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Abstract

We propose a new kernel for strings which borrows ideas and techniques from
information theory and data compression. This kernel can be used in combination
with any kernel method, in particular Support Vector Machines for string classi-
fication, with notable applications in proteomics. By using a Bayesian averaging
framework with conjugate priors on a class of Markovian models known as prob-
abilistic suffix trees or context-trees, we compute the value of this kernel in linear
time and space while only using the information contained in the spectrum of the
considered strings. This is ensured through an adaptation of a compression method
known as the context-tree weighting algorithm. Encouraging classification results
are reported on a standard protein homology detection experiment, showing that
the context-tree kernel performs well with respect to other state-of-the-art methods
while using no biological prior knowledge.

Key words: string kernel, mutual information kernel, universal coding, protein
homology detection

1 Introduction

The need for efficient analysis and classification tools for strings remains a key issue in
machine learning. This is notably the case in computational biology where the availability
of an ever-increasing quantity of biological sequences calls for efficient and computationally
feasible algorithms to detect, cluster, and annotate functional similarities between DNA or
amino-acid sequences.
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Recent years have witnessed the rapid development of a class of algorithms called kernel

methods [25] that may offer useful tools for these tasks. In particular, the Support Vector
Machine (SVM) algorithms [4,29] provide state-of-the-art performance in many real-world
problems of classifying objects into predefined classes. SVMs have already been applied with
success to a number of issues in computational biology, including but not limited to protein
homology detection [16,19,20,24,3,31], functional classification of genes [22,30], or prediction
of gene localization [14]. A more complete survey of the application of kernel methods in
computational biology is presented in [26].

The basic ingredient shared by all kernel methods is the kernel function, that measures
similarities between pairs of objects to be analyzed or classified. To use kernel methods
in the field of string classification requires a prior design of an efficient kernel function on
strings. Indeed, while early-days SVM focused on the classification of vector-valued objects,
for which kernels are well understood and easily represented, recent attempts to use SVM
for the classification of more general objects have resulted in the development of several
kernels for structured objects such as strings [32,13,16,19,20,24,3,31], graphs [17], or even
phylogenetic profiles [30].

A useful kernel for sequences, as the one we wish to propose in this work, should have several
properties. It should represent a meaningful measure of similarity between two sequences
and be general enough to be efficient on different datasets without excessive tuning. This
similarity measure needs to be further positive definite to be applied in the general framework
of kernel methods and rapid to compute to sustain large-scale implementations (typically,
have a linear complexity with respect to the lengths of the compared sequences). Such an ideal
kernel probably does not exist, and different kernels might be useful in different situations.
For large-scale studies which might involve comparing thousands of sequences, yielding to
millions of kernel evaluations, or to answer simple queries which could be found in on-
line applications, the computation cost becomes critical and only fast kernels, such as the
spectrum [19] and mismatch [20] kernels can be accepted. In applications where accuracy
is more important than speed, slower kernels that include more biological knowledge such
as the Fisher [16], pairwise [22] or local alignment [31] kernels might be accepted if they
improve the performance of a classifier.

Our contribution in this paper is to introduce a new class of string kernels which are both
fast to compute and based on the spectrum of the considered strings. The spectrum of a
string as defined by [19] is the weighted list of k-mers (or k-grams, that is a substring of
k letters) contained in the string, where the weights stand for the occurrence (or relative
frequency with respect to the string’s length) of the considered k-mer in the string. While
the work of [19] uses a linear dot-product on that representation, we propose in this work
an alternative class of kernels on those counters.

The motivation behind these kernels is grounded on information theory, in a similar way
to the work proposed recently in [21]. By applying an information theoretic viewpoint on
the information carried out by strings, we present a way to compare strings through kernel
methods using little prior knowledge on the structure of the alphabet, just as universal
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coding [7] aims at giving a sound compression of sequences with no prior assumptions on the
nature of those sequences. This information theoretic viewpoint takes the form of a string
compression algorithm, which is first applied on two strings X and Y to be compared taken
separately, and then on their concatenation XY . Intuitively if the compression behaves in a
similar way (in terms of gain for instance) for X, Y and XY , one can expect the strings to
share similar properties. On the opposite, one might conclude that the strings are dissimilar
if their concatenation cannot be efficiently compressed. This intuition can be translated
mathematically in terms of differences in coding redundancy between X and Y with respect
to XY , in the light of noiseless coding theory for instance [7].

The compression method we choose in this work is the popular context-tree weighting (CTW)
algorithm [33], and we show how to derive a kernel out of it. The compression performed
by the CTW algorithm involves a Bayesian averaging of the probability of a string under
a large collection of weighted source distributions. These source distributions are chosen
among variable-length Markov chains, which are also known as context-tree (CT) models.
Using the CTW algorithm to derive a kernel brings a sound answer to the criterions expressed
previously, since it guarantees positive definiteness, computational speed, and an additional
interpretation (other than the one considered by compression) to our kernel.

Indeed, the integral representation of the CTW compression, not shared with ad-hoc heuris-
tics such as the Lempel-Ziv algorithm, first enables us to cast easily the proposed kernels in
the framework of mutual information kernels [28], which ensures their positive definiteness.
Second, the Bayesian integration over Markovian (and hence exponential) models performed
by such kernels provides us with an alternative probabilistic interpretation of their computa-
tion. Following that alternative perspective, the kernels project each sequence to be compared
to the set of their probabilities under all distributions contained in the class of CT models,
and compare different sequences in the light of their respective projections. These projec-
tions can be intuitively considered as feature extractions, where each considered context-tree
distribution acts as a feature extractor, providing a feature which is the likelihood of the
distribution for the considered sequence. Because we find that perspective to be clearer, we
will favor this interpretation and present the family of context-tree kernels in a constructive
manner and as a special case of mutual information kernels. However the reader should keep
in mind that most choices in models and priors taken to devise such kernels are chosen to
match the CTW algorithm’s ones, so as to benefit from its properties including notably
computational tricks presented by the authors of [33] to ensure linear (in time and space)
computational costs.

