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ABSTRACT
Motivation: In this age of complete genome sequencing, finding
the location and structure of genes is crucial for further molecular
research. The accurate prediction of intron boundaries largely facil-
itates the correct prediction of gene structure in nuclear genomes.
Many tools for localizing these boundaries on DNA sequences have
been developed and are available to researchers through the internet.
Nevertheless, these tools still make many false positive predictions.
Results: This manuscript presents a novel publicly available splice
site prediction tool named SpliceMachine that (i) shows state-of-
the-art prediction performance on Arabidopsis thaliana and human
sequences, (ii) performs a computationally fast annotation and (iii)
can be trained by the user on its own data.
Availability: Results, figures and software are available at http://
www.bioinformatics.psb.ugent.be/supplementary_data/
Contact: sven.degroeve@psb.ugent.be; yves.vandepeer@psb.
ugent.be

INTRODUCTION
An increasingly important task in bioinformatics is to analyze gen-
ome sequences for the location and structure of their genes, often
referred to as gene prediction or gene finding. For most eukaryotic
nuclear genomes, a gene usually consists of a set of coding fragments,
known as exons, which are separated by non-coding intervening frag-
ments, known as introns. The boundaries of these introns are called
the splice sites, the 5′ boundary is termed the donor site and the 3′
boundary is termed the acceptor site.

Current gene prediction systems tend to have a modular structure,
combining the outputs of several components that are each special-
ized in recognizing specific structural elements of a gene (Mathé
et al., 2002). An important component is the splice site predictor.
Computationally speaking, predicting the location of a splice site can
be seen as a classification task. Although many eukaryotic organisms
contain two kinds of spliceosomes splicing two types of introns, U2-
type and U12-type, the vast majority of introns are U2-type (Patel
et al., 2003) where the donor site practically always contains the GT
dinucleotide at the intron boundary, GC being observed in less than
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1% of the cases. This donor site is recognized by the U1 snRNA of
the spliceosome through base-pairing with an ACUUACCU motif,
and should ideally have the AG/GTAAGT pattern. Nevertheless, the
base-pairing recognition is rather loose, i.e. the donor site pattern is
less clear and tolerates many replacements in the motif, except for
the border GT. The acceptor is observed to always contain the AG
dinucleotide at the intron border with an even less clear pattern sur-
rounding the dinucleotide. As such, all GT (resp. AG) dinucleotides
on the DNA are defined as candidate donor (resp. acceptor) sites
and need to be classified as either an actual (true) site or a pseudo
(false) site.

Through the fast pace of the sequencing of genes and their cognate
transcripts, the number of experimentally identified eukaryotic donor
and acceptor sites has grown extensively over the last decade. The
accumulation of publicly available biological data has boosted gen-
omic research in the field of Machine Learning and the prediction of
splice sites became again a challenge (Cai et al., 2000; Dash et al.,
2001; Yeo et al., 2003; Castelo et al., 2004). Recent approaches
based on discriminant functions such as Winnow (Chuang et al.,
2001) or the support vector machine (SVM) (Sonnenburg et al.,
2002; Degroeve et al., 2002; Sun et al., 2003) show significant
improvements in prediction performance compared to previously
used systems such as NetGene2 (Tolstrup et al., 1997), SPL, Splice-
Predictor (Usuka et al., 2000) and GeneSplicer (Pertea et al., 2001).
Nevertheless, these approaches have not yet been implemented as a
tool that can be used by researchers for annotating genome sequences.

