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Abstract

The purpose was to objectively compare the application of several techniques and the use of several input features for brain tu-

mour classification using Magnetic Resonance Spectroscopy (MRS). Short echo time 1H MRS signals from patients with glioblas-

tomas (n = 87), meningiomas (n = 57), metastases (n = 39), and astrocytomas grade II (n = 22) were provided by six centres in the

European Union funded INTERPRET project. Linear discriminant analysis, least squares support vector machines (LS-SVM) with

a linear kernel and LS-SVM with radial basis function kernel were applied and evaluated over 100 stratified random splittings of the

dataset into training and test sets. The area under the receiver operating characteristic curve (AUC) was used to measure the per-

formance of binary classifiers, while the percentage of correct classifications was used to evaluate the multiclass classifiers. The in-

fluence of several factors on the classification performance has been tested: L2- vs. water normalization, magnitude vs. real spectra

and baseline correction. The effect of input feature reduction was also investigated by using only the selected frequency regions con-

taining the most discriminatory information, and peak integrated values. Using L2-normalized complete spectra the automated bi-

nary classifiers reached a mean test AUC of more than 0.95, except for glioblastomas vs. metastases. Similar results were obtained

for all classification techniques and input features except for water normalized spectra, where classification performance was lower.

This indicates that data acquisition and processing can be simplified for classification purposes, excluding the need for separate

water signal acquisition, baseline correction or phasing.

� 2004 Elsevier Inc. All rights reserved.
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1. Introduction

In vivo magnetic resonance spectroscopy (MRS) is a

noninvasive technique which provides chemical informa-

tion of metabolites present in living tissue and can be
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used to help characterize human brain tumours [1–3].

A histopathological analysis of a biopsy is the present

gold standard for diagnosis of an abnormal brain mass

suspected of being a brain tumour. A biopsy is not with-

out risk of morbidity and mortality and cannot be car-

ried out in all instances (e.g., brain stem tumours,

paediatric tumours). Additionally, there are inherent

inaccuracies in the gold standard [4] which can lead to

mailto:adevos@esat.kuleuven.ac.be 
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misclassification or imprecision in establishing the final

diagnosis. MRS has the potential to improve the diagno-

sis of brain tumours,withno additional risk to the patient.

Several studies [5–17] have already shown progress in

automated pattern recognition for brain tumour classifi-

cation based on MRS data. Several partners from the
EU funded INTERPRET project (IST-1999-10310)

[18], who provided the data for this study, have already

published promising results for classification of brain tu-

mours based on MRS data available within the project

[7,12,15,16,19–24]. In [16], for example, Tate et al. used

linear discriminant analysis to classify 144 short echo

time spectra from three contributing centres, consider-

ing three groups of brain tumours: meningiomas,
low-grade astrocytomas, and aggressive tumours (glio-

blastomas and metastases combined). Tate et al. selected

specific training and test sets; forming the training set

from two centres (94 spectra) and taking the third centre

as test set (50 spectra). Based on this setting a classifica-

tion accuracy of 96% was achieved.

However, most of the INTERPRET studies were

based on a previous version of the dataset, did not use re-
ceiver operating characteristic (ROC) analysis or focused

on a specific technique. The present work follows a dis-

tinct approach in several aspects with respect to previous

studies. Several well-established classification and feature

selection techniques are applied to themulticentre dataset

of short echo time 1H MRS signals. The spectra were ac-

quired on scanners from GE, Philips, and Siemens, the

three leading manufacturers of these MR scanners, using
the major acquisition sequences PRESS and STEAM.

Linear and nonlinear classification techniques are ob-

jectively compared for binary and multiclass classifica-

tion. The algorithms are designed to automatically

extract the most important features which are then used

to classify each spectrum according to its corresponding

tumour type. By applying the techniques to several input

features, the influence of normalization methods, base-
line correction, phasing, and dimensionality reduction

of the input data is tested.

Binary classification performance is measured based

on the receiver operating characteristic (ROC) curve

analysis over 100 stratified random samplings of train-

ing and test set. ROC analysis is commonly used in med-

icine [25–27] to objectively judge the discrimination

ability of various statistical methods for predictive pur-
poses, which can be measured by the area under the

ROC curve (AUC). The AUC gives then a global mea-

sure of the clinical efficiency over a range of test cut-off

points on the ROC curve. This is in contrast to perfor-

mance measures such as the accuracy, which is only

based on a single cut-off point (e.g., for one specific val-

ue of the false-positive rate).