The paper is organized as follows. In Section 2 we present the general strategy of devising
mutual information kernels from families of probabilistic models. In Section 3 we define
a kernel for sequences based on context-tree models. Its efficient implementation, derived
from the CTW algorithm, is presented in Section 4. We present further interpretations of
the context-tree kernel’s computation as well as links with universal coding in Section 5.
Experimental results on a benchmark problem of remote protein homology detection are
then presented in Section 6.
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2 Probabilistic Models and Mutual Information Kernels

A parametric probabilistic model on a measurable space X is a family of distributions {Pθ, θ ∈
Θ} on X , where θ is the parameter of the distribution Pθ. Typically, the set of parameters Θ
is a subset of R

n, in which case n is called the dimension of the model. As an example, a
hidden Markov model (HMM) for sequences is a parametric model, the parameters being
the transition and emission probabilities [10]. A family of probabilistic models is a family
{Pf, θf

, f ∈ F , θf ∈ Θf}, where F is a finite or countable set, and Θf ⊂ R
dim(f) for each

f ∈ F , where dim(f) denotes the dimension of f . An example of such a family would
be a set of HMMs with different architectures and numbers of states. Probabilistic models
are typically used to model sets of elements X1, . . . , Xn ∈ X , by selecting a model f̂ and
a choosing a parameter θ̂f̂ that best “fits” the dataset, using criteria such as penalized
maximum likelihood or maximum a posteriori probability [10].

Alternatively, probabilistic models can also be used to characterize each single element X ∈
X by the feature representation

φ(X) =
(

Pf, θf
(X)

)

f∈F , θf∈Θf

, (1)

spanning all possible probabilities of X within the considered families. If the probabilistic
models are designed in such a way that each distribution is roughly characteristic of a class
of objects of interest, then the representation φ(X) quantifies how X fits each class. In this
representation, each distribution can be seen as a filter that extracts from X an information,
namely the probability of X under this distribution, or equivalently how much X fits the
class modelled by this distribution.

Kernels are real-valued function κ : X ×X → R that can be represented in the form of a dot
product κ(X,Y ) = 〈ψ(X), ψ(Y )〉F for some mapping ψ from X to a Hilbert space F [25].
Given the preceding mapping φ of Equation (1), a natural way to derive a kernel from a
family of probabilistic models is to endow the set of representations φ(X) with a dot product,
and set κ(X,Y ) = 〈φ(X), φ(Y )〉. This can be done for example if a prior probability π(f, dθf )
can be defined on the set of distributions in the models, by considering the following dot
product:

κ(X,Y ) = 〈φ(X), φ(Y )〉 def
=

∑

f∈F

π(f)
∫

Θf

Pf, θf
(X) Pf, θf

(Y ) π(dθf ). (2)

By construction, the kernel in Equation (2) is a valid kernel, that belongs to the class
of mutual information kernels [28]. Observe that contrary to the Fisher kernel that also
uses probabilistic models, no model or parameter estimation is required in Equation (2).
Intuitively, for any two elements X and Y the kernel of Equation (2) automatically detects
the models and parameters that explain both X and Y , with consequent weights if the
models and parameters are likely to appear under the prior π. On the other hand, models
and parameters for which X and Y present no simultaneous fit bring a marginal contribution
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to the value of the kernel and are thus ignored.

There is of course some arbitrariness in the previous definition, both in the definition of the
models and in the choice of the prior distribution π. This arbitrary can be used to include
prior knowledge in the kernel. For example, if one wants to detect similarity with respect
to families of sequences known to be adequately modelled by HMMs, then using HMM
models constrains the kernel to detect such similarities. However, these choices need to be
decided having computational limitations in mind. The calculations involved in Equation (2),
namely the computation of the likelihood of a distribution for two given sequences and the
integration of those likelihoods over a set of parameters, should not only be tractable under
a closed form but also fast to compute. This is not likely to be the case for most families
of models and most choices of priors. We consider those limitations under the light of the
solution proposed by the CTW algorithm in the framework of universal coding, to define
below a suitable set of models and prior distributions.

Prior to this definition, we note that some biases might appear when attempting to compare
sequences of different lengths, which is likely to be the case for most applications. Indeed,
as the probability of a sequence under most models defined on strings (including Markovian
models) decreases roughly exponentially with its length, the value of the kernel (2) can not
only be strongly biased if we directly consider the probabilities of two strings of very different
lengths, but will also quickly tend to negligible values when comparing long strings. This is a
classical issue with many string kernels that leads to bad performance in classification with
SVM [27,31]. This undesirable effect can easily be controlled in our case by normalizing the
likelihoods as follows:

κσ(X,Y ) =
∑

f∈F

π(f)
∫

Θf

Pf, θf
(X)

σ
NX Pf, θf

(Y )
σ

NY π(dθf ). (3)

where σ is a width parameter and NX and NY stand for the lengths of both sequences.
Equation (3) is clearly a valid kernel (only the feature extractor φ is modified), and the
parameter σ controls the range of values it takes independently of the lengths of the sequences
used.

