify homozygous deletions (Supplementary
Table 9) in primary tumours, strengthening the evidence for MAP2K4
as a tumour suppressor in breast cancer.
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Figure 1 | Germline and somatic variants influence tumour expression
architecture. a, Venn diagrams depict the relative contribution of SNPs, CNVs
and CNAs to genome-wide, cis and trans tumour expression variation for
significant expression associations (Šidák adjusted P-value #0.0001).

b, Histograms illustrate the proportion of variance explained by the most
significantly associated predictor for each predictor type, where several of the
top associations are indicated.
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Trans-acting associations reveal distinct modules
We next asked how trans-associated expression profiles are distributed
across the genome. We mapped these in the expression landscape by
examining the matrices of CNA–expression associations (see Methods).
This revealed strong off-diagonal patterns at loci on chromosomes 1q,
7p, 8, 11q, 14q, 16, 17q and 20q (Fig. 3a), including both positive and
negative associations, as well as numerous trans-acting aberra-
tion hotspots (defined as CNAs associated with .30 mRNAs).
Importantly, these aberration hotspots can be grouped into pathway
modules, which highlight known driver loci such as ERBB2 and MYC,
as well as novel loci associated with large trans expression modules
(Supplementary Tables 25 and 26). The T-cell-receptor (TCR) loci on
chromosomes 7 (TRG) and 14 (TRA) represent two such hotspots that
modulated 381 and 153 unique mRNAs, respectively, as well as 19
dually regulated genes (Supplementary Fig. 20). These cognate
mRNAs were highly enriched for T-cell activation and proliferation,
dendritic cell presentation, and leukocyte activation, which indicate
the induction of an adaptive immune response associated with
tumour-infiltrating lymphocytes (Fig. 3b, Supplementary Fig. 20 and
Supplementary Tables 27 and 28), as described later.

In a second approach, we examined the genome-wide patterns of
linear correlation between copy number and expression features (see
Methods), and noted the alignment of several off-diagonal signals,
including those on chromosome 1q, 8q, 11q, 14q and 16 (Sup-
plementary Fig. 21). Additionally, a broad signal on chromosome 5
localizing to a deletion event restricted to the basal-like tumours was
observed (Supplementary Fig. 21), but was not detected with the
eQTL framework, where discrete (as opposed to continuous) copy
number values were used. This basal-specific trans module is enriched
for transcriptional changes involving cell cycle, DNA damage repair
and apoptosis (Supplementary Table 29), reflecting the high mitotic
index typically associated with basal-like tumours, described in detail
below.

Integrative clustering reveals novel subgroups
Using the discovery set of 997 breast cancers, we next asked whether
novel biological subgroups could be found by joint clustering of copy
number and gene expression data. On the basis of our finding that cis-
acting CNAs dominated the expression landscape, the top 1,000 cis-
associated genes across all subtypes (Supplementary Table 30) were
used as features for input to a joint latent variable framework for
integrative clustering20 (see Methods). Cluster analysis suggested 10
groups (based on Dunn’s index) (see Methods and Supplementary Figs
22 and 23), but for completeness, this result was compared with the
results for alternative numbers of clusters and clustering schemes (see
Methods, Supplementary Figs 23–27 and Supplementary Tables 31–
33). The 10 integrative clusters (labelled IntClust 1–10) were typified
by well-defined copy number aberrations (Fig. 4, Supplementary Figs
22, 28–30 and Supplementary Tables 34–39), and split many of the
intrinsic subtypes (Supplementary Figs 31–33). Kaplan–Meier plots of
disease-specific survival and Cox proportional hazards models indicate
subgroups with distinct clinical outcomes (Fig. 5, Supplementary Figs
34, 35 and Supplementary Tables 40 and 41). To validate these results,
we trained a classifier (754 features) for the integrative subtypes in the
discovery set using the nearest shrunken centroids approach21 (see
Methods and Supplementary Tables 42 and 43), and then classified
the independent validation set of 995 cases into the 10 groups
(Supplementary Table 44). The reproducibility of the clusters in the
validation set is shown in three ways. First, classification of the valid-
ation set resulted in the assignment of a similar proportion of cases to
the 10 subgroups, each of which exhibited nearly identical copy number
profiles (Fig. 4). Second, the groups have substantially similar hazard
ratios (Fig. 5b, Supplementary Fig. 35 and Supplementary Table 40).
Third, the quality of the clusters in the validation set is emphasized by
the in-group proportions (IGP) measure22 (Fig. 4).