In our previous study on long echo time magnitude
spectra [7], automated binary classifiers reached a mean

AUC of more than 0.90 except for the most difficult bi-
nary classification to discriminate glioblastomas from

metastases. In comparison with long echo time spectra,

short echo time spectra are more difficult to analyze due

to a higher number of overlapping peaks, a more prom-

inent baseline and a higher sensitivity to artefacts. How-

ever, short echo time spectra are richer in information
than long echo time spectra, as several resonances di-

minish in apparent intensity at longer echo times

[28,29], because of a small T2 value or signal cancellation

due to J-modulation [30,31]. For example, resonances

of mI (myo-Inositol,triplets and multiplet at 3.26

and 3.57ppm), Glu (glutamate, multiplets at 2.33 and

3.74ppm), Gln (glutamine, multiplets at 2.43 and

3.75ppm) are much less pronounced in spectra at longer
echo times. Here, we report our results of an extended

study based on short echo time spectra, similar to [7].

We investigate whether the applied pattern recognition

techniques are able to exploit the large amount of infor-

mation available in short echo time MR spectra, despite

the problems in analyzing these data, to discriminate

several types of brain tumours.
2. Materials

The short echo time INTERPRET database contains

single voxel 1H MR spectra from six centres: Centre

Diagnòstic Pedralbes (CDP), Barcelona (Spain); Funda-

ción para la Lucha contra las Enfermedades Neurológi-

cas de la Infancia (FLENI), Buenos Aires (Argentina);
Institut de Diagnòstic per la Imatge (IDI), Barcelona

(Spain); Uniwersytet Medyczny w Łodzi (MUL), Łodzi

(Poland); St. George�s Hospital Medical School

(SGHMS), London (United Kingdom), and Universitair

Medisch Centrum Nijmegen (UMCN), Nijmegen (The

Netherlands). Table 1 reports the most important acqui-

sition parameters. Quality control criteria have been ap-

plied to MR system performance and data from all
centres [32]. Data were acquired at 1.5T either by a

STEAM- or PRESS-sequence, at an echo time (TE) be-

tween 20 and 32ms. Note that TE can differ somewhat

from one centre to another, or even between data from

the same centre, due to variations in the optimized acqui-

sition protocols supplied by the manufacturers. This

range of TE will mostly affect the appearance of signals

from metabolites with coupled spins (e.g., glutamate/glu-
tamine (Glx), lactate (Lac), and alanine (Ala)) and the in-

tensity of signals from macromolecules which have a

short T2. The resonance pattern of signals from coupled

spins is also affected by the choice of the acquisition se-

quence used (PRESS or STEAM). Nevertheless, Tate

et al. [16] concluded that pattern recognition is less sen-

sitive to the effects of differences in acquisition parame-

ters than had been expected.
Four common brain tumour types are considered in

our study: glioblastomas, meningiomas, metastases,



Table 1

Overview of the acquisition parameters of the short echo time 1H MRS data from all centres

Centre Manufacturer Sequence TE (ms) TR (ms) SW (Hz) N

CDP GE STEAM 20 1600,2000 2500 2048

SGHMS GE STEAM 30 2000,2018,2020 2500 2048

PRESS 30 2000,2018,2020 2500 2048

FLENI GE PRESS 30 2000 2500 2048

IDI Philips PRESS 30,31,32 2000 1000 512

UMCN Siemens STEAM 20 2000 1000 512

MUL Siemens STEAM 20 2000 1000 512

The columns respectively correspond to the name of the centre, the manufacturer of the scanner, the sequence used, the echo time, the repetition time,

the spectral width, and the number of points in the original FID.
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and astrocytomas grade II, which for the purpose of

grouping are labeled as class 1, 2, 3, and 4, respectively

(Table 2). Although the INTERPRET database does

contain data from other types of brain tumours there

are much fewer spectra of these. To allow statistically

valid comparisons and to prevent unwanted bias due to

large differences in the numbers of spectra within each

group, we focused the analysis on the brain tumour types
with more than 20 spectra available. Moreover, the se-

lected tumour types are the major tumour groups occur-

ring in the brain and include both benign/low grade

(meningiomas and astrocytomas grade II) and malignant

(glioblastomas and metastases) tumour types, and tu-

mours of the same original cell type (glioblastomas vs.

astrocytomas grade II). All data have passed a quality

control and validation process, which was regulated by
strict rules agreed on by all INTERPRET partners [33].

Tumour assignment was based on the histological classi-

fication of tumours of the central nervous system (CNS)

set up by the World Health Organization (WHO) [34].

It is necessary to preprocess the raw MRS data prior

to classification. First, frequency alignment and zero or-

der phase correction was performed with Klose�s meth-

od [35]. Second, the residual water peak was filtered out
using HSVD [36], with 15 singular values over the water

region of 4.09–5.31ppm. The initial point of the time-

domain signal was removed, because it was often affect-

ed by instrumental artefacts. The FIDs acquired with a

GE-scanner had a different spectral width and number

of points than the Siemens- and Philips-data (Table 1).