3 A Mutual Information Kernel Based on Context-Tree Models

In this section we derive explicitly a mutual information kernel for strings based on context-
tree models with mixtures of Dirichlet priors. Context-tree models, also known as proba-
bilistic suffix trees, are Markovian models which are actually equivalent to Markov chains up
to a different parametrization as we will see below. They have been shown useful to model
several families of sequences, including biological ones as illustrated by their use in [2,11]
where different techniques to estimate such models on protein sequences where proposed.
Note however that the use of context-trees in the present work should not be related exces-
sively to their previous success in representing sequences, notably protein families. Arguably,
we both believe and observe in our experiments that the overall performance of the kernels
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proposed in this paper does not rely so much on the individual ability of such distributions to
model specific families of sequences, but rather on their overall efficiency to extract features
out of strings.

3.1 Framework and notations

Starting with basic notations and definitions, let E be a finite set of size d called the alphabet.
In our experiments E will be the 20 letters alphabet of amino-acids. For a given depth D ∈ N

corresponding to the maximal memory of our Markovian models, we write E∗
D for the set of

strings of E of length smaller or equal to D, i.e., E∗
D = ∪D

i=0E
i, which includes ∅, the empty

word. We introduce X = ∪∞
n=0(E

D × E)n, the set on which we choose to define our kernel.
Observe that we do not define directly the kernel on the set of finite-length sequences, but
rather in a slightly different framework which stresses the fact that we are chiefly interested in
the local behaviour of the sequence. Indeed, we see sequences as finite sets of (context,letter)
couples, where the context is a D-letters long subsequence of the initial sequence and the
letter is the element next to it. This transformation is justified by the fact that we consider
Markovian models with a memory limited to D letters, and is equivalent to the information
contained by the spectrum of order D + 1 of a string. An element X ∈ X can therefore be
written as X = {(xi

c, x
i
l)}i=1..NX

where NX is the cardinality of X, xi
c ∈ ED and xi

l ∈ E for all
1 ≤ i ≤ NX . By considering strings as collections of transitions (or equivalently substrings
of length D +1) we do not only follow previous approaches such as [20,19,3] but also refer to
a recent framework in kernel design [18,9,8] which aims at computing kernels on compound
objects (such as long strings) as kernels for collections of smaller components (D + 1-mers
in this case).

3.2 Context-Tree Models

Context-tree distributions require the definition of a complete suffix dictionary (c.s.d) D.
A c.s.d is a finite set of words of E∗

D such that any left-infinite sequence has a unique suffix
in D, but no word in D has a suffix in D. We write L(D) for the length of the longest
word contained in D and FD for the set of c.s.d D that satisfy L(D) ≤ D. We note that
c.s.d are in correspondance with suffix trees based on E as illustrated in Figure 1. Once this
dictionary D or the equivalent suffix tree structure is set, a distribution on X can be defined
by attaching a multinomial distribution 1 θs ∈ Σd to each word s of D. Indeed, through the
family of parameters θ = (θs)s∈D we define a conditional distribution on X by the following
equation:

PD, θ(X) =
NX
∏

i=1

θD(xi
c)
(xi

l), (4)

1 writing Σd for the canonical simplex of dimension d, i.e., Σd = {ξ = (ξi)1≤i≤d : ξi ≥ 0,
∑

ξi = 1}.
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Fig. 1. Tree representation of a context-tree distribution. The alphabet E is set to {A, B, C},
the maximal depth D to 3 and the complete suffix dictionary D is the set of strings
{A, AB, BB, ACB, BCB, CCB, C}. Each parameter θs for s ∈ D is in that case a vector of the
3-dimensional simplex Σ3.

where for any word m in ED, D(m) is the unique suffix of m in D. Note that Markov chains are
a simple case of context-tree distributions when the c.s.d. is set to ED. Conversely a context-
tree distribution D can be easily expressed as a Markov chain by assigning the transition
parameter θs to all the contexts in ED which admit s as their unique suffix in D. Context-trees
can thus be seen as an alternative parametrization and a handier representation of Markov
chains, where the importance of some suffixes is highlighted by developing further or stopping
the tree expansion in branches which have more or less significance in the generation of our
string. We present in Figure 1 an example where the alphabet has been set to E = {A,B,C}
and the maximal depth D to 3. We write PD for {PD, θ : D ∈ FD, θ ∈ ΘD}, the set of context-
tree distributions of depth D.

3.3 Prior Distributions on Context-Tree Models

We define in this section priors on the family of distributions PD introduced in the previous
section, following the framework set in Equation (3). Namely, we propose a prior probability
π(D, dθ) on PD to finalize the definition of the family of kernels presented in this paper,
which we name context-tree kernels. Note that we use and adapt the priors proposed by
[33] to our computation to ensure the computation feasibility of the proposed kernels. The
prior probability π(D, dθ) on PD factorizes as π(D, dθ) = π(D) π(dθ| D), two terms which
are defined as follows.

3.3.1 Prior on the Tree Structure

The set FD of complete suffix dictionaries is equivalent to the set of complete d-ary trees of
depth smaller than D, namely the set of trees where each node has either d sons or none, up
to nodes of depth D which can only be leaves. Following [33] we define a simple probability

7



ε

1 − ε

ε

1 − ε

1 − ε

ε

1

1

1
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Fig. 2. Branching-process generation of the example shown in Figure 1 with a depth D = 3. The
prior value for that tree is ε3(1 − ε)4.

πD on the set FD of trees that is the direct translation of an intuitive random generation
of trees stopped at depth D. Starting from the root, the tree generation process follows
recursively the following rule: up to depth D− 1, each node has probability ε of giving birth
to d children, and probability 1−ε of having no children, that is probability 1−ε of becoming
a leaf; if the node is however located at depth D of the tree, it becomes automatically a leaf
with no successors. In mathematical terms, this defines a branching process on d-ary trees,
truncated at depth D. The typical outcome of this generation is completely parameterized
by ε, since a low value will favour short-depth trees while values closer to 1 will yield fully
grown trees of depth D up to the case where ε = 1 and only the full tree of depth D is

considered. If we denote by
◦

D the set of all strict suffixes (corresponding to inner nodes of
the tree) of elements of D, the probability of a tree is given by:

πD(D) =
∏

s∈
◦
D

ε
∏

s∈D
l(s)<D

(1 − ε) = ε
|D|−1
d−1 (1 − ε)card{s∈D | l(s)<D} . (5)

This probability is illustrated with the case of the tree shown in Figure 2, with a prior value
for that example of ε3(1 − ε)4.

