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Abstract

A number of abrupt change detection methods have been proposed in the past, among which are efficient model-
based techniques such as the Generalized Likelihood Ratio (GLR) test. We consider the case where no accurate nor
tractable model can be found, using a model-free approach, called Kernel change detection (KCD). KCD compares
two sets of descriptors extracted online from the signal at each time instant: the immediate past set and the immediate
future set. Based on the soft margin single-class Support Vector Machine (SVM), we build a dissimilarity measure in
feature space between those sets, without estimating densities as an intermediary step. This dissimilarity measure is
shown to be asymptotically equivalent to the Fisher ratio in the Gaussian case. Implementation issues are addressed,
in particular, the dissimilarity measure can be computed online in input space. Simulation results on both synthetic
signals and real music signals show the efficiency of KCD.
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I. INTRODUCTION

Detecting abrupt changes in signals or systems is a longstanding problem, and various approaches have been

proposed in a number of papers. In particular, likelihood ratio based approaches, such as the Generalized Likelihood

Ratio (GLR) test [1] or the marginal likelihood ratio test [2] are quite effi cient whenever an accurate and tractable

signal model exists and can be implemented. online versions based on statistical fi ltering have good performance

too [1, 3]. Other model-based approaches perform effi cient offline Bayesian segmentation [4, 5]. Aside model-based

techniques, a number of general and ad-hoc model-free methods have been designed so as to detect abrupt changes

in signals. Typical examples are time-frequency approaches [6], wavelet approaches [7, 8], cepstral coeffi cients

approaches [9].

In this paper, we present a general, model-free framework for online abrupt change detection1. Similar to other

model-free techniques, the detection of abrupt changes is based on descriptors extracted from a signal of interest.

The main subject of this paper is not about feature extraction, it is about the abrupt change detection algorithm that

uses these descriptors. Our algorithm is quite general, in the sense that it applies to one dimensional signals (e.g.,

music signals, speech signals, vibration signals) as well as to large dimensional signals (e.g., video, monitoring with

multiple sensors). More precisely, the principle of this technique can be explained as follows. Assume descriptors

xt, t = 1, 2, . . . in a space X are extracted online from a (possibly large dimensional) signal yτ , τ = 1, 2, . . ., using

a function q(·). (The time indexes for x and y do not necessarily coincide, as we may not extract descriptors at

each sample time τ .) The problem consists now of detecting abrupt changes in the time series xt, t = 1, 2, . . ..

Note that with typical descriptor extraction techniques, the dimension of xt may be large, see for example [6, 11].

A. A general framework for non-parametric online abrupt change detection

The time series of descriptors may be used in many ways so as to design an abrupt change detector. Some

techniques compute a distance measure between two successive descriptors in order to build a stationarity index

(see, e.g., [6]). Other techniques implement the GLR test via Gaussian mixture modeling of the descriptors

distribution (see, e.g., [9]). The latter technique, however, can hardly deal with large dimensional inputs, because

the number of model parameters to be estimated increases quickly with the dimension (problem know as the curse

of dimensionality [12]). Most of these techniques are special instances of the following generic framework: consider

time t, and two descriptors subsets, the immediate past subset xt,1 = {xi}i=t−m1,...,t−1 and the immediate future

subset xt,2 = {xi}i=t,...,t+m2−1, as depicted in Fig. 1. We can now state the online abrupt change detection problem

as follows. Let t be some time instant and assume that the samples in xt,1 (resp. in xt,2) are sampled i.i.d. according

to some probability density function (pdf) p1 (resp. p2). Then, one of the two hypotheses holds:




H0 : p2 = p1 (No abrupt change occurs)

H1 : p2 != p1 (An abrupt change occurs)
(1)

1We use the word ’online’ with the same meaning as in [1, 10] to indicate that we address the sequential framework. Real-time applications
and implementation are not directly addressed in this paper.
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Fig. 1. General abrupt change detection framework based on the time series of descriptors xt, t = 1, 2, . . ., represented by circles.

This test cannot be applied in practice, however, since the pdfs p1 and p2 are not known. The standard practical

approach uses some dissimilarity measure between p1 and p2, estimated from the sole knowledge of the sets xt,1

and xt,2. Let D(xt,1,xt,2) be such a dissimilarity measure, the previous problem can be written as follows:




H0 : D(xt,1,xt,2) ≤ η (No abrupt change occurs)

H1 : D(xt,1,xt,2) > η (An abrupt change occurs)
(2)

where η is a threshold that tunes the sensibility/robustness tradeoff, as in every detection framework. The detection

performance is thus closely related to the dissimilarity measure D(·, ·) selected as well as to the pdf estimation

technique implemented. Possible choices are:

• Methods based on inferred descriptors distribution: the pdf of descriptors in xt,i (i = 1, 2) denoted p(x|θi, i)

(i = 1, 2) is supposed to have a given shape such as Gaussian, with an unknown parameter set denoted θi (i =

1, 2). Parameter estimates, denoted θ̂i (i = 1, 2) are computed on both sets and the resulting pdfs p(x|θ̂i, i) (i =

1, 2) are compared via a likelihood ratio [1] or using a densities dissimilarity measure, such as the Kullback-

Leibler (KL) divergence [9]. This approach includes algorithms where statistics such as empirical means and

covariances are estimated from descriptors and compared using a dissimilarity measure. This approach is not

adapted to data with large dimension, due to the curse of dimensionality.

• Methods based on descriptors distribution, jointly with prior distributions for θ1 and θ2, implementing Bayes

decision theory [12, 13] (Bayesian approach).

• Methods based on empirical descriptors density estimation: a density estimation algorithm is implemented (a

typical example is the Parzen window estimator) and estimated densities p̂(x|1), p̂(x|2) are compared using

a dissimilarity measure. Examples can be found in [14] in the context of Independent Component Analysis

(ICA). This approach is not adapted to large dimensional data, due to the diffi culty to estimate accurately

densities in such cases.

• Methods aimed at comparing the sets xt,1 and xt,2 without the intermediate density estimation step. This

family of methods is the main subject of this paper.

B. A Machine Learning approach

The overall framework described above shows that abrupt change detection can be seen as a Machine Learning

problem: statistical behavior of the sets xt,1 and xt,2 are learned and compared. We propose a new approach
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inspired by recent Machine Learning theory [15–17], referred to as Kernel Change Detection (KCD) and based

on the following remark: whenever no abrupt change occurs, the location of the samples in xt,1 and xt,2 in X is

approximately the same. On the other hand, when an abrupt change occurs, it happens that samples in xt,1 are located

in different parts of the space than the samples in xt,2 (we show that a well-chosen descriptor extraction technique

can yield such a situation). Following Vapnik’s principle2 we argue that, in such situations, it is more convenient

to derive a dissimilarity measure that compares estimated density supports rather than estimated pdfs, where the

support of a density p(x), is roughly defi ned as the part of the space where p(x) is “large”. In order to implement

this idea, it is necessary to derive a robust, accurate density support estimator together with a dissimilarity measure

for regions comparison. Note that this dissimilarity measure needs be valid for regions with complex, winding,

possibly non-connected shape in large dimension.