This manuscript presents a novel publicly available splice site
prediction tool named SpliceMachine that (i) shows state-of-the-
art prediction performance on Arabidopsis thaliana and human
sequences, (ii) can be trained by the user on its own data, (iii) per-
forms a computationally fast annotation and (iv) is intuitive and can
provide biological knowledge extracted from the data. Our approach
employs linear support vector machines (LSVM) to compute a lin-
ear classification boundary between actual and pseudo splice sites.
For this, a candidate splice site is represented as a feature vector,
each feature containing some information about the candidate splice
site and its context in the sequence. This context is defined as the
subsequence that starts at p nucleotide positions upstream of the can-
didate splice site and ends at q positions downstream of the candidate
splice site.
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We define feature sets in order to capture the positional nucleotide
preferences observed in close proximity to the donor and acceptor
site, the preference for certain oligomers in the neighborhood of
splice sites (Lim et al., 2001), and the codon bias upstream donor
and downstream acceptor sites. We propose a model-based proced-
ure for optimizing the parameters p and q for each of these feature
sets as well as the cost parameter C of the LSVM (described fur-
ther) and show that this leads to a significant boost in the prediction
performance of the system.

METHODS AND DATA

Local context representations
This section describes the feature vector representations of candidate splice
sites. The first type of features refers to positional information and should
capture the consensus motif as well as the correlations that exists between
nucleotide positions in close proximity of the splice site (see Introduction).
The second type of features refers to compositional information and should
capture the presence or absence of discriminative oligomers found in the
neighborhood of splice sites. The existence of these oligomers was observed
for instance by Lim et al. (2001) and used as discriminative information
in SplicePredictor. A third type of information is the codon bias that exists
upstream of most donor and downstream of most acceptor sites. This codon
bias is also found downstream of pseudo donor sites or upstream of pseudo
acceptor sites that are extracted from the coding part of a gene. This type
of information is termed coding potential and it is similar to the composi-
tional information but split up in each of the three possible reading frames as
explained further.

All of the features are extracted from a local context subsequence sur-
rounding the candidate splice site. This local context consists of p adjacent
nucleotides upstream and q adjacent nucleotides downstream of the GT or
AG dinucleotide. Throughout this paper, the following local context (p = 6,
q = 7) around a candidate donor site is used to exemplify the terminology
introduced:

a c t t c g G T a g c c t c c
1 2 3 4 5 6 7 8 9 10 11 12 13

Positional information The information extracted is the presence or
absence of a nucleotide at a position in the local context subsequence. We
will refer to this feature set as P1. Let fs,v be a binary feature from P1 that
has value 1 if the nucleotide at position s in the local context sequence is v

with v ∈ {a, c, g, t}. For the candidate donor site (see example) the following
features in P1 have a value equal to 1 (all other features have value 0):

f1,a, f2,c, f3,t , f4,t , f5,c, f6,g, f7,a, f8,g, f9,c, f10,c, f11,t , f12,c

and f13,c.

To account for the correlations that exist between nucleotide positions, certain
types of concatenations are created using the features in P1. Feature sets P2
and P3 extract the presence or absence of a di- or tri-nucleotide at a position
in the local context subsequence. Let v be a di-nucleotide; then for the feature
set P2 (similarly for the feature set P3) the following features have a value
equal to 1:

f1,ac, f2,ct , f3,tt , f4,tc, f5,cg, f7,ag, f8,gc, f9,cc, f10,ct , f11,tc,

f12,cc.

Compositional information The information extracted is the presence
or absence of individual tri-, tetra-, penta- or hexamers in the local upstream
context and in the local downstream context separately. We will refer to
these feature sets as Ck where k is the length of the oligomer (k-mer) that
is considered. Each feature set Ck consists of 4k features fup,x that indicate
the presence or absence of a k-mer x in the upstream context plus 4k features
fdown,x , that indicate the presence or absence of a k-mer x in the downstream

context. For the candidate donor example the following compositional trimer
features (C3) have a value equal to 1:

fup,act , fup,ctt , fup,ttc, fup,tcg, fdown,agc, fdown,gcc, fdown,cct ,

fdown,ctc and fdown,tcc.