Among the integrative clusters, we first note an ER-positive sub-
group composed of 11q13/14 cis-acting luminal tumours (IntClust 2,
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Figure 2 | Patterns of cis outlying expression refine putative breast cancer
drivers. A genome-wide view of outlying expression coincident with extreme
copy number events in the CNA landscape highlights putative driver genes, as
indicated by the arrows and numbered regions. The frequency (absolute count)
of cases exhibiting an outlying expression profile at regions across the genome is

shown, as is the distribution across subgroups for several regions in the insets.
High-level amplifications are indicated in red and homozygous deletions in
blue. Red asterisks above the bar plots indicate significantly different observed
distributions than expected based on the overall population frequency (x2 test,
P , 0.0001).

RESEARCH ARTICLE

3 4 8 | N A T U R E | V O L 4 8 6 | 2 1 J U N E 2 0 1 2

Macmillan Publishers Limited. All rights reserved©2012



n 5 45) that harbour other common alterations. This subgroup
exhibited a steep mortality trajectory with elevated hazard ratios
(discovery set: 3.620, 95% confidence interval (1.905–6.878); valid-
ation set: 3.353, 95% confidence interval (1.381–8.141)), indicating
that it represents a particularly high-risk subgroup. Several known
and putative driver genes reside in this region, namely CCND1
(11q13.3), EMSY (11q13.5), PAK1 (11q14.1) and RSF1 (11q14.1),
which have been previously linked to breast13,23 or ovarian cancer24.
Both the copy number (Fig. 4) and expression outlier landscapes
(Fig. 2) suggest at least two separate amplicons at 11q13/14, one at
CCND1 (11q13.3) and a separate peak from 11q13.5-11q14.1 spanning
UVRAG–GAB2, centred around PAK1, RSF1, C11orf67 and INTS4,
where it is more challenging to distinguish the driver24. Notably, the

expression outlier profiles for this region are enriched for samples
belonging to IntClust 2 (Fig. 2, inset region 23) and all 45 members
of this subgroup harboured amplifications of these genes, with high
frequencies of amplification also observed for CCND1 (n 5 39) and
EMSY (n 5 34). In light of these observations, the 11q13/14 amplicon
may be driven by a cassette of genes rather than a single oncogene.

Second, we note the existence of two subgroups marked by a paucity
of copy number and cis-acting alterations. These subgroups cannot be
explained by low cellularity tumours (see Methods). One subgroup
(IntClust3, n 5 156) with low genomic instability (Fig. 4 and Sup-
plementary Fig. 22) was composed predominantly of luminal A cases,
and was enriched for histotypes that typically have good prognosis,
including invasive lobular and tubular carcinomas. The other sub-
group (IntClust 4, n 5 167) was also composed of favourable outcome
cases, but included both ER-positive and ER-negative cases and varied
intrinsic subtypes, and had an essentially flat copy number landscape,
hence termed the ‘CNA-devoid’ subgroup. A significant proportion of
cases within this subgroup exhibit extensive lymphocytic infiltration
(Supplementary Table 45).

Third, several intermediate prognosis groups of predominantly
ER-positive cancers were identified, including a 17q23/20q cis-acting
luminal B subgroup (IntClust 1, n 5 76), an 8p12 cis-acting luminal
subgroup (IntClust 6, n 5 44), as well as an 8q cis-acting/20q-
amplified mixed subgroup (IntClust 9, n 5 67). Two luminal A sub-
groups with similar CNA profiles and favourable outcome were
noted. One subgroup is characterized by the classical 1q gain/16q loss
(IntClust 8, n 5 143), which corresponds to a common translocation
event25, and the other lacks the 1q alteration, while maintaining the
16p gain/16q loss with higher frequencies of 8q amplification
(IntClust 7, n 5 109). We also noted that the majority of basal-like
tumours formed a stable, mostly high-genomic instability subgroup
(IntClust 10, n 5 96). This subgroup had relatively good long-term
outcomes (after 5 years), consistent with ref. 26, and characteristic cis-
acting alterations (5 loss/8q gain/10p gain/12p gain).

The ERBB2-amplified cancers composed of HER2-enriched (ER-
negative) cases and luminal (ER-positive) cases appear as IntClust 5
(n 5 94), thus refining the ERBB2 intrinsic subtype by grouping addi-
tional patients that might benefit from targeted therapy. Patients in
this study were enrolled before the general availability of trastuzumab,
and as expected this subgroup exhibits the worst disease-specific sur-
vival at both 5 and 15 years and elevated hazard ratios (discovery set:
3.899, 95% confidence interval (2.234–6.804); validation set: 4.447,
95% confidence interval (2.284–8.661)).