C. Paper organization

In Section II, we describe a recent density support estimation technique, namely the ν-Support-Vector (SV)

approach to single-class problems [18]. In particular, we recall that this technique is adapted to large dimensional

data and that it is robust to outliers. In Section III, we present our abrupt change detection algorithm, built on the

single-class ν-Support Vector Machines (SVMs). This algorithm is discussed in Section IV. Comparisons with other

techniques are presented. Section V is devoted to simulations on synthetic and real data. Finally, some conclusions

and future research directions are proposed in Section VI.

II. THE ν-SV APPROACH TO SINGLE-CLASS CLASSIFICATION PROBLEMS

In this section, we briefly recall the elements of the ν-SV approach to single-class classifi cation problems that

are relevant to KCD. In the following, descriptors are referred to as vectors or descriptors wherever relevant. Let

x = {x1, . . . , xm} be a set of m > 0 so-called training vectors in X . Though practically X is often an Euclidean

space isomorphic to Rd with d fi nite, no stronger assumption than it being a set is needed. The set x is called the

training set; X is the input space. We make the assumption that for any i = 1, 2, . . . ,m, the training vector xi is

distributed according to some unknown pdf p(·), independently of xj , (for j = 1, . . . ,m with j != i).

The aim of single-class classifi cation (also referred to as novelty detection) is the estimation of a region RX
x in

X , from the sole knowledge of the training set x, such that vectors drawn according to p(·) are likely to fall in

RX
x and such that vectors which are not in RX

x are not likely to be distributed according to p(·). Here, we adopt

the equivalent representation of RX
x given by the real-valued decision function fx(·) such that:

fx(·) ≥ 0 on RX
x and fx(·) < 0 elsewhere in X

2Vapnik’s principle is [15]: If you possess a restricted amount of information for solving some problem, try to solve the problem directly and

never solve a more general problem as an intermediate step. It is possible that the available information is sufficient for a direct solution but

is insufficient for solving a more general intermediate problem.
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The estimation of fx(·) is realized via risk minimization. We defi ne errors as vectors that are not in RX
x whereas

they are actually distributed according to p(·), and the loss function c(·, ·) that defi nes the cost we assign to errors.

Standard choices are the 0-1 loss function [12] or the hinge loss [16] which leads to ν-SV algorithms, as explained

below. The empirical risk Remp(fx) is defi ned as Remp(fx) = (1/m)
∑m

i=1
c(xi, fx(xi)). Classically, estimating

fx(·) by minimizing Remp(fx) leads to overtraining, which can be avoided by minimizing instead the regularized

risk Rreg(fx) = Remp(fx)+λ||fx|| where ||fx|| is some measure of the complexity of fx and λ tunes the amount

of regularization. In the SV approach, this is achieved by restricting fx(·) to elements of a class of simple functions

with minimal complexity. This is further developed in the next subsection which is dedicated to SV single-class

classifi cation.

A. SV single-class classifi cation

In order to present the SV approach, we introduce the so-called feature space H. Let φ : X → H be a mapping

defi ned over the input space X , and taking values in feature space H. Let 〈·, ·〉H be a dot product defi ned in H.

We defi ne the kernel k(·, ·) over X × X , by:

∀(xi, xj) ∈ X × X , k(xi, xj) = 〈φ(xi), φ(xj)〉H (3)

Without loss of generality3, we assume that k(·, ·) is normalized such that for any x in X , k(x, x) = 1. Using

the notation x = φ(x) for any x in X , we have ||x||H = 1 where the norm in H is induced by the dot product,

i.e., ||x||2H = 〈x,x〉H = k(x, x). In other words, the mapped input space φ(X ) is a subset of the hypersphere

S with radius one centered at the origin of H, denoted O. Provided k(·, ·) is always positive, φ(X ) is a subset

of the positive orthant of that hypersphere. The training vectors are mapped in H and lie in S, as depicted in

Fig. 2. The SV approach to single-class classifi cation consists of separating the training vectors in H from the

Non-Margin SV

O
radius= 1

Margin SV

W Non-SVs

wS

ρ
||w||

Fig. 2. In feature space H, the mapped training vectors xi = φ(xi), i = 1, . . . , m are located on a hypersphere S. The optimization problem
of eq. (4) yields w and ρ which defi ne the separating hyperplane W . In feature space, the density support estimate RH

x is the segment of S
limited by W . The distance between the hyperplane and O is called the margin and it equals d(O,W)H = ρ/||w||H.

center of the hypersphere S with a hyperplane W , see Fig. 2. Any hyperplane in H can be written as a set4

3In fact, any kernel k(·, ·) satisfying eq. (3) can be normalized into k′(·, ·) with k′(xi, xj) =
k(xi,xj)√

k(xi,xi)k(xj ,xj)
when xi, xj non-zero,

and the resulting functional k′(·, ·) is also a kernel (see, e.g., [19]).
4This is true as long as the intersection of the hyperplane with the positive orthant of S is not empty.
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{x ∈ H|〈w,x〉H − ρ = 0} with parameters w ∈ H and ρ ≥ 0, thus W verifi es:

〈w,x〉H − ρ ≥ 0 for most mapped training vectors and 〈w,x〉H − ρ < 0 otherwise (4)

In eq. (4), it is not required that all the training points verify 〈w,x〉H − ρ ≥ 0 because in many realistic situations

the training set x may contain outliers, that is, vectors (descriptors) that are not representative of the signal/system

considered [16, 20]. Choosing W as in eq. (4) is equivalent to choosing the decision function fx(·) such that

fx(x) = 〈w,x〉H − ρ, w ∈ H, ρ > 0 where we recall that x = φ(x). Similar to the input space settings, the

decision function fx(·) defi nes the region RH
x as the segment of the hypersphere where fx(·) is positive. In the

remainder of this paper, the region RX
x (resp. RH

x ) will be referred to as the density support estimate of the unknown

pdf p(·) in X (resp. in H).

B. Selection of the optimal hyperplane

Among all possible hyperplanesW , the ν-SV approach selects w and ρ with maximum margin, see Fig. 2, which

results in [16, 20]:

max
w,ξ,ρ

−
1

2
‖w‖2

H −
1

νm

m∑

i=1

ξi + ρ

subject to 〈w,xi〉H ≥ ρ− ξi and ξi ≥ 0.

(5)

where ν is a positive parameter (0 < ν ≤ 1) that tunes the amount of possible outliers [16, 20]. This optimization

problem admits the following interpretation in H: the margin is maximized under the constraint that most training

vectors xi, i = 1, . . . ,m are located in the half-space bounded by W , that does not contain the center O of S, see

Fig. 2. The so-called slack variables ξi, i = 1, . . . ,m implement the hinge loss by linearly penalizing outliers, that

is the training vectors that are located on the “wrong” side of W . Margin maximization is the core principle of SV

algorithms, as it can be shown that maximum margin hyperplanes have minimum regularized risk5 Rreg(fx) [15–17].

Note that the complexity of fx(·) is penalized in eq. (5) by ‖w‖2

H.