3.3.2 Priors on Multinomial Parameters

For a given tree D we now define a prior on the family of multinomial parameters ΘD = (Σd)
D

which fully characterizes a context-tree distribution based on a dictionary of suffixes D. We
assume an independent prior among multinomials attached to each of those suffixes as

π(dθ|D) =
∏

s∈D

ω(dθs),
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where ω is a prior distribution on the simplex Σd. Following [33] a simple choice is to make
use of Dirichlet priors:

ωβ(dθ) =
1√
d

Γ(
∑d

i=1 βi)
∏d

i=1 Γ(βi)

d
∏

i=1

θβi−1
i λ(dθ),

where λ is Lebesgue’s measure and β = (βi)i=1..d is the parameter of the Dirichlet distribu-
tion. The parameter β incorporates all the prior belief we have on the distribution of the
alphabet. It can be either tuned based on empirical data or chosen having theoretical con-
siderations in mind. A natural choice in the latter case is to use Jeffrey’s prior [1, p.44] also
known as the Krichevski-Trofimov prior [33] and set βi = 1

2
for 1 ≤ i ≤ d. Alternative choices,

such as Laplace’s successor rule (βi = 1) or the Schurmann-Grassberger estimate (βi = 1
d
)

have been advocated in the literature and will also be explored in the experimental section
of this work, taking into account discussions presented in [23] for instance. Furthermore, the
use of a simple Dirichlet prior can be extended to additive mixtures of Dirichlet priors since
the latter have been shown to incorporate more efficiently information on the distributions
of amino-acids [5]. We propose to include such priors in the construction of our kernel and
extend the computational framework of the CTW by doing so. An additive mixture of n
Dirichlet distributions is defined by a family of n Dirichlet parameters β(1), . . . , β(n) and n
weights γ(1), . . . , γ(n) (with

∑n
k=1 γ(k) = 1) to yield the prior:

ωγ, β(dθs) =
n

∑

k=1

γ(k) ωβ(k) (dθs). (6)

3.4 Triple Mixture Context-Tree Kernel

Combining the definition of the kernel of Equation (3) with the definition of the context-
tree model distributions in Equation (4) and of the priors on the set of distributions of
Equations (5), (6), we obtain the following expression for the context-tree kernel:

κσ(X,Y ) =
∑

D∈FD

πD(D)
∫

ΘD

PD, θ(X)
σ

NX PD, θ(Y )
σ

NY

∏

s∈D

(

n
∑

k=1

γ(k)ωβ(k)(dθs)

)

. (7)

We observe that Equation (7) involves three summations respectively over the trees, the
Dirichlet components used in our additive mixtures, and the multinomial parameters over
which a Bayesian averaging is performed. This generalizes the double mixture performed
in [33] in the context of sequence compression by adding a mixture of Dirichlet priors.

4 Kernel Implementation

As pointed out in the introduction, the models and priors selected to define the mutual
information kernel of Equation (7) may not fit in the best way the natural process which
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generates the considered sequences. Some distributions favoured by these priors may not
even correspond to the ones that are frequently observed in sequences generated by the
natural phenomenon. While this may already seem arguably not so important in the context
of this paper (which highlights feature extraction as opposed to parameter estimation), we
also advocate such choices having in mind they yield an efficient computation of the value
of Equation (7).

For r ∈ N, and β = (βi)1≤ i≤ r ∈ (R+∗)
r

and α = (αi)1≤ i≤ r ∈ (R+)
r

we write Gβ(α) for

Gβ(α)
def
=

∫

Σr

r
∏

i=1

θαi

i ωβ(dθ) =
Γ(β

¦
)

∏r
i=1 Γ(βi)

∏r
i=1 Γ(αi + βi)

Γ(α
¦
+ β

¦
)

,

where Γ is the Gamma function, Σr the r-dimensional simplex, β
¦

=
∑r

i=1 βi, and α
¦

=
∑r

i=1 αi. The quantity Gβ(α) corresponds to the averaging of the multinomial likelihood
Pθ(α) under a Dirichlet prior of parameter β when θ spans Σr.

The computation of the context-tree kernel on two strings can be divided into two phases
for more clarity, which can be implemented alongside each other. A look at Figure 3 may
give a better intuition on the computations actually performed by the CTW algorithm.

4.1 Defining Counters

The first step of the algorithm is to compute for m ∈ ED the counter

ρm(X)
def
=

NX
∑

i=1

(xi
c = m),

which simply counts the occurrences of m within contexts enumerated in X. For contexts
present in the string X, that is words m such that ρm(X) > 0, the empirical behaviour of
transitions can be estimated as

θ̂m, e(X)
def
=

∑NX

i=1 (xi
c = m,xi

l = e)

ρm(X)
.