Coding potential The information extracted is the presence or absence of
codons in each of the three possible reading frames of both local upstream
and downstream contexts separately. Let us assume that the complete context
of our candidate site is a coding sequence, i.e. the candidate site would be a
pseudo splice site. We can then write this context sequence in each of the three
possible reading frames. For each of the three reading frames R(R = 1, 2, 3)

64 features fR,up,x are computed for the upstream context plus 64 features
fR,down,x for the downstream context. A feature fR,up,x has value 1 if the
upstream context in reading frame R contains the trimer or codon x. This
totals 128 × 3 = 384 features in a set we will denote RF (for Reading
Frame). For the candidate donor site presented above the following features
in RF have a value equal to 1:

f1,up,act , f1,up,tcg, f2,up,ctt , f3,up,ttc, f1,down,agc, f1,down,ctc,

f2,down,gcc, f2,down,tcc and f3,down,cct .

The definition of which reading frame is frame R is irrelevant as long as it is
the same for all candidate sites.

Linear support vector machines
The SVM (Boser et al., 1992; Vapnik, 1995) is a data-driven method for
solving two-class classification tasks. The LSVM separates the two classes
in T with a hyperplane in the feature space such that:

(a) the largest possible fraction of instances of the same class are on the
same side of the hyperplane, and

(b) the distance of either class from the hyperplane is maximal.

The prediction of an LSVM for an unseen instance z is 1 (classified as a pos-
itive instance) or −1 (classified as a negative instance), given by the decision
function

pred(z) = t(wz + b) (1)

with t(x) a function that maps all x greater or equal to a certain threshold to
1 and all x smaller than that threshold to −1. The hyperplane is computed by
maximizing a vector of Lagrange multipliers α in

W(α) =
l∑

i=1

αi − 1

2

l∑

i,j=1

αiαj yiyj xixj,

constrained to: 0 ≤ αi ≤ C and
l∑

i=1

αiyi = 0, (2)

where C is a parameter set by the user to regulate the effect of outliers and
noise; i.e. it defines the meaning of the word largest in (a).

For the LSVM the relation between w and α is:

w =
l∑

i=1

αixiyi .

Data
In a first benchmark, we compiled our own A.thaliana splice site data set
and carefully checked whether no genes were included that were also in the
test set called AraSet (Pavy et al., 1999). AraSet is a set of 168 A.thaliana
genes which was used to compare several splice site prediction tools. Our
training set was generated by aligning mRNAs [using SIM4; Florea et al.
(1998)], obtained from the public EMBL database (June 5, 2000), with the
BAC sequences that were used for the Arabidopsis chromosome assembly.
Redundant genes were excluded by counting the neighbors of every gene (two
genes are neighbors when they show more than 80% identity at the nucleotide
level), and discarding the gene with the largest number of neighbors. This
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process is repeated until no genes with neighbors remain. Of the 1812 genes
obtained from EMBL (Aubourg et al., unpublished), 1495 genes were kept
after removing redundant ones. From each gene only these introns confirming
the GT–AG consensus were used to construct the set of actual splice sites.
The pseudo donor sites were, for all genes, defined as all GT dinucleotides
that are located between 300 nucleotide positions upstream of the translation
start site and 300 nucleotide positions downstream of the translation stop site
in that gene and that are not donor sites. The pseudo acceptor sites are defined
as all AG dinucleotides within the same range and that are not acceptor sites.
A sub-sample of this data set will be used for optimizing the parameters for
Arabidopsis. The full data set was used to induce the Arabidopsis models in
SpliceMachine. Training on this set and testing on AraSet will be refered to
as benchmark B1.

In a second benchmark, we used the 1323 Arabidopsis genes and the 1115
human genes that were used to train and evaluate the GeneSplicer system
in Pertea et al. (2001). A sub-sample of the human data set was used for
optimizing the parameters for human gene annotation. The full human data
set was used to induce the final human models in SpliceMachine. Training and
testing on these sets will be referred to as benchmark B2ath for Arabidopsis
and benchmark B2hum for humans.