This convex quadratic optimization problem is solved by introducing Lagrange multipliers αi, i = 1, . . . ,m,

yielding the dual optimization problem (see, e.g., [16]):

min
α,ρ

1

2

m∑

i=1

m∑

j=1

αiαjk(xi, xj)

subject to 0 ≤ αi ≤
1

νm
for i = 1, . . . ,m and

m∑

i=1

αi = 1

(6)

which is solved using a numerical procedure, such as the LOQO algorithm [21, 22]. w is given by:

w =
m∑

i=1

αixi, (7)

which implies:

fx(·) =
m∑

i=1

αik(xi, ·) − ρ (8)

5Actually, maximum margin hyperplanes ensure a minimum Vapnik-Chervonenkis upper bound on the true risk [15–17].
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The solution is sparse: most Lagrange multipliers (referred to as weights in the following) αi’s are zero.

Corresponding training vectors are called Non-Support Vectors (NSVs) and are located inside RX
x (or equivalently,

inside RH
x ), see Fig. 2. Vectors such that 0 < αi < 1/νm are margin support vectors (MSVs), and are located on

the boundary. Finally, non-margin support vectors (NMSVs) are outliers, they verify αi = 1/νm. The parameter ν

plays an important role: ν is an upper bound on the fraction of NMSVs and a lower bound on the fraction of SVs

in x [20]. Moreover, under mild conditions, ν asymptotically equals both the fraction of NMSVs and SVs with

probability 1.

C. Mercer kernels

Results exposed above depend on the selection of a mapping φ(·) which defi nes k(·, ·) via the dot product in H.

In practice, however, we observe that φ(·) only appears in dot products, i.e., we only need to consider the kernel

given in eq. (3). With a reverse point of view, it is possible to specify instead a kernel k(·, ·) for which a mapping

φ(·) and a space H verify eq. (3) [16, 19]. Such kernels need to verify the necessary and suffi cient condition given

by Mercer [23]. From now on, unless explicitly stated otherwise, we consider that X is an Euclidean space and that

the kernel is the Gaussian kernel noted kσ(·, ·) with spread parameter σ (note however that the elements presented

below remain true for any Mercer kernel such that k(x, x) = 1, x ∈ X ):

∀(x, x′) ∈ X × X , kσ(x, x′) = exp

(
−
||x − x′||2X

2σ2

)
(9)

where || · ||X is a norm in X .

III. A KERNEL CHANGE DETECTION ALGORITHM

As explained in Section I, our general framework for abrupt change detection requires a dissimilarity measure

D(·, ·) aimed at comparing the sets of descriptors xt,1 and xt,2. More precisely, a relevant D(·, ·) should output

low values whenever xt,1 and xt,2 occupy the same region of the space X , and large values whenever xt,1 and

xt,2 occupy distinct regions. The density support estimation technique described in Section II can be used to build

a dissimilarity measure, based on regions comparison, as shown below.

A. A dissimilarity measure in feature space

Consider analysis time t. Assume that two single-class classifi ers are trained independently on the sets xt,1 and

xt,2, yielding two regions RX
xt,1

and RX
xt,2

or, equivalently in feature space H, two hyperplanes Wt,1 and Wt,2

parameterized by (wt,1, ρt,1) and (wt,2, ρt,2). In H, the vectors wt,1 and wt,2 defi ne a 2-dimensional plane, denoted

Pt, that intersects the hypersphere S along a circle with center O and radius 1, as depicted in Fig. 3. Actually, in

the least probable case where wt,1 and wt,2 are collinear (which is highly unlikely), there is an infi nity of planes

Pt, and one can select any of them.

In feature space, the plane Wt,1 (resp. Wt,2) bounds the segment of S where most of the mapped points in xt,1

(resp. xt,2) lie. A good indication of the dissimilarity between φ(xt,1) and φ(xt,2) is given by the arc distance
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ρt,1

||wt,1||
ρt,2

||wt,2||

ct,2

Wt,1

Wt,2

ct,1

radius= 1

O

pt,2pt,1

S

Pt

Fig. 3. The SV single-class classifi ers yield two regions RH
xt,1

and RH
xt,2

which are density support estimates in feature space. The circle
represented corresponds to the intersection of the plane Pt (uniquely defi ned by wt,1 and wt,2) and S. The intersection of the (prolongated)
vector wt,1 (resp. wt,2) with S yields ct,1 (resp. ct,2), and the intersection of the hyperplane Wt,1 (resp. Wt,2) with S in the plane Pt

yields two points, one of which is denoted pt,1 (resp. pt,2). The situation plotted corresponds to an abrupt change, as both regions do not
strongly overlap.

between the segments centers ct,1 and ct,2 denoted

(

ct,1ct,2, see Fig. 3. However, this dissimilarity measure is not

useful for abrupt change detection, because it is not scaled by the spread of both xt,1 and xt,2. We propose thus

the following dissimilarity measure defi ned in feature space (see Fig. 3 for the defi nition of pt,1 and pt,2):

DH(xt,1,xt,2) =

(

ct,1ct,2(

ct,1pt,1 +

(

ct,2pt,2

(10)

Clearly, DH is an intra-regions/inter-regions ratio inspired by the Fisher ratio (see Subsection IV-A and [12]).

Considering xt,1 only, we see that the arc distance

(

ct,1pt,1 is a measure of the spread of samples in φ(xt,1) in

feature space. The more these samples are spread, the larger the distance

(

ct,1pt,1, and the smaller the margin

ρt,1/||wt,1||. The dissimilarity measure DH has thus the expected behavior in feature space, namely it is large for

well separated sets, and it is small for strongly overlapping sets. In section IV, we present a deeper study of the

behavior of DH.

Remark 1. Least probable cases.

In the least probable case where wt,1 and wt,2 are collinear, i.e.,

(

ct,1ct,2 = 0, it becomes impossible to detect differences

of spread between the sets xt,1 and xt,2. The problem can be tackled by adding a small ε > 0 to the numerator of eq. (10).

Similarly, the least probable case where the xt,1 and xt,2 have zero spread can be overcome by introducing ε′ > 0 in the

denominator of eq. (10). In the following, we assume that these least probable situations do not occur, as they do not correspond

to realistic situations.
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B. Computation in input space

The dissimilarity measure DH derived above is completely defi ned in feature space. However, an important

question remains: DH must be computed directly in input space, without explicitly computing φ(·).

The computation of DH in input space is only possible if we can express it as a function of the kernel k(·, ·)

applied to vectors in input space X . In feature space, the arc distance between two vectors a and b with norm one

verifi es (

ab = âOb (11)

where âOb is the angle between a and b. Besides,

〈a,b〉H = ||a||H||b||H cos(âOb)

= cos(âOb)
(12)

Putting everything together, the arc distance
(

ab is given by
(

ab = arccos
(
〈a,b〉H

)
(13)

In our case, the arccos function is used properly because the vectors we consider are all located in the same orthant

of S, in other words, 0 ≤ âOb ≤ π/2. The dot product in eq. (13) can be evaluated in terms of the kernel k(·, ·)

only if a and b are in the linear span of vectors in X [16]. In our case, the arc distance

(

ct,1ct,2 can indeed be

expressed in terms of k(·, ·): fi rstly, ct,1 = wt,1/||wt,1||H and ct,2 = wt,2/||wt,2||H, then

(

ct,1ct,2 = arccos

(
〈wt,1,wt,2〉H

||wt,1||H||wt,2||H

)
(14)

Secondly, using that wt,1 and wt,2 are linear combinations of weighted kernels, as is shown in eq. (7):

〈wt,1,wt,2〉H
||wt,1||H||wt,2||H

=
αT

t,1 Kt,12 αt,2√
αT

t,1Kt,11αt,1

√
αT

t,2Kt,22αt,2

(15)

where αt,1 (resp. αt,2) is the column vector which entries are the parameters of wt,1 (resp. wt,2) that have been

computed during training, see eq. (7). The kernel matrix Kt,uv , (u, v) ∈ {1, 2} × {1, 2} has entries at row #i and

column #j given by k(xi
t,u, xj

t,v) where xi
t,u is the training vector #i in the set xt,u. Similar calculations can be

applied to

(

ct,1pt,1 and

(

ct,2pt,2:

(

ct,ipt,i = arccos



 ρt,i√
αT

t,iKt,iαt,i



 , i = {1, 2} (16)

which completes the derivation.