θ̂m, e summarizes the empirical probability of the appearance of letter e after m has been
observed. We finally define a last counter:

am, e(X,Y )
def
=

ρm(X)

NX

θ̂m, e(X) +
ρm(Y )

NY

θ̂m, e(Y ).

am, e(X,Y ) is a weighted average of the transitions encountered in X and Y . Once those
counters are computed on visited contexts, which are up to NX +NY , the following downward
recursion on the length of the string m (when m spans all suffixes of visited contexts)
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,1)
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2
)

K11=Gβ(0, 1
2
)

Υ11 = K11 1

a01=( 1
3

, 1
2
)

K01=Gβ( 1
3

, 1
2
)

Υ01 = K01

0

a0=(0, 2
3
)

K0=Gβ(0, 2
3
)

Υ0 = (1 − ε)K0 + εK10K00

0
a10=(0, 2

3
)

K10=Gβ(0, 2
3
)

Υ10 = K10
1

a00=(0,0)
K00=1

Υ00 = 1

0

Fig. 3. CTW calculation tree for two binary strings X = 0111 and Y = 10101, with a depth D = 2,
σ = 1 and an arbitrary Dirichlet parameter β. The two string are considered as sets of weighted
transitions X = {(01, 1), (11, 1)} and Y = {(10, 1), (10, 1), (01, 0)}, and the resulting kernel value
K(X, Y ) is Υ∅.

computes equivalent counters for shorter suffixes:

ρm(X) =
∑

f∈E

ρf. m(X),

θ̂m, e(X) =

∑

f∈E ρf. m(X) θ̂f. m, e(X)

ρm(X)
,

am, e(X,Y ) =
∑

f∈E

af. m, e(X,Y ).

So far, the memory needed to store the information on which the kernel will be computed
(essentially counters a which can be stored in the leaves of a suffix tree generated while
scanning only visited contexts) is linear with respect to the size of our strings and is loosely
upper-bounded by D(NX + NY ).

4.2 Recursive Computation of the Triple Mixture

We can now attach to each m for which we have calculated the previous counters the value:

Km(X,Y ) =
n

∑

k=1

γ(k)Gβ(k)

(

σ · am, e (X,Y )e∈E

)

,

which computes two mixtures, the first being a continuous Bayesian averaging on the possible
values of θ weighted by a given Dirichlet prior and the second being a discrete weighted sum-
mation using the weighted Dirichlet distributions provided by the mixture (γ(k), β(k))k=1..n.
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A numerical approximation of Gβ(k) can be used in practice, through Lanczos’ approxima-
tion of the ln Γ function for instance. By defining now the quantity Υm(X,Y ), which is also
attached to each visited word m and computed recursively through

Υm(X,Y ) =







Km(X,Y ) if l(m) = D,

(1 − ε)Km(X,Y ) + ε
∏

e∈E Υe. m(X,Y ) if l(m) < D.

we actually perform the third mixture over all possible tree structures by taking into account
the branching probability ε. Indeed, we finally have, recalling ∅ is the empty word, that:

κσ(X,Y ) = Υ∅(X,Y ). (8)

Proof. For a c.s.d model (D, θ) and two sets of transitions X = (xi
c, x

i
l)i=1≤NX

and Y =
(yi

c, y
i
l)1≤i≤NY

we have that

PD, θ(X)
σ

NX PD, θ(Y )
σ

NY =
∏

s∈D

∏

e∈E

θs(e)
σas, e(X,Y ).

The latter product of likelihoods can thus be calculated using only counter a, and we further
have that

∫

ΘD

PD, θ(X)
σ

NX PD, θ(Y )
σ

NY

∏

s∈D

(

n
∑

k=1

γ(k)ωβ(k)(dθs)

)

=
∫

ΘD

∏

s∈D

[

∏

e∈E

θs(e)
σas, e(X,Y )

(

n
∑

k=1

γ(k)ωβ(k)(dθs)

)]

=
∏

s∈D

n
∑

k=1

γ(k)
∫

Σd

∏

e∈E

θs(e)
σas, e(X,Y )ωβ(k)(dθs)

=
∏

s∈D

n
∑

k=1

γ(k)Gβk

(

σ (as, e (X,Y ))
e∈E

)

=
∏

s∈D

Ks(X,Y ),

where we have used Fubini’s theorem to factorize the integral in the second line. Having
in mind Equation (7), we have thus proved that κσ(X,Y ) =

∑

D∈FD
πD(D)

∏

s∈D Ks(X,Y ).
The second part of the proof is identical to the one given in [33], and developed in [6]
whose recursive treatment we adopt. Let us prove by induction, with respect to successively
decreasing lengths of m (i.e., over words m such that l(m) = D, ..., 0), that

Υm(X,Y ) =
∑

D∈FD−l(m)

πD−l(m)(D)
∏

s∈D

Ks.m(X,Y ), (9)

where πD−l(m) is the distribution of a tree according to the branching process prior previously
presented stopped at level D−l(m). We notice that the set FD−l(m) of c.s.d’s of depth D−l(m)
can be further divided into:

FD−l(m) =
{

{(s, y) : y ∈ E, s ∈ Dy} ,Dy ∈ FD−l(m)−1

}

∪ {{∅}} ,
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where we have that:

πD−l(m)({(s, y) : y ∈ E, s ∈ Dy}) = ε
∏

y∈E

πD−l(m)−1(Dy),

πD−l(m)({∅}) = 1 − ε.

Starting our recursion with words of length d = D, where Equation (9) is valid by the
recursive definition of Υ, we assume Equation (9) to be valid with words of length d and
prove that it holds for words of length d− 1. Given m such that l(m) = d− 1, we can write:

Υm(X,Y ) = (1 − ε)Km(X,Y ) + ε
∏

y∈E

Υy.m(X,Y )

= (1 − ε)Km(X,Y ) + ε
∏

y∈E

∑

D∈FD−d

πD−d(D)
∏

s∈D

Ks.y.m(X,Y )

= (1 − ε)Km(X,Y ) + ε
∑

(Dy)∈(FD−d)E

∏

y∈E

πD−d(Dy)
∏

s∈Dy

Ks.y.m(X,Y )

= πD−l(m)({∅})Km(X,Y )

+
∑

(Dy)∈(FD−d)E

πD−l(m)({(s, y) : y ∈ E, s ∈ Dy})
∏

(s,y)∈Dy×E

Ks.y.m(X,Y )

=
∑

D∈FD−d

πD−d(D)
∏

s∈D

Ks.m(X,Y )

.