Performance measures
Several measures have been used to evaluate prediction performance. In B1
the authors used sensitivity (Se) and specificity (Sp) rate defined as

Se = TP

TP + FN
and Sp = TP

TP + FP
,

where TP, FP and FN are the number of true positives, false positives and
false negatives, respectively. The performance of GeneSplicer in B2ath and
B2hum was measured in terms of Se and false positive rate defined as

FP% = FP

FP + TN
.

By varying the decision threshold used to map Equation (1) onto a class,
Sp and FP% ratios can be computed for all Se levels. For the model-based
procedure used to optimize the parameters p, q and C (see further) the Sp
ratio at 5% false negative predictions (Se = 0.95) is used as the criterion to
measure prediction performance. This measure will be referred to as FN5%.
For the train-test split of the data set the m-fold cross-validation procedure
(mCV) is applied. In this setting the data is divided into m subsets of equal
size while preserving the class distribution. A model is induced m times, each
time leaving out one of the subsets from training that is then used to compute
the performance measures as describe above.

RESULTS AND DISCUSSION

Parameter optimization
The optimization of the parameters that are associated with each
of the representations is considered to be an important part in the
computation of the SpliceMachine models. These parameters are the
cost C [Equation (2)] used for training the LSVM, the length of
the local context subsequence (p, q) for each of the feature sets as
well as the optimal merging of feature sets in terms of classification
performance.

For the parameter C we consider the values 2−12, 2−11, . . . ,
1, . . . , 24. The context lengths p and q can both take values in
{20, 40, 60, 80, 100}. For each feature set the FN5% ratio is com-
puted using 10 CV for all possible combinations (p, q, C). Although
the LSVM induces a classifier relatively quick, a smaller data set
needs to be randomly selected from the full data set to make the
model-based optimization procedure practical. For both Arabidop-
sis and human we used a sub-sample that contains 1000 actual and
10 000 pseudo sites. For each feature set the (p, q) values for which

FN5% is maximal (first row, in bold) and the (p, q) values for which
FN5% is minimal (last row) are plotted in Table 1. To show that
choosing large context sizes (p = q = 100) does not always lead
to the best prediction performance, the results for p = q = 100 are
plotted in the second row for each feature set. The third row shows
performance for p = q = 50, a typical context size used in splice
site prediction literature. In some cases the optimal value for p or q

was at the border of the search space (=100). In these situations the
search space for the context size that was at the border was increased
by 20 positions until no further improvement was observed. For all
feature sets the optimization of p and q shows a significant increase
in 10CV prediction performance for most data sets.

Table 1 also shows that the influence of context size optimization
is more pronounced in the case of the positional invariant feature sets
Ck and RF. For instance for B2hum acceptor site prediction, Table 1
shows that optimizing the context size increases 10CV prediction
performance from 0.21 (p = q = 50) to 0.44 (p = 20, q = 100).
These large differences in FN5% performance make sense because
the value of a feature in these positional invariant feature sets depends
strongly on p and q, while for P1, P2 and P3 this is not the case. For
the compositional feature sets, C4 (words of length 4) shows the best
overall performance. For acceptor site prediction using the feature
sets Ck, Table 1 shows optimal context sizes to be larger in the exon
part of the local context subsequence. For donor prediction this is
only the case for the human data sample. Although the differences
are not necessarily species-dependent (other factors could be the sub-
sampling of data points or the level of noise in the data) optimizing
the context lengths for each genome (or new data set) is shown to
be crucial for the induction of accurate species-specific prediction
models. The default p and q values p = q = 50 seems to perform
better than p = q = 100.