Remark 2. Equivalent defi nition of DH.

DH can be equivalently defined by replacing pt,1 in eq. (10) by any Margin SV (denoted x
MSV
t,1 ) which might not be in Pt.

The arc distance

(

ct,1pt,1 equals

(

ct,1x
MSV
t,1 , because pt,1 and x

MSV
t,1 both are located on the intersection of S with Wt,1, and have

the same arc distance to ct,1. The same reasoning also holds for pt,2 and x
MSV
t,2 .
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C. General framework for the KCD Algorithm

The elements derived in Section I and the dissimilarity measure introduced enable the presentation of the full

abrupt change detection algorithm. Algorithm 1 below summarizes the whole procedure. As an intermediate step,

we assume the descriptors have already been extracted from the input time series y, so we consider the series of

descriptors xt, t = 1, 2, . . ..

Algorithm 1: Kernel Change Detection (KCD) Algorithm

Step 0: Initialization

• Select the training sets sizes m1, m2, the algorithm parameter ν and the threshold η.
• Set k(·, ·) to be, e.g., a Gaussian kernel with parameter σ.
• Set t ← m1 + 1.

Step 1: online change detection

• Train an SV single-class classifier on the immediate past training set xt,1 = {xt−m1
, . . . , xt−1} and train inde-

pendently another SV single-class classifier on the immediate future training set xt,2 = {xt, . . . , xt+m2−1}. The
optimization process yields (wt,1, ρt,1) and (wt,2, ρt,2), or, equivalently, the parameters (αt,1 , ρt,1) and (αt,2 , ρt,2).

• Compute the decision index I(t) = DH(xt,1, xt,2) defined in eq. (10) using eq.’s (14)- (16).
• Based on I(t), decide:

– If I(t) ≥ η then a change is detected at time instant t,
– If I(t) < η then no change is detected at time instant t.

• Set t ← t + 1 and go to Step 1.

In Algorithm 1, an abrupt change is detected whenever the time index I(t) is over a threshold η. This approach

is classical [1], and η tunes the false positive / false negative ratio. Testing time instant t requires the knowledge

of the descriptors time-series x up to time instant (t + m2 − 1).

The SV single-class classifi er is trained twice at each iteration, as novelty detection is performed over both the

immediate past and the immediate future sets w.r.t. time instant t. A non-computationally effi cient procedure would

consist in re-computing from scratch the parameters (αt,i , ρt,1) (i = 1, 2) by solving the optimization problem of

eq. (6) at each iteration. Instead, it can be noticed that, e.g., xt+1,1 can be obtained from xt,1 by incrementing with

xt while decrementing with xt−m1
. Effi cient solutions for implementing this procedure include procedures based

on the incremental/decremental technique derived in [24, 25] or on stochastic gradient descent [26].

IV. DISCUSSION

In Section III, we have described a dissimilarity measure DH based on the arc distance in feature space. In the

simple case where pdfs p1 and p2 are Gaussian and radial, the Fisher ratio is a standard measure of dissimilarity [12]

defi ned by

DF (xt,1,xt,2) = (µ̂t,1 − µ̂t,2)
T

(
Σ̂t,1 + Σ̂t,2

)−1

(µ̂t,1 − µ̂t,2) (17)
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where µ̂t,i and Σ̂t,i are empirical estimates of the mean and covariance matrix of pi, based on the set xt,i, for

i = 1, 2. A key question is: does DH behave like the Fisher ratio in this simple case? A negative answer to this

question would make DH inappropriate. In Subsection IV-A, we show that it actually behaves like the Fisher ratio

in simple cases. In addition, we show that DH can deal with complicated situations where the Fisher ratio is not

properly defi ned. Subsection IV-B is devoted to some discussion about the comparison with dissimilarity measures

built on Parzen density estimates together with divergences. Subsection IV-C investigates other SV approaches to

Abrupt Change Detection. Kernel selection and tuning of the algorithm are dealt with in Subsection IV-D.

A. Connection with the Fisher ratio in input space

Consider xt,1 (the same reasoning holds for xt,2) and assume that the pdf pt,1 is Gaussian with mean µt,1 and

covariance matrix Σt,1 = σ2
t,1I, where I is the identity matrix. Consider the training set xt,1 is randomly generated

from pt,1. In this special case, the Fisher ratio becomes:

DF (xt,1,xt,2) =
||µ̂t,1 − µ̂t,2||2X
σ̂2

t,1 + σ̂2
t,2

(18)

Besides, the following theorem holds (a proof can be found in [27]).

Theorem 3. Let x be a set of m vectors sampled i.i.d. from a pdf p(·) with mean µ and such that p(·) is a function

of a distance dX (µ, ·) in X . Let k(·, ·) be a normalized kernel such that

k(x, x′) = exp(−λdX (x, x′)) for all (x, x′) ∈ X × X (19)

with λ > 0. Then, with probability 1, the center c yielded by the ν-one class SVM converges to µ = φ(µ) when

m → ∞.

Note that Theorem 3 is more general than the Gaussian case considered here. From Theorem 3, with probability

one, for m1 → ∞, µt,1 = φ(µt,1) is the limit of the center ct,1. In other words, the center ct,1 of the segment of

the sphere S becomes infi nitely close to the image µt,1 of µt,1 in feature space. Using Remark 2, one can write

DH(xt,1,xt,2) −→
m1,m2→∞

(

µt,1µt,2(

µt,1x
MSV
t,1 +

(

µt,2x
MSV
t,2

(20)

Replacing arc distances by arccos(〈·, ·〉H) and dot products in feature space by kernels, then

DH(xt,1,xt,2) −→
m1,m2→∞

arccos
(
k(µt,1, µt,2)

)

arccos
(
k(µt,1, xMSV

t,1 )
)

+ arccos
(
k(µt,2, xMSV

t,2 )
) (21)

For the Gaussian kernel, it becomes

DH(xt,1,xt,2) −→
m1,m2→∞

g
(
||µt,1 − µt,2||2X

)

g
(
||µt,1 − xMSV

t,1 ||
2
X

)
+ g

(
||µt,2 − xMSV

t,2 ||
2
X

) (22)

where g(u) = arccos
(
exp(− 1

2σ2 u)
)
. It can also be shown that ||µi − xMSV

i ||2X is asymptotically proportional to

the variance σ2
i of pi, i = 1, 2 and we have fi nally

DH(xt,1,xt,2) −→
m1,m2→∞

g
(
||µt,1 − µt,2||2X

)

g
(
βt,1σ2

t,1

)
+ g

(
βt,2σ2

t,2

) (23)
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Where we note that g(·) is an increasing function such that g(0) = 0 and (βt,1, βt,2) > 0 are constants. This result

is quite important because it shows that, for sets with radial Gaussian distributions, DH(xt,1,xt,2) behaves like the

standard Fisher ratio DF (xt,1,xt,2) in input space. This is assessed by the simulations presented in Fig. 4.