Applying Equation (9) to the case where m = ∅ we finally prove Equation (8).¥

As previously recalled, the computation of the counters has a linear cost in time and memory
with respect to D(NX + NY ). As only counters that correspond to visited suffixes of X and
Y are created, recursive computation of Υm is also linear in time and space (the values Υm

for suffixes m not encountered, such that ρm(X) = ρm(Y ) = 0, being equal to 1). As a final
result, the computation of the kernel is linear in time and space with respect to D(NX +NY ).

5 Source Coding and Compression Interpretation

There is a very classical duality between source distributions (a random model to generate
infinite sequences) and sequence compression [7]. Roughly speaking, if a finite sequence X
has a probability P (X) of being generated by a source distribution P , then one can design
a binary code to represent X by r(X) = − log2 P (X) bits, up to 2 bits, using for example
arithmetic coding. In this section, we provide an interpretation of the context-tree kernel in
terms of information theory and compression, and highlight its differences with the spectrum
kernel.

When sequences are generated by an unknown source P , it is classical to form a coding source
distribution by averaging several a priori sources. Under reasonable assumptions, one can
design this way universal codes, in the sense that the average length of the codes be almost
as short as if P was known and the best source was used. As an example, the context-tree
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weighting (CTW) algorithm [33] defines a coding probability Pπ for sequences by averaging
source distributions defined by context-trees as follows:

Pπ(X)
def
=

∑

D∈FD

π(D)
∫

ΘD

PD, θ(X)
∏

s∈D

ωβ(dθs), (10)

where ωβ is the Krichevski-Trofimov prior. Up to the mixture of Dirichlet and the exponents
(used to renormalize the probabilities with respect to the sequences’ lengths), we there-
fore see, by comparing (10) with (7), that the context-tree kernel between two sequences
can be roughly interpreted as the probability under Pπ of the concatenation of the two
sequences. Our kernel actually considers a sequence as a list of weighted empirical distri-
butions {(ρm, θ̂m)}m∈ED ∈ (R+ × Σd)

ED

which summarizes the local behaviour of its letter
transitions. These coordinates, whose information is equivalent to the one contained in the
spectrum of the sequence, can be used to compute the likelihood of a specific context-tree
distribution (D, θ) on such a set by deriving {(ρs, θ̂s), s ∈ D} recursively, as in the previous
computation.

We write kl(θ||θ′) for the Kullback-Leibler divergence between θ and θ′, two multinomial
parameters of size d, i.e kl(θ||θ′) =

∑d
i=1 θi ln

θi

θ′
i

. We also note h(θ) the entropy of θ, i.e.,

h(θ) = −∑d
i=1 θi ln θi. We use the following identity on θ and θ′,

d
∏

i=1

θ
θ′
i

i = e
∑d

i=1
θ′
i
ln θi

= e

∑d

i=1
θ′
i
ln

θi
θ′
i

+
∑d

i=1
θ′
i
ln θ′

i

= e−h(θ′)−kl(θ′||θ),

to reformulate the mixture coding probability Pπ on X in the context of the context-tree
kernel computation. Indeed, following the priors previously defined on PD, the following
formula expresses the value of the coding probability of a given string through its counters
ρ and θ̂:

Pπ(ρ, θ̂) =
∑

D∈FD

π(D)
∏

s∈D

e−σρsh(θ̂s)
∫

Σd

e−σρskl(θ̂s||θ) ωγ, β(dθ).

We write rπ for − ln Pπ, ρ̂(X) for the normalized counters 1
NX

ρ(X) and introduce the follow-
ing function tπ of two strings,

tπ(X,Y ) =
1

2

[

rπ

(

ρ̂(X), θ̂(X)
)

+ rπ

(

ρ̂(Y ), θ̂(Y )
)]

− rπ

(

ρ̂(X) + ρ̂(Y )

2
,
θ̂(X) + θ̂(Y )

2

)

.
(11)

Finally we have, by defining the renormalized kernel κ̃σ as

κ̃σ(X,Y ) = κσ(X,Y )/
√

κσ(X,X)κσ(Y, Y ),

that
κ̃σ(X,Y ) = e−tπ(X,Y ).
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We note here that the function tπ can be interpreted in the light of semigroup kernels on
sets of components or measures, as proposed in [9,8]. A semigroup is roughly a set with
an associative composition law, which in our case is just the addition of counters and es-
timated transitions as in Equation (11). What the structure of tπ highlights is that the
similarity computed by context-tree kernels between two strings, and more precisely the
sequences of counters indexed on ED that describe them, is just a function of their sum.
This is opposed to the computations led by the spectrum kernel, which considers products
on those counters (namely a linear-dot product on those vectors of counters). The whole
family of context-tree kernels are hence defined through a prior belief on the behaviour of
sequences of counters (tuned through a selection of specific priors), which is first applied

to the sequences individually,
(

ρ̂(X), θ̂(X)
)

and
(

ρ̂(Y ), θ̂(Y )
)

, before evaluating it on their

mean
(

ρ̂(X)+ρ̂(Y )
2

, θ̂(X)+θ̂(Y )
2

)

. This formulation makes the link with compression more precise,

where instead of concatenating strings we rather perform counter averaging. This viewpoint
can also bring forward a geometrical perspective on the actual computation which is per-
formed. The choice of a compression algorithm (namely a selection of priors) defines the
shape of the function rπ on the whole space of counters, and the similarity between two
sequences is measured through the difference between three evaluations of rπ, first taken
on the two points taken apart and then on their average, which is directly related to the
convexity of rπ.