Pathway deregulation in the integrative subgroups
Finally, we projected the molecular profiles of the integrative sub-
groups onto pathways to examine possible biological themes among
breast cancer subgroups (Supplementary Tables 46 and 47) and the
relative impact of cis and trans expression modules on the pathways.
The CNA-devoid (IntClust 4) group exhibits a strong immune and
inflammation signature involving the antigen presentation pathway,
OX40 signalling, and cytotoxic T-lymphocyte-mediated apoptosis
(Supplementary Fig. 36). Given that trans-acting deletion hotspots
were localized to the TRG and TRA loci and were associated with
an adaptive immune response module, we asked whether these dele-
tions contribute to alterations in this pathway. The CNA-devoid sub-
group (IntClust 4) was found to exhibit nearly twice as many deletions
(typically heterozygous loss) at the TRG and TRA loci (,20% of cases)
as compared to the other subtypes (with the exception of IntClust 10),
and deletions of both TCR loci were significantly associated with
severe lymphocytic infiltration (x2 test, P , 1029 and P , 1028,
respectively). Notably, these trans-associated mRNAs were signifi-
cantly enriched in the immune response signature of the CNA-devoid
subgroup (Supplementary Fig. 36) as well as among genes differentially
expressed in CNA-devoid cases with severe lymphocytic infiltration
(Supplementary Fig. 37). We conclude that genomic copy number loss
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at the TCR loci drives a trans-acting immune response module that
associates with lymphocytic infiltration, and characterizes an otherwise
genomically quiescent subgroup of ER-positive and ER-negative
patients with good prognosis. These observations suggest the presence
of mature T lymphocytes (with rearranged TCR loci), which may
explain an immunological response to the cancer. In line with these
findings, a recent study27 demonstrated the association between CD81

lymphocytes and favourable prognosis.
Also among the trans-influenced groups is IntClust 10 (basal-like

cancer enriched subgroup), which harbours chromosome 5q dele-
tions (Supplementary Fig. 21). Numerous signalling molecules, tran-
scription factors and cell division genes were associated in trans with
this deletion event in the basal cancers, including alterations in
AURKB, BCL2, BUB1, CDCA3, CDCA4, CDC20, CDC45, CHEK1,
FOXM1, HDAC2, IGF1R, KIF2C, KIFC1, MTHFD1L, RAD51AP1,
TTK and UBE2C (Supplementary Fig. 38). Notably, TTK (MPS1), a
dual specificity kinase that assists AURKB in chromosome alignment
during mitosis, and recently reported to promote aneuploidy in breast
cancer28, was upregulated. These results indicate that 5q deletions
modulate the coordinate transcriptional control of genomic and
chromosomal instability and cell cycle regulation within this subgroup.

In contrast to these subtype-specific trans-associated signatures,
the high-risk 11q13/14 subgroup was characterized by strong

cis-acting associations. Like the basal cancers, this subgroup also
exhibited alterations in key cell-cycle-related genes (Supplementary
Fig. 39), which probably have a role in its aggressive pathophysiology,
but the nature of the signature differs. In particular, the regulation of
the G1/S transition by BTG family proteins, which include CCND1,
PPP2R1B and E2F2, was significantly enriched in the 11q13/14 cis-
acting subgroup, but not the basal cancers, and this is consistent with
CCND1 and the PPP2R subunit representing subtype-specific drivers
in these tumours.

Discussion
We have generated a robust, population-based molecular subgroup-
ing of breast cancer based on multiple genomic views. The size and
nature of this cohort made it amenable to eQTL analyses, which can
aid the identification of loci that contribute to the disease phenotype29.
CNAs and SNPs influenced expression variation, with CNAs
dominating the landscape in cis and trans. The joint clustering of
CNAs and gene expression profiles further resolves the considerable
heterogeneity of the expression-only subgroups, and highlights a
high-risk 11q13/14 cis-acting subgroup as well as several other strong
cis-acting clusters and a genomically quiescent group. The reproducibility
of subgroups with these molecular and clinical features in a validation
cohort of 995 tumours suggests that by integrating multiple genomic
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Figure 4 | The integrative subgroups have distinct copy number profiles.
Genome-wide frequencies (F, proportion of cases) of somatic CNAs (y-axis,
upper plot) and the subtype-specific association (–log10 P-value) of aberrations
(y-axis, bottom plot) based on a x2 test of independence are shown for each of
the 10 integrative clusters. Regions of copy number gain are indicated in red
and regions of loss in blue in the frequency plot (upper plot). Subgroups were