Evolution of the training sets xt,1 and xt,2 in input space
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Fig. 4. Comparison of the dissimilarity measure DH with the Fisher ratio in input space on 2-D Gaussian training sets xt,1 and xt,2 with
mean µ1 and µ2. (Top) Training sets in input space. From left to right, the distance ||µ1 − µ2||X increases, i.e., the sets are better and better
separated. Solid lines represent regions estimated by the ν single-class SVM. (Bottom) The Fisher ratio in input space and DH are plotted w.r.t.
the distance ||µ1 − µ2||X . As can be seen, both dissimilarity measures increase as the training sets become better separated. The dissimilarity
measure DM , introduced in Subsection IV-C, shows unsatisfactory fluctuations.

As it is defi ned in feature space where the points ct,i and pt,i, i = 1, 2, are always defi ned, DH is adapted to

situations where the vectors are located in regions of X with complicated shapes. In particular, if the support of

density, say, p2 is non connected, then DH is still defi ned. In Fig. 5, simulations on a toy example show that DH

still has the expected behavior, namely it is small for similar training sets xt,1 and xt,2, and large for training sets

with different shapes, even though the mean of p1 remains close to the mean of p2. This illustrates the interest of

DH in general situations.

Remark 4. Kernel Fisher Discriminant.

DH is built according to the same principle as the Rayleigh coefficient used in Fisher analysis [12]. Yet it is completely different

from a Kernel Fisher Discriminant analysis (KFD, see e.g. [28]) as, in our case, the direction vectors wt,i ∈ H (i = 1, 2) are

computed using two independent single-class SV machines. In KFD, it is optimized so as to obtain the projection directions

that maximize the variance of the projected vectors.

This asymptotic result is a consistency check about the dissimilarity measure DH, because it has the same

behavior as a known optimal measure under Gaussian assumption, namely the Fisher ratio. In terms of computational

complexity however, the Fisher ratio is generally cheaper. It must be noticed, though, that DH addresses much more

general classes of problems including those with limited amount of training samples, large dimensional descriptors,

October 12, 2004 DRAFT



13

Evolution of the training sets xt,1 and xt,2 in input space
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Fig. 5. Comparison of DH with the input-space Fisher ratio on 2D training sets. The training set xt,1 is sampled according to a Gaussian pdf
with mean µ1 and is kept steady, whereas xt,2 is a mixture of two Gaussian pdfs with means µ2 and µ′

2. (Top) Training sets in input space.
From left to right, the distance ||µ2 − µ′

2||X increases with µ1 = (µ2 + µ′
2)/2, i.e., the sets are better and better separated but keep the same

means. (Bottom) The Fisher ratio in input space and DH are plotted w.r.t. the distance ||µ2 − µ′
2||X . As can be seen, DH increases as the

training sets become better separated, but the Fisher ratio decreases. The dissimilarity measure DM shows unsatisfactory fluctuations.

or unknown pdfs with possibly complicate shapes and non-connected supports: in these situations, using the Fisher

ratio is inadequate. It also has little sense to compute the Fisher ratio when the size m of the training set is small

compared to the dimension of the input space.

B. Comparison with Parzen density estimation techniques

For a given kernel k(·, ·) ≥ 0 such that
∫
X k(x, x′)dx′ = 1 for all x in X , the Parzen windows density estimation

technique provides the following estimate p̂m(·) of the pdf p(·):

p̂m(·) =
1

m

m∑

i=1

k(xi, ·) (24)

Abrupt change detection can be achieved by computing p̂m(·|1) and p̂m(·|2) (see Subsection I-A) respectively

on xt,1 and xt,2, and then comparing the two estimated densities using a dissimilarity measure, such as the KL

divergence. Its numerical computation can however be diffi cult, as it involves an integral in possibly large dimension.

When p̂m(·|i), i = 1, 2, dies off at a strong rate with monotonic tails, a Monte-Carlo approximation of the KL

divergence based on a sampling done according to p̂m(x|1) is numerically unstable. Approach to tackle this problem

can be found in the ICA literature, see e.g., [14]. Note that when ν = 1, the ν-SV one-class decision function is

build on the Parzen window estimate [16].

Another possible solution consists of computing the Fisher ratio directly in feature space. This approach, however,

cannot deal with outliers. Moreover, the empirical estimate of the covariance matrix is poor, since it is computed
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using only mj training vectors in dimension mj , j = 1, 2.

C. Other possible SV approaches to abrupt change detection ?

In this subsection, we investigate other possible SV-based approaches to abrupt change detection. A fi rst alternative

SV approach considers the composite two-class training set at time t written xt = {xt,1,xt,2}, and applies a mere

2-class ν-SVM (see, e.g., [16] for a detailed presentation of the method). The sets xt,1 and xt,2 are attributed

different labels (for instance, +1 for the xt,1 and −1 for xt,2), and therefore defi ne two classes of vectors. The

2-class ν-SVM yields a margin 1/||wt||, denoted DM (xt,1,xt,1), which indicates the distance in feature space

between the separating hyperplane and the closest mapped training vectors (called margin SVs). Of course, the

larger the margin, the more separated the sets xt,1 and xt,2. However, this approach is not satisfactory in the

context of abrupt change detection for three major reasons. Firstly, when no abrupt change occurs, vectors from

xt,1 and xt,2 are located in the same region of X , and defi ning a margin between them is meaningless. Secondly,

outliers are defi ned in different ways in our KCD approach and in 2-class ν-SVM: in the 2-class case, vectors are

considered as outliers (i.e., as NMSVs) if they are close to the hyperplane that best separates xt,1 from xt,2. In

other words, outliers in the set xt,1 are defi ned w.r.t. the other set xt,2 (and conversely) and not w.r.t. the underlying

process that generates the time series of descriptors, see Fig.’s 4-5. Thirdly, the computational load is much heavier

with the 2-class ν-SVM approach, as training is performed over m1 + m2 vectors instead of m1 and m2 vectors

(training classical SVM scales roughly with O(m3) or even O(m4), and optimized solvers complexity reaches

O(m2)), see Fig 6. When no change occurs, training the 2-class ν SVM takes a very long time compared to our

approach6. This of course occurs also with large values for the kernel spread parameter σ (see Fig. 6): the greater

σ the greater the runtime of the 2-class-based change detection method. Oppositely, for a fi xed number m1 = m2

of training vectors, the KCD algorithm runtime is roughly constant w.r.t. σ.

D. Tuning the algorithm – kernel selection

For the sake of clarity, we presented the KCD algorithm as a decision layer using previously extracted descriptors.

We can, however, have another interpretation of the procedure, based on the following property [19]:

Property 5: Let k(·, ·) be a Mercer kernel on X × X . Then k
(
q(·), q(·)

)
with q(·) a X -valued function on X is

also a Mercer kernel.