From Table 1 the optimal (p, q, C) combination for each of the
feature sets can be obtained (the row in bold). If the feature sets
represent different types of discriminative information, then the mer-
ging of feature sets (using more than one feature set to represent a
candidate splice site by concatenating the features) should increase
splice site prediction performance. But merging the feature sets will
increase the information redundancy that could, in turn, decrease
prediction performance (Kohavi et al., 1997). To investigate this, a
larger data sub-sample was randomly extracted from the full data
sets (B1 and B2) that contains 1250 actual and 50 000 pseudo sites.
Feature sets are merged as follows:

merge50−50: all feature sets P1, P2, P3, C3, C4, C5, C6 and RF using
p = q = 50.

merge50−50−Cbest : feature sets P1, P2, P3, Cbest and RF using p =
q = 50. Cbest is the best performing Ck from Table 1. This is
C4 for all data sets.

merge100−100: all feature sets P1, P2, P3, C3, C4, C5, C6 and RF
using p = q = 100.

merge100−100−Cbest : feature sets P1, P2, P3, Cbest and RF using
p = q = 100. Cbest is the best performing Ck from Table 1.
This is C4 for all data sets.

mergeopt−opt: all feature sets P1, P2, P3, C3, C4, C5, C6 and RF
using the optimal values for p and q from Table 1.

mergeopt−opt−Cbest : feature sets P1, P2, P3, Cbest and RF using the
optimal values for p and q from Table 1. Cbest is the best
performing Ck from Table 1. This is C4 for all data sets.
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Table 1. Optimal context sizes (p, q) for the different feature sets P1–P3 (positional), C3–C6 (compositional) and RF (coding potential) for both Arabidopsis
and human sequences

Arabidopsis (B1) Humans (B2hum)
Donors Acceptors Donors Acceptors
p q FN5% p q FN5% p q FN5% p q FN5%

P1 60 120 0.70 80 80 0.57 20 20 0.52 60 60 0.44
100 100 0.66 100 100 0.55 100 100 0.46 100 100 0.38

50 50 0.68 50 50 0.49 50 50 0.49 50 50 0.44
20 20 0.54 20 100 0.42 20 100 0.45 100 100 0.39

P2 40 120 0.67 80 60 0.52 20 20 0.56 20 20 0.44
100 100 0.61 100 100 0.42 100 100 0.43 100 100 0.35

50 50 0.65 50 50 0.47 50 50 0.49 50 50 0.44
100 20 0.49 20 80 0.41 20 100 0.42 100 20 0.34

P3 40 80 0.51 80 60 0.39 20 20 0.47 20 20 0.37
100 100 0.47 100 100 0.32 100 100 0.36 100 100 0.35

50 50 0.48 50 50 0.38 50 50 0.44 50 50 0.34
80 40 0.43 20 100 0.26 20 80 0.36 80 20 0.29

C3 20 80 0.19 20 60 0.33 80 20 0.16 20 100 0.40
100 100 0.15 100 100 0.16 100 100 0.12 100 100 0.12

50 50 0.18 50 50 0.24 50 50 0.13 50 50 0.19
100 20 0.15 100 20 0.14 20 100 0.11 100 20 0.11

C4 80 80 0.24 20 80 0.34 80 20 0.21 20 100 0.44
100 100 0.21 100 100 0.22 100 100 0.16 100 100 0.18

50 50 0.24 50 50 0.28 50 50 0.17 50 50 0.24
60 20 0.17 100 40 0.22 20 80 0.14 100 20 0.13

C5 80 80 0.24 40 60 0.29 80 20 0.19 20 80 0.42
100 100 0.21 100 100 0.22 100 100 0.17 100 100 0.20

50 50 0.21 50 50 0.26 50 50 0.16 50 50 0.24
20 40 0.16 100 20 0.19 20 100 0.13 100 20 0.13

C6 80 80 0.20 80 80 0.23 100 100 0.17 20 140 0.35
100 100 0.18 100 100 0.19 100 100 0.17 100 100 0.18

50 50 0.19 50 50 0.22 50 50 0.15 50 50 0.21
20 20 0.11 100 20 0.16 20 60 0.11 100 20 0.12