ordered by hierarchical clustering of their copy number profiles in the discovery
cohort (n 5 997). For the validation cohort (n 5 995), samples were classified
into each of the integrative clusters as described in the text. The number of cases
in each subgroup (n) is indicated as is the in-group proportion (IGP) and
associated P-value, as well as the distribution of PAM50 subtypes within each
cluster.
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features it may be possible to derive more robust patient classifiers. We
show here, for the first time, that subtype-specific trans-acting aberra-
tions modulate concerted transcriptional changes, such as the TCR
deletion-mediated adaptive immune response that characterizes the
CNA-devoid subgroup and the chromosome 5 deletion-associated cell
cycle program in the basal cancers.

The integrated CNA-expression landscape highlights a limited
number of genomic regions that probably contain driver genes,
including ZNF703, which we recently described as a luminal B specific
driver11, as well as somatic deletion events affecting key subunits of the

PP2A holoenzyme complex and MTAP, which have previously been
under-explored in breast cancer. The CNA-expression landscape also
illuminates rare but potentially significant events, including IGF1R,
KRAS and EGFR amplifications and CDKN2B, BRCA2, RB1, ATM,
SMAD4, NCOR1 and UTX homozygous deletions. Although some of
these events have low overall frequencies (,1% patients) (Figs 2,
Supplementary Fig. 15 and Supplementary Tables 22–24), they may
have implications for understanding therapeutic responses to targeted
agents, particularly those targeting tyrosine kinases or phosphatases.

Finally, because the integrative subgroups occur at different
frequencies in the overall population, focusing sequencing efforts
on representative numbers from these groups will help to establish
a comprehensive breast cancer somatic landscape at sequence-level
resolution. For example, a significant number (,17%, n 5 167 in the
discovery cohort) of breast cancers are devoid of somatic CNAs, and
are ripe for mutational profiling. Our work provides a definitive
framework for understanding how gene copy number aberrations
affect gene expression in breast cancer and reveals novel subgroups
that should be the target of future investigation.

METHODS SUMMARY
All patient specimens were obtained with appropriate consent from the relevant
institutional review board. DNA and RNA were isolated from samples and
hybridized to the Affymetrix SNP 6.0 and Illumina HT-12 v3 platforms for
genomic and transcriptional profiling, respectively. A detailed description of
the experimental assays and analytical methods used to analyse these data are
available in the Supplementary Information.

Received 24 April 2011; accepted 22 February 2012.

Published online 18 April; corrected 20 June 2012 (see full-text HTML version for

details).

1. Leary, R. J. et al. Integrated analysis of homozygous deletions, focal amplifications,
andsequence alterations inbreast andcolorectal cancers.Proc.Natl Acad. Sci.USA
105, 16224–16229 (2008).

2. Bignell, G. R. et al. Signatures of mutation and selection in the cancer genome.
Nature 463, 893–898 (2010).

3. Perou, C. M. et al. Molecular portraits of human breast tumours. Nature 406,
747–752 (2000).

4. Sørlie, T. et al. Gene expression patterns of breast carcinomas distinguish tumor
subclasses with clinical implications. Proc. Natl Acad. Sci. USA 98, 10869–10874
(2001).

5. Chin, K. et al. Genomic and transcriptional aberrations linked to breast cancer
pathophysiologies. Cancer Cell 10, 529–541 (2006).

6. Chin, S. F. et al. High-resolution aCGH and expression profiling identifies a novel
genomic subtype of ER negative breast cancer. Genome Biol. 8, R215 (2007).

7. Parker, J. S. et al. Supervised risk predictor of breast cancer based on intrinsic
subtypes. J. Clin. Oncol. 27, 1160–1167 (2009).

8. Stranger, B. E. et al. Genome-wide associations of gene expression variation in
humans. PLoS Genet. 1, e78 (2005).

9. Gilad, Y., Rifkin, S. A.& Pritchard, J.K. Revealing the architectureofgene regulation:
the promise of eQTL studies. Trends Genet. 24, 408–415 (2008).

10. Teschendorff, A. E., Naderi, A., Barbosa-Morais, N. L. & Caldas, C. PACK: Profile
analysis using clustering and kurtosis to find molecular classifiers in cancer.
Bioinformatics 22, 2269–2275 (2006).