In other words, the preprocessing function q(·) which maps the yτ ’s into descriptors xt’s, together with the

Gaussian kernel applied xt’s ,can also be interpreted as the direct application of a more general Mercer kernel (that

includes the preprocessing function q(·)) to original time series yτ . The parameters of the KCD algorithm are thus

ν, m1, m2, the parameters of k(·, ·), (i.e., σ in the Gaussian kernel case), the parameters of q(·), and the detection

threshold parameter η.

6The simulations were conducted using the Spider toolbox [22] default optimizer; the switch to other optimization routines did not change
the observed behavior.
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Fig. 6. Runtime of the two-class classifi cation approach (computation of DH, circles) and KCD approach (computation of DM , crosses)
as functions of the Gaussian kernel spread parameter σ, for the toy example of Fig. 4. The parameters of both algorithms are ν = 0.2,
m1 = m2 = 40.

The influence of q(·) clearly depends on the descriptors extraction technique selected. However, KCD effi ciency

is clearly related to the ability of q(·) to characterize abrupt changes as shifts in the descriptors space X . Typical

descriptor extractors for audio are time-frequency representations (a discussion about time-frequency preprocessing

parameters tuning can be found in [25, 29]).

More generally, the KCD algorithm parameters can be tuned as follows in applications. When dealing with

complicated applications, such as speech/music processing or industrial applications where no underlying physical

model is available, the use of high-level descriptors proves to be particularly effi cient. These include time-frequency

representations, mel-cepstral coeffi cients, wavelet coeffi cients, etc. As these are redundant transforms with known

good properties for reflecting transient behavior, they can be expected to provide descriptors adapted to the change

detection framework we address. The descriptors they yield are large dimensional, but this is not a problem due

to the nice properties of SV novelty detection, see Section II and [16]. Most of these techniques can be further

adapted to the signal considered. In the case of time-frequency representations7, this adaptivity includes the choice

of the time-frequency kernel and windows [31, 32]. Of course, if the change is expected to happen in some known

domain, projection on relevant subspace should also be considered.

The kernel k(·, ·) defi nes the map φ : X → H. In the Gaussian kernel case, σ influences the location of vectors

φ(xi)’s on the hypersphere S. If σ is much smaller than the distances ||x − x′||X , (x, x′) ∈ X 2, then in feature

space, the angle between any x and x′ is close to π/2. In other words, φ(X ) occupies a large portion of the positive

orthant of the hypersphere S. On the contrary when σ >> ||x − x′||X , for any (x, x′) ∈ X 2, mapped training

vectors are close one to another in feature space H: the angle between vectors from φ(X ) is close to 0. None of

these situations is satisfactory, and choosing σ one order of magnitude smaller than the average distance ||x−x′||X ,

(x, x′) ∈ X 2 is sensible, and easy to implement, see Fig. 7.

Tuning of m1 and m2 is generally imposed by the dynamics of the signal/system y: small m1 and m2 make

7More information about time-frequency representations can be found in [30]
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Fig. 7. Comparison of the dissimilarity measure DH for different values of the kernel width σ, for σ = 0.1, 0.3, 0.5, 1, 2, 2.5, 5, 10. The
training sets are the same 2-D Gaussian sets as in Fig. 4. As can be seen, the KCD index has a sensible behavior for a large range of values
for σ.

the KCD algorithm detect frequent, small changes. On the contrary, large m1 and m2 enable the detection of long

term changes, and neglect small changes. External constraints may also be considered: if a small detection lag is

required, then m2 is kept small. Note however that like in any Machine Learning approach, the accuracy of the

training phase (that is, of the computation of wt,1 and wt,2) increases together with m1 and m2.

The rate of outliers ν is tuned according to detection requirements: for values about 0.2 to 0.8, the influence

of outliers is limited, which reduces the rate of false alarms. No signifi cant difference is observed in detection

performance for values in the range 0.2 ≤ ν ≤ 0.8. On the contrary, ν = 0 is the so-called hard margin case,

which yields more false alarms. The specifi c case ν = 1 has been examined in Subsection IV-B.

Tuning the threshold automatically is still open-research for the KCD algorithm, as for most change detection

techniques. In the audio framework, supervised tuning on a short signal sample can be considered; it is effectively

the method we employed for the music segmentation simulations reported in Section V-B.

V. SIMULATION RESULTS

This section is dedicated to two simulation situations. We fi rst compare the KCD algorithm to the GLR algorithm

in the case of (synthetic) noisy sum-of-sines signals. KCD is then applied to music signal segmentation (organ and

saxophone), where defi ning a convenient model suited to the GLR algorithm is almost intractable.

A. Noisy sum-of-sines signals

In this subsection, we consider noisy sum-of-sines signals given by yt = a1 sin(2πf1t)+ . . .+an sin(2πfnt)+εt,

(t = 1, . . . , N) where fi are frequencies, ai are amplitudes (i = 1, . . . , n) and ε is a Gaussian white noise with

variance σ2
ε . We implement a modifi ed online version of the original GLR approach presented in [1], then we
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apply the KCD algorithm with time-frequency based descriptors8. Through the simulations we propose, we intend

to compare the behavior of KCD and the GLR in a realistic situation.

We fi rst describe the modifi ed online GLR used in this simulation. GLR applies directly to the signal y and

requires the choice of a model (with parameters θ) and a threshold η. For each t in {m′
1 +1, . . . , N −m′

2 +1}, θ is

fi rst estimated on the signal yt,0 = {yi}, i = t−m′
1, . . . , t+m′

2−1, producing prediction errors e0. This corresponds

to the hypothesis that no change at all occurs in this interval (hypothesis H0). Then, for the same t, the model

parameters θ are estimated on yt,1 = {yi}i=t−m′
1
,...,t−1 (resp. yt,2 = {yi}i=t,...,t+m′

2
−1) with prediction errors et,1

(resp. et,2). A change is detected in y whenever the likelihood ratio
(
1 − ||et,1||

2

2
+||et,2||

2

2

||e0||22

)
exceeds the threshold η.

The immediate past set size m′
1 (resp. immediate future set size m′

2) may differ from the size m1 (resp. m2) used in

KCD, which corresponds to a set of descriptors. When tuning KCD and the GLR parameters, mi and m′
i (i = 1, 2)

are chosen such that both approaches use the same set of signal samples {yτ}, τ = m′
1 + 1, . . . , N − m′

2 + 1, at

each time instant. The framework for the modifi ed GLR is presented in Fig. 8.

yt,2

Time t

Current time

yt

m2
′

yt,1

yt,0

m1
′

Fig. 8. Framework for the modifi ed online GLR used in this Subsection; the approach applies directly to the signal y, represented by circles.

Remark 6. Classical GLR approach.

The classical, batch approach for GLR applies the above procedure, with the sets yt,1 and yt,2 now defined as: yt,1 = {yi}1,...,t−1

and yt,2 = {yi}i=t,...,N . The prediction errors e0 are computed on the whole signal yτ , τ = 1, . . . , N , and the likelihood ratio
||et,1||

2
2
+||et,2||

2
2

||e0||
2
2

is computed at each time instant t as before. Hence, the information contained in the whole signal is used to

test each time instant t as a possible change time. KCD can be adapted to this context, by defining accordingly the immediate

past of time instant t as xt,1 = {xi}i=1,...,t−1 and its immediate future as xt,1 = {xi}i=t,...,N . The size of xt,1 is m1 = t−1,

and the size of xt,2 is m2 = N − t + 1. Change times are estimated as in classical KCD whenever DH(xt,1, xt,2) peaks.