RF 20 60 0.24 20 80 0.36 20 20 0.25 20 100 0.44
100 100 0.20 100 100 0.22 100 100 0.15 100 100 0.15

50 50 0.24 50 50 0.29 50 50 0.17 50 50 0.21
100 20 0.18 100 20 0.20 20 100 0.14 100 20 0.12

The lines in bold represent the optimal values for (p, q) obtained by the model-based optimization procedure. For each feature set the last line shows the (p, q) values with worst
performance. The second and the third row are baselines. See text for more details.

mergeopt−opt−tree: an optimal merging of the feature sets P1, P2, P3,
C3, C4, C5, C6 and RF obtained by best-first search (explained
further) using the optimal values for p and q from Table 1.

The last method of merging feature sets mergeopt−opt−tree searches
for the best performing feature set combination. This should limit the
negative effect of information redundancy in the representation. The
method is a top-down best-first search procedure that starts from the
best performing individual feature set and iteratively adds a feature
set based on how this merging performs. In a first iteration the best
feature set is merged with each of P2, P3, C3, C4, C5, C6 and RF. For
each new feature set (the merging of feature sets) the cost parameter is
re-optimized on the same sub-sample and the same 10 CV procedure
used to compute the FN5% value in Table 1. The highest FN5%
value is selected and again merged with the sets that are left. The
procedure is repeated until there are no more sets to merge. Table 2
summarizes the merging process. The mergeopt−opt−tree was applied
on the same data sub-sample as used for the (p, q, C) optimization

in Table 1. Both the order in which feature sets are added and the
associated performance are shown.

Although most of the discriminative information is extracted using
the positional information feature set P1 (P2 for human donor
sites), the compositional feature sets allow the SVM to signific-
antly increase prediction performance. The coding potential feature
set RF seems not to add much more discriminative information.
Table 2 also shows that the information redundancy between feature
sets decreases prediction performance and a search for the optimal
merging of feature sets, as suggested in this manuscript, seems
justified.

Table 3 presents the FN5% results of the 10CV evaluation pro-
cedure on the larger data sets of 1250 actual and 50 000 pseudo
splice sites. It shows that the mergeopt−opt−tree method consist-
ently outperforms the other merging strategies. As a second choice,
the mergeopt−opt method shows good results as well and does
not require the best-first search for the optimal merging of feat-
ure sets.
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Table 2. Summary of best-first procedure to merge feature sets

Data Optimal merging

B1 donors P1 (0.70) C5 (0.75) P2 (0.78) C3 (0.79) P3 (0.80) C4 (0.79) RF (0.79) C6 (0.76)
B1 acceptors P1 (0.57) C3 (0.63) C5 (0.67) P3 (0.68) C4 (0.68) P2 (0.69) RF (0.68) C6 (0.66)
B2hum donors P2 (0.56) C6 (0.61) P1 (0.73) C3 (0.73) P3 (0.74) RF (0.72) C5 (0.70) C4 (0.68)
B2hum acceptors P1 (0.44) C4 (0.58) C6 (0.61) P2 (0.65) RF (0.66) P3 (0.66) C3 (0.66) C5 (0.66)

For each data set the ordering of the feature sets represents the order in which they were selected during the best-first search procedure. Next to each feature set (between
brackets) there is the FN5% ratio obtained using a merging of the feature sets up to the ratio. The feature sets in bold represent the optimal merging of feature sets used for
mergeopt−opt−tree. For B1 donors this optimal merging contains the feature sets P1, P2, P3, C3 and C5. This combined feature set obtains a 0.8 FN5% ratio for the 10CV
procedure.