11. Holland, D. et al. ZNF703 is a common Luminal B breast cancer oncogene that
differentially regulates luminal and basal progenitors in human mammary
epithelium. EMBO Mol. Med. 3, 167–180 (2011).

12. Li, J. et al. PTEN, a putative protein tyrosine phosphatase gene mutated in human
brain, breast, and prostate cancer. Science 275, 1943–1947 (1997).

13. Santarius, T., Shiply, J., Brewer, D., Stratton, M. R. & Cooper, C. S. A census of
amplified and overexpressed human cancer genes. Nature Rev. Cancer 10, 59–64
(2010).

14. Jones, S. et al. Frequent mutations of chromatin remodeling gene ARID1A in
ovarian clear cell carcinoma. Science 330, 228–231 (2010).

15. McConechy, M.K.et al.Subtype-specific mutationofPPP2R1A inendometrial and
ovarian carcinomas. J. Pathol. 223, 567–573 (2011).

16. Tan, J. et al. B55b-associated PP2A complex controls PDK1-directed MYC
signalingandmodulates rapamycin sensitivity incolorectal cancer.CancerCell18,
459–471 (2010).

17. Christopher, S. A., Diegelman,P., Porter, C. W. & Kruger, W. D. Methylthioadenosine
phosphorylase, a gene frequently codeleted with p16 (CDKN2A/ARF), acts as a
tumor suppressor in a breast cancer cell line. Cancer Res. 62, 6639–6644 (2002).

18. Teng, D. H. et al. Human mitogen-activated protein kinase kinase 4 as a candidate
tumor suppressor. Cancer Res. 57, 4177–4182 (1997).

19. Hollestelle, A. et al. Distinct gene mutation profiles among luminal-type and basal-
type breast cancer cell lines. Breast Cancer Res. Treat. 121, 53–64 (2010).

a

b

Logrank P = 1.2 × 10–14

0 50 100 150

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Months

D
is

e
a
s
e
-s

p
e
c
ifi

c
 s

u
rv

iv
a
l 
p

ro
b

a
b

ili
ty

IntClust1: 74(18)

IntClust2: 45(20)

IntClust3: 150(19)

IntClust4: 164(32)

IntClust5: 91(48)

IntClust6: 44(14)

IntClust7: 109(21)

IntClust8: 140(34)

IntClust9: 67(24)

IntClust10: 96(30)

Grade: 3:1

Size: 30:17

LN+: 2:0

Age: 70.31:51.15

Discovery set 

Discovery set 

0.0 2.0 4.0 6.0 8.0 10.0

Grade: 3:1

Size: 30:17

LN+: 2:0

Age : 70.91:51.84

Validation set 

0.0 2.0 4.0 6.0 8.0 10.0

1

2

4

5

6

7

8

9

10

In
tC

lu
s
t

1

2

4

5

6

7

8

9

10

In
tC

lu
s
t 

1.01.0

Figure 5 | The integrative subgroups have distinct clinical outcomes.
a, Kaplan–Meier plot of disease-specific survival (truncated at 15 years) for the
integrative subgroups in the discovery cohort. For each cluster, the number of
samples at risk is indicated as well as the total number of deaths (in
parentheses). b, 95% confidence intervals for the Cox proportional hazard
ratios are illustrated for the discovery and validation cohort for selected values
of key covariates, where each subgroup was compared against IntClust 3.

ARTICLE RESEARCH

2 1 J U N E 2 0 1 2 | V O L 4 8 6 | N A T U R E | 3 5 1

Macmillan Publishers Limited. All rights reserved©2012



20. Shen,R., Olshen, A.B.& Ladanyi,M. Integrative clusteringofmultiplegenomicdata
typesusing a joint latent variable modelwith application to breast and lung cancer
subtype analysis. Bioinformatics 25, 2906–2912 (2009).

21. Tibshirani, R., Hastie, T., Narasimhan, B. & Chu, G. Diagnosis of multiple cancer
types by shrunken centroids of gene expression. Proc. Natl Acad. Sci. USA 99,
6567–6572 (2002).

22. Kapp, A. V. & Tibshirani, R. Are clusters found in one dataset present in another
dataset? Biostatistics 8, 9–31 (2007).

23. Hughes-Davies, L. et al. EMSY links the BRCA2 pathway to sporadic breast and
ovarian cancer. Cell 115, 523–535 (2003).

24. Brown, L. A. et al. Amplification of 11q13 in ovarian carcinoma. Genes Chromosom.
Cancer 47, 481–489 (2008).

25. Russnes, H. G. et al. Genomic architecture characterizes tumor progression paths
and fate in breast cancer patients. Sci. Transl. Med. 2, 38ra47 (2010).