Synthetic signals are N = 2048 points long, with n = 2 sines of constant amplitudes a1 = a2 = 1 and frequencies

f1 = 0.075, f2 = 0.2 which may jump abruptly at time t = 1024 to f1 = 0.1 and f2 = 0.125. For different SNRs

{0, 1, 2, 3, 4, 5, 10, 25} dB , 400 signal realizations are generated, half of which have an abrupt change at time

t = 1024, and half of which have none. The spectrograms of two realizations of y are plotted in Fig. 9.

In engineering problems such as music/speech processing, a perfectly suitable and relevant parametric model can

rarely be obtained; one has to choose the model that best fi ts the data and, in the same time, that takes into account

8Applying a Gaussian kernel to time-frequency descriptors results in fact in a composite Gaussian/time-frequency kernel, as used in [11, 25]
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Signal-to-noise ratio is 5dB. Signal-to-noise ratio is 0dB.
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Fig. 9. Spectrograms of two realizations of the sum-of-sines signals used in the simulation: (left) The SNR is 5dB (right) The SNR is 0 dB.
The spectrogram settings are described in Subsection V-A. On both realizations, an abrupt change occurs at time t = 1024.

constraints such as complexity, computational load, etc9. A standard approach to music/speech signal segmentation

consists of implementing the GLR test jointly with an autoregressive (AR) dynamic model, see [34, 35]. Therefore,

it is sensible to compare KCD to the state-of-the-art GLR+AR model with order 4. However, for fair comparison,

the two methods are provided the same amount of data when testing a given possible change time instant. It

should be noted that the modeling error made by implementing an order-4 AR model is mild, as it still assumes

the presence of two frequencies in the considered signal but does not correctly deal with the additive noise. This

illustrates realistic situations where modeling errors cannot be avoided. Here, modeling errors increase when the

SNR decreases. In KCD, this issue is not met directly as the approach is model-free; however, signal-dependence

issues are embedded in the choice of the descriptors x.

The sizes of the sets yt,1 and yt,2 used in the GLR are m′
1 = m′

2 = 171. The KCD algorithm is parameterized

as follows. The descriptors used are time-frequency sub-images extracted from the smoothed-pseudo Wigner-Ville

time-frequency representation (TFR) of y (see [6, 11, 25] for other examples of time-frequency descriptors). The

TFR smoothing windows are Gaussian with length 25 points (time smoothing window) and 61 points (frequency

smoothing window). Each extracted descriptor is a sub-image extracted from the whole TFR, made of 12 consecutive

TFR columns that do not overlap; the training sets sizes are m1 = m2 = 12. This preprocessing uses 171 points

of the signal y to defi ne the immediate past and future sets for time instant t: both methods use the same set of

samples of the signal y to test each time instant t. The SV parameters are ν = 0.2 (i.e., less than 20 per cent of

outliers are allowed in the training set), and σ = 1.5 for the Gaussian kernel.

Both KCD and GLR algorithms yield a stationarity index whose peaks are supposed to indicate abrupt changes.

Performance is assessed via ROC curves, where the false alarm rate and the true alarm rate are defi ned as follows:

a true alarm is decided if both 1) a true change is detected and 2) the estimated time instant is less than 80 points

aside the true change time instant (this corresponds to ±2% of the length of y). A false alarm is decided whenever

an abrupt change is detected and matches neither point 1) nor point 2) above. The ROC curves obtained for different

9An exemple of full parametric model for music transcrition may be found in [33].
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values for the SNR are plotted in Fig. 10. When the SNR is 5dB or above, both methods yield excellent results.

ROC curves for SNR = 0, 1, 2, 3, 4, 5, 10, 25 dB

0 0.1 0.2 0.3 0.4 0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

PSfrag replacements
False alarm rate

Tr
ue
al
ar
m
ra
te

0 0.1 0.2 0.3 0.4 0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

PSfrag replacements
False alarm rate

Tr
ue
al
ar
m
ra
te

GLR KCD

Fig. 10. Comparison of the performance of GLR and KCD algorithms on noisy sum-of-sines signals. The ROC curves display the true alarm
rate as a function of the false alarm rate, for GLR (left) and KCD (right). The curves are plotted for different values of the SNR (from bottom
to top on each fi gure): SNR = 0, 1, 2, 3, 4, 5, 10, 25 dB. When the SNR is above 5dB, both methods have excellent performance; for smaller
SNRs, KCD outperforms the GLR approach: the modeling errors in the GLR increase.

However, when the level of noise increases, KCD exhibits superior performance as, for a given SNR, the KCD

ROC curve is well above the GLR ROC curve (see Fig. 10). This behavior is due to modeling errors in the use of

the GLR: the model is an order-4 autoregressive model, whereas the signal y is a sum of two sines with noise. In

that sense, KCD is not subject to modeling errors; this simulation also emphasizes that our approach proves to be

more robust to noise in this example.

B. Applications to music segmentation

In this subsection, we apply the KCD algorithm to abrupt change detection in music so as to perform music

segmentation. The fi rst two signals processed here are recorded from a church pipe organ. A third signal is a

short saxophone extract. Segmenting Organ-in-church signals is considered a specially diffi cult task, because sound

reflects on church walls and garbles considerably the original sound, as the reverberation dies away quite slowly.

Further diffi culties arise from, the tremulant, or from the score, when notes alternate very quickly. The music signal

we consider includes examples of these two issues. Our purpose is to detect accurately all abrupt frequency changes

in the music signal, that is all the changes of notes in the signal. The choice of a well-known piece of music makes

it easier to validate heuristically the change detected by KCD, either by simply listening to the piece of music or

by reading the corresponding score. The music signal is an extract of the Toccata in D minor by J. S. Bach [36].

The KCD parameters are tuned on a fi rst 3.27 seconds extract with sampling frequency Fs = 44.1kHz. The

corresponding score is presented in Fig. 11. A second extract is then used for validation, see Fig. 14.
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Score A | G | A | rest | G | F | E | D | #C | D

KCD changes #1 #2 #3 #4 #5 #6 #7 #8 #9 #10 #11 #12

Fig. 11. (Top) Score of the training organ extract considered in this subsection. The music signal is 3.27 seconds long, and is half the fi rst
measure of the Toccata in D minor by J. S. Bach; it is played on the pipe organ, in a church, which makes its segmentation a very tough
task. (Bottom) KCD results: notes are represented in upper row, with theoretical changes noted |; the lower row corresponds to the (numbered)
change detected by KCD. Changes #4, #5 and #12 are due to over-segmentation.
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Fig. 12. As the music signal is mainly composed of notes which alternate very quickly, it is impossible to distinguish between them in the time
domain (left). The spectrogram of the considered signal is computed (middle). The spectrogram is scaled to the power 0.05 (right); descriptors
are extracted from this modifi ed TFR.