Table 3. Comparison of different feature set merging strategies

Arabidopsis (B1) Humans (B2hum)
Donors Acceptors Donors Acceptors

merge50−50 0.34 0.27 0.36 0.25
merge50−50−Cbest 0.34 0.26 0.31 0.23
merge100−100 0.38 0.27 0.36 0.32
merge100−100−Cbest 0.40 0.30 0.31 0.27
mergeopt−opt 0.39 0.32 0.45 0.39
mergeopt−opt−Cbest 0.39 0.30 0.37 0.33
mergeopt−opt−tree 0.43 0.33 0.47 0.44

For each merging strategy the table shows the FN5% ratio obtained using the 10CV
procedure on a set of 1250 actual and 50 000 pseudo splice sites.

Prediction performance
The B1 donor and acceptor prediction models used in SpliceMachine
have been induced from the actual and pseudo splice sites in the 1495
Arabidopsis genes set using the optimal parameter settings (p, q, C)

shown in Table 1 and the feature set mergings presented in Table 2.
The obtained donor and acceptor models were then used to annotate
the AraSet. We also annotated AraSet using the NetGene2 mail server
on September 29, 2004, the latest version of SplicePredictor with
Bayesian models, and the latest version of GeneSplicer. For SPL
we copied the results from a benchmark study of 1999 (Pavy et al.,
1999) as the current version of SPL is only available as a web-demo.
Table 4 shows how SpliceMachine significantly outperforms all other
systems at all Se levels. At the 90% Se level, the Sp rate increased
from 48 to 62% for donor prediction compared to NetGene2, which
was the next best performing system at this Se level. For acceptor
sites the Sp rate increased from 42 to 60% compared to NetGene2
at the 84% Se level. For donor site prediction this means that the
number of false postive predictions decreased by 43%, for acceptor
sites this is 52%.

In B2 an evaluation against the system GeneSplicer was computed
using 5CV on the set of 1323 Arabidopsis genes and the 1115 human
genes. The Se and FP% values reported in Pertea et al. (2001) are
copied into Table 5 next to the results obtained using SpliceMachine.
Again we observe a significant increase in prediction performance
for both donor and acceptor data sets. At a 95% Se rate, the FP%
rate decreased from 6.4 to 2.2% for human donor sites and from

5.8 to 2.9% for human acceptor sites. For Arabidopsis the FP% was
decreased from 2.8 to 2.1% for donor and from 4.9 to 2.7% for
acceptor site prediction, both at the 95% Se level. This again is a
significant reduction in false positive predictions.

The B2hum data set was also used in Chuang et al. (2001) to
evaluate a Winnow-based (Roth, 1998) splice site prediction system
that uses a somewhat similar approach to SpliceMachine, but without
the context size optimization. These results are also copied in Table 5.
Although SpliceMachine only performs slightly better than Winnow
for donor site prediction, the differences are again significant for
acceptor site prediction.

Recent publications on computational splice site recognition focus
on the dependencies between nucleotide positions in close proxim-
ity to the GT or AG dinucleotide in human splice sites (Yeo et al.,
2003; Castelo et al., 2004). The context sizes used in these meth-
ods are small (p and q are smaller than 20). To compare this to
our large context approach we used the scoresplice webserver1 to
annotate the B2hum data set. Table 5 shows the results in the Maxent
column. As the small context size models basically only capture the
position-dependent information, their performance is clearly worse,
especially for acceptor prediction.

CONCLUSION
SpliceMachine recognizes splice sites based on the positional, com-
positional and codon bias information that is extracted from a large
local context around each candidate splice site. At the heart of
SpliceMachine lies an LSVM model that is fast in both computing
the classifier as well as in classifying candidate sites. We have shown
that this approach performs significantly better than current state-of-
the-art splice site prediction tools used by researchers in the field
of molecular biology. The approach also allows for easy incorpora-
tion of other types of information such as the presence or absence of
certain structural characteristics (Patterson et al., 2002) or a branch
point motif (Tolstrup et al., 1997). The use of binary features facilit-
ates the interpretation of the discriminant function, and future work
includes the application of advanced feature subset selection methods
to separate the relevant from the irrelevant features. By making the
software trainable researchers can evaluate SpliceMachine against
other methods on their data.