6 Experiments

6.1 Protein Domain Homology Detection Benchmark

We report results concerning the performance of the context-tree family of kernels on a
benchmark experiment that tests the capacity of SVMs to detect remote homologies between
protein domains. This is simulated by recognizing domains that are in the same SCOP
(Structural Classification of Proteins [15], ver. 1.53) superfamily, but not in the same family,
using the procedure described in [16]. We used the files compiled by the authors of [24],
which consist in 4352 sequences extracted from the Astral database of protein domains.
For each of the 54 tested families, the protein domains within the family where considered
positive test examples while protein domains within the superfamily but outside the family
were considered as positive training examples. This results in 54 classification experiments
with at least 10 positive training examples and 5 positive test examples. Negative examples
were selected outside of the positive sequences’ fold with a similar ratio. Following previous
studies of this benchmark, we computed the ROC (Receiving Operator Characteristic, [12]),
ROC50 and RFP (Rate of False Positives) of each of the classification performed by a SVM
based on various parameter settings of the context-tree kernel. The ROC score (or AUC,
Area Under the ROC Curve) is the normalized area under the curve which plots the number
of true positives as a function of false positives; the ROC50 is the area under the ROC curve
up to 50 false positives while the median RFP is the number of false positives scoring as
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high or better than the median scoring true positives. We average those criterions on the 54
experiments to provide an overall measure of the performance of the considered kernels on
this task.

6.2 Parameter Tuning and Comparison with Alternative String Kernels

Let us now recall, along with the formula of the context-tree kernel, the different parameters
which need to be set to control the output of the family of context-tree kernels;

κσ(X,Y ) =
∑

D∈FD

πD(D)
∫

ΘD

PD, θ(X)
σ

NX PD, θ(Y )
σ

NY

∏

s∈D

(

n
∑

k=1

γ(k)ωβ(k)(dθs)

)

.

• σ represents the width taken by the probabilities used to compute the kernel, allowing
us to control the range of values appearing in Gram matrices. Large values of σ will
favor diagonal-dominant matrices while lower values will tend to create Gram matrices of
similar elements. We thus tuned these values empirically, so that none of the two previous
problematic cases appears. Using a σ value between 1 and 5 typically ensures this and we
usually set σ = 2.

• The branching-process probability πD is parameterized by ε, which controls the typical
amount of suffixes numbered in dictionaries in relation with D, their maximal depth. A
sound choice for ε, as well as being validated by experiments and used in the original
paper [33] is to set ε = 1/d, as this keeps a good balance between small trees which might
capture simple interactions and larger trees which might detect longer range interactions
but which may also be accused of overfitting the data by mapping them on too complex
models.

• The depth parameter D controls the maximal memory of our Markovian models. This
parameter influences the complexity of our features extractors and adds computational
time to most calculations. The submitted sequences have typical lengths of roughly two
hundred amino-acids. Hence lengths set between 2 and 4 for our substrings (that is contexts
of length 1 to 3) should suffice to capture most of the available information, following the
empirical observation of [21] that the logarithm of the average length of the sequences
suffices as a context length to capture most of the letter-to-letter transition information.
Those lengths were also shown to give the best performance on our datasets.

• Finally, different Dirichlet priors but also families of Dirichlet mixtures (γ(k), β(k))1≤k≤n

can be considered to compute mixtures at the level of each node. We tested three popular
uniform priors, including the Jeffrey’s prior (βi = 1/2) used originally in [33] and usually
favoured in the context of universal coding, but also Laplace’s successor rule (βi = 1)
and the Schurmann-Grassberger estimate (βi = 1/d). Both first choices appeared effective
and similar in result while the last led to poor results. We also tested Dirichlet mix-
tures, hoping they would increase the accuracy compared to the use of uniform priors. We
considered 3, 9 and 20 components additive mixtures (respectively hydro-cons.3comp;
byst-4.5-0-3.9comp; recode3.20comp, fournier20.comp and dist20.comp) which were
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all publicly available and downloaded from a Dirichlet mixture repository 2 . These mix-
tures gave disappointing results when averaged over the 54 families (considering ROC
average this means a performance of roughly 87% to 88%) but produced somehow dif-
ferent results for some families which seemed hard to classify through other methods.
However, we interpret the fact that those families of Dirichlet mixtures did not improve
overall accuracy as a form of overfitting. Again, while this biological knowledge might im-
prove the selection of a specific model to fit sequences (notably Hidden Markov Models),
it does not seem to work in our framework where we only use statistical models as feature
extraction tools.

Up to the poor performances of context-tree kernels defined with Dirichlet mixtures, the few
experiments we led on different parameters yielded no surprises and favoured ranges of pa-
rameters which were theoretically motivated, namely short depths, a branching process prior
of roughly 1/d and uniform Dirichlet priors (either the Laplace of the Krichevski-Trofimov
rule). Note further that the variety of all 54 protein families used in the experiment prevents
overfitting since an increase in performance over certain families usually implies a decrease
in other ones. We compare the performance of context-tree kernels with other string kernels,
where the performances we report were computed according to the parameters known to per-
form in a good way on that dataset and proposed by the respective authors of those kernels.
We present here the best mismatch kernel (5,1) reported in [20], which can also be computed
in linear time and space, but also more greedy algorithms such as the pairwise kernel [22]
and the two local alignment kernels (LA-Eig, LA-Ekm) presented in [31], which, as opposed
to the context-tree Kernel, take into account relevant information known to be of capital im-
portance for biological sequences (such as gaps, deletions or mutations of amino-acids). We
also report the results of the spectrum kernel [19] with depth 3 and 4 and show that based
on the same information (D-grams) the context-tree kernel clearly outperforms the latter.
The classification was led using the Gist (version 2.1.1) implementation of SVM 3 , where all
parameters specific to SVM optimization were set to default values (elementary attempts to
tune the latter parameters did not yield to significative improvements in accuracy).