1) First organ extract: In the fi rst extract, the mordent A−G−A is a diffi cult segmentation task: the fi rst two

notes alternate very quickly, and the fi nal A is played with vibrato: the oscillation peaks may be detected as abrupt

changes by the segmentation algorithm. Then, the 4 notes following the 32nd rest are 64th notes, hence they are

played very quickly and the diffi culty is even raised as the frequency gap between some of them (E and F , D and

C sharp, and C sharp and D) is only a half step. The musician plays the same melodic line with both hands, at

the distance of one octave.

The KCD algorithm is tuned so as to obtain accurate segmentation results on the fi rst extract. First, the music signal

is down-sampled by a factor 16, yielding a frequency bandwidth of [0, 1378.1] Hz; though cutting many partials, this

resizes the frequency bandwidth to a smaller domain which contains suffi cient information for segmentation. The

instantaneous energy of the down-sampled signal is then set to one. Descriptors are extracted from the spectrogram

of the preprocessed signal (represented in Fig. 12). The frequency smoothing window is Gaussian with length 161

points (58.4 ms). Each extracted descriptor is a sub-image of the TFR made of 20 consecutive TFR columns. The
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Fig. 13. First extract: the KCD index peaks over a certain threshold (horizontal solid line) whenever changes are detected in the music signal.
Such changes are represented with a dotted vertical line. All changes are correctly detected; limited over-segmentation can be observed, with 2

false alarms. Listening to the piece of music confi rms the correctness of the segmentation.

TFR is computed over 512 frequency bins. Each vector of the training set is then scaled to the power 0.05: in

the optimization problem of eq. (5), large values are more likely to be preferred as they require a small weight in

w; rescaling the training vectors avoids this effect. The training sets sizes are m1 = m2 = 15; the training sets

durations thus are 108.84 ms each, and training vectors durations are 7.26 ms. The SV kernel parameter is σ = 75

for the Gaussian kernel, and ν = 0.8. We expect the TFR to be very perturbed by echoes or harmonics, which is

why we make the algorithm more robust by specifying (with ν = 0.8) that only 20 per cent of each training set

really is signifi cant if one wishes to estimate RX
xt,1

and RX
xt,2

.

Fig. 13 displays the KCD index with a threshold chosen heuristically: η = 0.76. All changes are correctly

identifi ed, see Fig. 11. Provided over-segmenting remains limited, it is not a bothering issue: if we consider the

segmentation as a preprocessing step coming before such analysis as speech recognition or harmonic modeling [33],

limited over-segmentation leads to small computational overload, whereas under-segmentation has far more unde-

sirable effects. Change #5 detects in fact the end of the echo of the second A. All the other changes are changes

expected from the score presented in Fig. 11. The correctness of the detection is further confi rmed by listening to

the music signal.

| A | G | A | F | A | E | A | D | A | #C | A | D | A | E | A | F | A |

#1#2 #3 #4 #5 #6 #7 #8 #9 #10 #11 #12 #13 #14 #15 #16 #17 #18 #19 #20 #21

Fig. 14. (Top) Score for the second extract considered in this subsection. The music signal is 3.69 seconds long, and is part of the fi rst measure
of the Fugue in D minor by J. S. Bach. (Bottom) KCD results: notes are represented in upper row, with theoretical changes noted |; the lower
row corresponds to the (numbered) change detected by KCD.
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Fig. 15. KCD index for the test music sample. Overall, changes are correctly detected.

2) Second organ extract: We now apply KCD to the second extract with the parameters tuned on the fi rst extract,

to check the generalization ability of the algorithm. The second extract comes from the same recording, and it is

a 3.69 seconds extract of the fi rst measure of the Fugue in D minor [36]. The corresponding score is presented

in Fig. 14 together with KCD segmentation results. The KCD index is plotted in Fig. 15. Overall, changes are

correctly detected. Change #13 is detected with some lag. Changes #8 and #9 detected by the KCD algorithm

actually correspond to one change (similarly for changes #18-#19): the player actually ends one note after starting

playing the following one. One may notice that in such situation, it is hard to conclude even by listening to the

extract, due to the fast alternation of notes and their trailing echos. Hence, except for one change detected with lag,

all changes are detected properly.

We also implemented a GLR approach based on an AR model with order up to 40. In spite of many attempts

to tune the GLR parameters, we did not not obtain convincing results, mainly because of 1) the AR model order

need be very high to start obtaining some results, but this requires very long windows (larger than the duration of

shortest notes) so as to enable accurate AR parameters estimation and 2) computations are very long.

In this subsection, we applied KCD to the problem of music segmentation. Though dealing with a diffi cult music

signal recorded in an echoic environment, the approach yields good results; even better results are obtained with

easier signals, such as classical piano solo, or choruses played by the reed section of a jazz quintet.

3) Saxophone extract: We now apply KCD to a saxophone extract plotted in Fig. 16 which was previously used

to assess the quality of standard model-based approaches in [37], cited in [38]. Segmentation results using both

frequency-domain and time-domain approaches, including GLR, can be found in the reference provided.

We fi rst apply KCD to this signal using time-frequency descriptors and wavelet-based descriptors. The latter are

known to represent well transients.

Time-frequency descriptors. Descriptors are extracted from the spectrogram using exactly the same parameter

tuning as for the organ signal presented in Sections V-B.1 and V-B.2 (this illustrates the good generalization ability

of KCD). The parameters for the ν-SV single-class classifi er are also kept unchanged. The change detection index
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Fig. 16. Down-sampled sax signal in the time domain; length of the signal is 2.33 s.

is plotted in Fig. 17. True changes are correctly detected.
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Fig. 17. The Spectrogram of the sax signal is computed, and scaled to the power 0.05 (left). Descriptors are extracted from this modifi ed
TFR. In the KCD index (right), all peaks correspond to a change in the sax signal. These results are obtained with the same parameters as for
the organ signal in Section V-B.1 and V-B.2.

Wavelet descriptors. Descriptors are extracted from a scalogram [30] (computed with a 50 points–18.1 ms–Morlet

wavelet, over 64 voices) of the down-sampled signal represented in Fig. 16. As above, it is then scaled to the power

0.05. Each training vector is made of 20 consecutive Scalogram columns, which correspond to 7.26 ms. The training

set sizes are m1 = m2 = 20; the training set lengths thus are 108.84 ms. The SV kernel parameter is σ = 75 for

the Gaussian kernel, and ν = 0.8. The KCD index is plotted in Fig. 18. Again, true changes are correctly detected.

VI. CONCLUSION

In this paper, we proposed a novel Machine Learning approach to the abrupt change detection problem: the

detection is achieved by means of a new dissimilarity measure defi ned in feature space, yet computed in input
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Fig. 18. The Scalogram of the sax signal is computed, ans scaled to the power 0.05 (left). Descriptors are extracted from this modifi ed Time-
Scale Representation. In the KCD index (right), all peaks correspond to a change in the sax signal. Peaks are the same as with time-frequency
descriptors.

space X using the kernel trick. This approach is robust to outliers, and need not assume a statistical modeling

of underlying distributions. Simulations showed that our KCD algorithm overperforms the standard Generalized

Likelihood Ratio (GLR) approach. The application of KCD to music segmentation also showed good results. The

perspectives for this work include further research on the application of KCD to the segmentation of music and

speech signals; in particular, focusing on the design of descriptors specifi cally dedicated to these tasks should

improve the results already obtained in this paper.
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