26. Blows, F. M. et al. Subtyping of breast cancer by immunohistochemistry to
investigate a relationship between subtype and short and long term survival: a
collaborative analysis of data for 10,159 cases from 12 studies. PLoS Med. 7,
e1000279 (2010).

27. Mahmoud, S. M. A. et al. Tumor-infiltrating CD81 lymphocytes predict clinical
outcome in breast cancer. J. Clin. Oncol. 29, 1949–1955 (2011).

28. Daniel, J., Coulter, J., Woo, J.-H., Wilsbach, K. & Gabrielson, E. High levels of the
Mps1 checkpoint protein are protective of aneuploidy in breast cancer cells. Proc.
Natl Acad. Sci. USA 108, 5384–5389 (2011).

29. Chen, Y. et al. Variations in DNA elucidate molecular networks that cause disease.
Nature 452, 429–435 (2008).

Supplementary Information is linked to the online version of the paper at
www.nature.com/nature.

Acknowledgements The METABRIC project was funded by Cancer Research UK, the
British Columbia Cancer Foundation and Canadian Breast Cancer Foundation BC/
Yukon. The authors also acknowledge the support of the University of Cambridge,
Hutchinson Whampoa, the NIHR Cambridge Biomedical Research Centre, the
Cambridge Experimental Cancer Medicine Centre, the Centre for Translational
Genomics (CTAG) Vancouver and the BCCA Breast Cancer Outcomes Unit. S.P.S. is a
Michael Smith Foundation for Health Research fellow. S.A. is supported by a Canada
ResearchChair. This work was supported by the National Institutes of Health Centers of
Excellence inGenomics Science grant P50 HG02790 (S.T.). Theauthors thankC.Perou
andJ.Parker fordiscussionson theuseof thePAM50centroids. Theyalso acknowledge
the patients who donated tissue and the associated pseudo-anonymized clinical data
for this project.

Author Contributions Ch.C. led the analysis, designed experiments and wrote the
manuscript. S.P.S. led the HMM-based analyses, expression outlier and TP53 analyses,
and contributed to manuscript preparation. S.-F.C. generated data, designed and
performed experiments. G.T. generated data, provided histopathology expertise and
analysed TP53 sequencedata. O.M.R.,M.J.D., D.S., A.G.L., S.S., Y.Y., S.G., Ga.H., Gh.H., A.B.,
R.R., S.M. and F.M. performed analyses. G.T., A.G., E.P., S.P. and I.E. provided
histopathology expertise. A.L. performed TP53 sequencing. A.-L.B.-D. oversaw TP53
sequencing. S.P., P.W., L.M.,G.W., I.E., A.P., Ca.C. and S.A. contributed to sample selection.
J.D.B. and S.T. contributed to study design. S.T. provided statistical expertise. The
METABRIC Group contributed collectively to this study. Ca.C. and S.A. co-conceived and
oversaw the study, and contributed to manuscript preparation and were responsible for
final editing. Ca.C. and S.A. are joint senior authors and project co-leaders.

Author Information The associated genotype and expression data have been
deposited at the European Genome-Phenome Archive (http://www.ebi.ac.uk/ega/),
which is hosted by the European Bioinformatics Institute, under accession number
EGAS00000000083. Reprints and permissions information is available at
www.nature.com/reprints. The authors declare no competing financial interests.
Readers are welcome to comment on the online version of this article at
www.nature.com/nature. Correspondence and requests for materials should be
addressed to Ca.C. (carlos.caldas@cancer.org.uk) or S.A. (saparicio@bccrc.ca).

METABRIC Group

Co-chairs Carlos Caldas1,2, Samuel Aparicio3,4

Writing committee Christina Curtis1,2{, Sohrab P. Shah3,4, Carlos Caldas1,2, Samuel
Aparicio3,4

Steering committee JamesD. Brenton1,2, Ian Ellis5, David Huntsman3,4, Sarah Pinder6,
Arnie Purushotham6, Leigh Murphy7, Carlos Caldas1,2, Samuel Aparicio3,4

Tissue and clinical data source sites: University of Cambridge/Cancer Research UK
Cambridge Research Institute Carlos Caldas (Principal Investigator)1,2; Helen
Bardwell2, Suet-Feung Chin1,2, Christina Curtis1,2{, Zhihao Ding2, Stefan Gräf1,2, Linda
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