6.3 Mean Performances and Curves

We present in Figure 4 the performance of all previously quoted kernels, along with an
implementation of the context-tree kernel where σ = 2, D = 4, ε = 1/20 and where a
uniform Jeffrey prior was used. The results show that the CTK performs roughly better than
the mismatch kernel and overall similarly to the pairwise kernel, notably in regions where
classification becomes more difficult and ROC scores become lower for all techniques. Except
in those regions, it is outperformed by both versions of the local-alignment kernels. The CTK
is computed in linear time and without any biological knowledge, a property exclusively
shared with the spectrum kernel which performs much worse (only results obtained for the
spectrum with a depth 3 have been represented in the plot).

2 http://www.cse.ucsc.edu/research/compbio/dirichlets/
3 http://microarray.cpmc.columbia.edu/gist/download.html
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Method ROC ROC50 RFP

CTK 0.894 0.371 0.0869

Spectrum 3 0.781 0.277 -

Spectrum 4 0.716 0.208 -

Mismatch 5,1 0.872 0.400 0.0837

Pairwise 0.894 0.461 0.0846

LA-ekm 0.934 0.663 0.0525

LA-eig 0.923 0.646 0.0552

Table 1
Mean results for ROC, ROC50 and RFP as produced over the 54 families by all compared kernels,
where CTK denotes the context-tree kernel set with σ = 2, ε = 1/20, Jeffrey’s prior and depth
D = 4.

Table 1 summarizes the three main statistics used to compare performances over the studied
benchmark between context-tree kernels and all other kernels. In this table, context-tree
kernels perform (relatively to other kernels) better in terms of ROC score than in terms of
ROC50 and RFP, and we have no explanation for this. As can be easily deduced from the
previous figure, the context-tree kernel clearly outperforms the spectrum kernel while using
exactly the same information. In the general case where only the spectrum information of
a string is available, the context-tree kernel may hence prove more useful than the simple
spectrum kernel.

Additionally, we report that using the 20-components Dirichlet mixture fournier20 with
usual parameters (D = 4 and ε = 0.05) produced the triplet of means (0.887, 0.366, 0.096).
Simpler mixtures, that is with less components, did not yield a substantial increase in perfor-
mance either and we hence did not find them useful in the context of this experiment since
they add computational cost. However, we observed important variations on the performance
for each family with respect to other context-tree kernels which only use uniform priors, while
their overall performance was similar or slightly worse. This might be interpreted as some
complementary between the two kinds of kernels (using mixtures of Dirichlet priors and just
a single component) and may be a subject of future research, through a linear combination
of kernels for instance. Finally we present in Table 2 a few results for meaningful settings
of the context-tree kernels using Jeffrey’s prior. These results show clearly that an increase
in the complexity of the models used to perform the Bayesian mixture does not yield better
results in practice. Surprisingly, a context-tree kernel of depth 1 suffices to provide good re-
sults, while more complex models which require far more computational cost give relatively
poor results. These observations show once more that in the context of mutual information
kernels, the relevance of distributions to model the data does not seem to be an important
criterion.
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Fig. 4. Performance of all considered kernels on the problem of recognizing domain’s superfamily.
The curve shows the total number of families for which a given methods exceeds a ROC score
threshold. CTK denotes the context-tree kernel set with σ = 2, ε = 1/20, Jeffrey’s prior and depth
D = 4.

7 Conclusion

We introduced a novel class of kernels for sequences that are fast to compute while only using
the spectrum of the submitted strings. The kernel is a mutual information kernel based on
a family of context-tree models, and makes a link between the comparison of two string
and the ability of universal coding algorithms to compress them when taken together. On a
benchmark experiment of remote homology detection it performs at a level close to state-of-
the-art levels reached by kernels which involve heavier computational cost and make use of
biological knowledge. The context-tree kernels clearly outperform the spectrum kernel on the
same benchmark while using exactly the same information. The context-tree kernel, whose
computation is inspired by universal coding theory, may thus share one of the qualities of the
latter algorithms, which is to appear as a sound prior choice to explore similarities between
sequences for whom little knowledge is available and at a reasonable computational cost.
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Parameters (with Jeffrey’s prior and σ = 2) ROC ROC50 RFP

D = 1, ε = 1/20 0.886 0.373 0.0796

D = 2, ε = 1/20 0.892 0.391 0.0857

D = 3, ε = 1/20 0.895 0.385 0.0865

D = 4, ε = 1/20 0.894 0.371 0.0869

D = 4, ε = 1/4 0.893 0.378 0.0857

D = 4, ε = 1/2 0.889 0.367 0.0877

D = 4, ε = 1 0.872 0.326 0.101

D = 6, ε = 1/20 0.889 0.362 0.0923

D = 8, ε = 1/20 0.885 0.355 0.0986

Table 2
From short trees to long and dense trees: mean results of ROC, ROC50 and RFP scores for different
settings of the branching process prior and of the length of the models selected. Note that when only
the complete tree is selected (ε = 1) the performance decreases significantly. In that case, namely
when no mixture is performed on the class of models, the context-tree computation resembles the
simpler computation performed by the spectrum kernel. Note also that a good performance is
reached when the context-tree only uses contexts of length 1 (namely Markov chains of depth 1),
which shows that models should be selected to extract features and not to model sequences, a hint
which is further confirmed by the fact that long trees do not perform very well despite their better
ability to absorb more knowledge about the strings’ transitions.
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