1http://www.genes.mit.edu/burgelab/maxent/Xmaxentscan_scoreseq.html
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Table 4. SpliceMachine prediction performance on the set of Arabidopsis genes in AraSet

AraSet donors AraSet acceptors
Se Sp Sp SpliceMachine Sp GeneSplicer Se Sp Sp SpliceMachine Sp GeneSplicer

NetGene2 all sites 0.94 0.33 0.52 0.30 0.84 0.42 0.60 0.37
NetGene2 score ≥0.90 0.90 0.48 0.62 0.43 0.66 0.61 0.76 0.55
NetGene2 score ≥0.95 0.80 0.60 0.72 0.59 0.48 0.73 0.85 0.71
NetGene2 score ≥0.98 0.61 0.66 0.83 0.77 0.22 0.8 0.92 0.84
NetGene2 score = 1 0.54 0.70 0.84 0.79 0.21 0.79 0.92 0.84
SPL 0.84 0.30 0.70 0.53 0.76 0.23 0.70 0.46
SplicePredictor 100% learning set 0.94 0.21 0.52 0.30 0.95 0.23 0.30 0.20
SplicePredictor/tau maximal/star-value 14 0.39 0.58 0.87 0.85 0.20 0.52 0.91 0.84
SplicePredictor/tau maximal/star-value 11 0.72 0.44 0.78 0.68 0.56 0.42 0.81 0.65
SplicePredictor/tau maximal/star-value 8 0.92 0.31 0.58 0.37 0.90 0.36 0.47 0.26
SplicePredictor/tau maximal/star-value 5 0.94 0.21 0.52 0.30 0.95 0.25 0.30 0.20

Prediction performance is measured in terms of sensitivity (Se) and specificity (Sp). Each line shows the name of the system, the Se and Sp results of this system on AraSet and (in
the SP SpliceMachine column) the Sp value obtained by SpliceMachine at the same Se ratio.

Table 5. Prediction performance of GeneSplicer, SpliceMachine, Maxent and Winnow on the B2ara and B2hum data set described in the text

Se FP%
Donors Acceptors
GeneSplicer SpliceMachine Maxent Winnow GeneSplicer SpliceMachine Maxent Winnow

B2ath 0.97 0.047 0.032 — — 0.117 0.047 — —
0.95 0.028 0.021 — — 0.049 0.027 — —
0.93 0.019 0.015 — — 0.033 0.018 — —
0.92 0.017 0.013 — — 0.029 0.016 — —
0.90 0.014 0.010 — — 0.024 0.012 — —
0.85 0.009 0.006 — — 0.016 0.008 — —
0.80 0.006 0.004 — — 0.011 0.005 — —
0.70 0.004 0.002 — — 0.007 0.003 — —

B2hum 0.97 0.147 0.032 0.101 0.041 0.093 0.048 0.141 0.078
0.95 0.064 0.022 0.075 0.030 0.058 0.029 0.107 0.051
0.93 0.048 0.016 0.059 0.022 0.047 0.021 0.082 0.038
0.92 0.041 0.014 0.053 0.020 0.043 0.019 0.074 0.034
0.90 0.035 0.011 0.045 0.016 0.037 0.015 0.061 0.027
0.85 0.025 0.006 0.033 0.011 0.026 0.009 0.044 0.017
0.80 0.018 0.004 0.025 0.008 0.019 0.006 0.036 0.012
0.70 0.007 0.002 0.016 0.003 0.008 0.003 0.022 0.004

The Sp ratios obtained using a 5CV procedure are shown for each Se ratio. The results for GeneSplicer are copied from Pertea et al. (2001), the results for Winnow from Chuang
et al. (2001). The result for Maxent were obtained by submitting the B2ara and B2hum data sets to the scoresplice webserver.
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