To match these parameters, the GE-data were interpo-

lated using piecewise cubic splines in the time domain.
Table 2

Number of short echo time 1H MRS data of glioblastomas (class 1), mening

Centre Acquisition scheme Class 1

CDP STEAM 30

SGHMS STEAM 12

PRESS 6

FLENI PRESS 2

IDI PRESS 31

UMCN STEAM 2

MUL STEAM 4

Total 87

The rows correspond to the acquisition centre, while the columns show the
Hence, after preprocessing, all FIDs had 511 points

(512 minus the deleted first point) which provided spec-

tra with a final spectral width of 1000Hz. The interpola-

tion of the GE-data actually resulted in a four times

lower input dimension than the original GE-data, which

is more appropriate for classification. No additional ref-

erencing of the spectra was made, apart from the fre-

quency alignment with Klose�s method, leaving a slight
misalignment (<0.08ppm).

The resulting signal was then transformed to the fre-

quency domain by fast Fourier transform (FFT). For

classification, only the data points in the frequency

region of interest (4.17–0ppm), corresponding to 138 in-

put variables, were used. Fig. 1 depicts the mean L2-nor-

malized magnitude spectra without baseline correction

of the four classes.
3. Methods

The standard linear discriminant analysis (LDA) [37–

39] technique is compared to the kernel-based least

squares support vector machine (LS-SVM) [39,40] tech-

nique with linear and RBF kernels. One of the interest-
ing advantages of LS-SVM is its ability to learn and

generalize processing of high-dimensional data but with-

out dimensionality reduction, which is important for the

present application.

Classification can be applied directly to the spectra, in

which all spectral points are regarded as features.

However, reduction of these features to a smaller num-

ber can be performed to further improve the perfor-
iomas (2), metastases (3), and astrocytomas grade II (4)

Class 2 Class 3 Class 4 Total

12 5 4 51

4 5 6 27

8 11 4 29

0 0 1 3

30 17 5 83

1 0 1 4

2 1 1 8

57 39 22 205

type of brain tumour.



Fig. 1. Mean L2-normalized magnitude complete MRS spectra without baseline correction of the four classes: class 1 (top-left), class 2 (top-right),

class 3 (bottom-left), and class 4 (bottom-right) correspond to the glioblastomas, meningiomas, metastases, and astrocytomas grade II, respectively.

The solid lines are the means, while the dotted lines are the means plus the standard deviations of each class.

A. Devos et al. / Journal of Magnetic Resonance 170 (2004) 164–175 167
mance, also decreasing the amount of complexity and

simplifying the calculation. Dimensionality reduction

techniques try to extract the most characteristic input

features, to minimize redundancy and to exclude noise

and artefacts in the spectrum. This approach implicitly
assumes that the discarded variables only contain a mi-

nor amount of discriminative information.

One approach to dimensionality reduction is to select

the input features that are assumed to be most charac-

teristic according to some prior knowledge (Sections

3.2.2 and 3.2.3). This approach is taken prior to using

each of the classification techniques and is compared

to the direct use of the complete spectra. A second ap-
proach is to select the input variables based on some cri-

terion; principal component analysis (PCA) uses a

minimal number of PCs that explain a certain amount

of variability in the data. This technique is applied prior

to the LDA classification technique, since LDA requires

dimensionality reduction so that the number of input

variables is not too high with respect to the number of

training data.

3.1. Input features

3.1.1. Normalization

A normalization procedure should be applied that

tries to compensate for signal intensity differences

between spectra due to effects independent of the

type of tumour tissue. Two normalization approaches
are compared, which were elaborated in the following

way:
� L2-normalization: the spectrum (the full spectral

range of 1000Hz was used) is considered as a vector,

and the L2-norm of that vector is defined as the

square root of the sum of the squares of the elements

in that vector. In this study, we divided each spectral
value by the L2-norm of the spectrum. Hence, a L2-

normalized spectrum has unity norm.

� Water normalization: for each metabolite signal, a

corresponding water unsuppressed signal was avail-

able, acquired with the same acquisition parameters

as the metabolite signal and originating from the

same voxel. The amplitude of the water unsuppressed

signal was estimated with KULeuven ESAT-SCD
software developed by Leentje Vanhamme (personal

communication). The water unsuppressed signal was

modeled in the time domain by a Voigt model [41],

with an additional first order term that corrects for

eddy currents. HSVD was used to obtain initial pa-

rameter estimates, which were subsequently used as

starting values in a nonlinear least squares algorithm

to obtain the final parameter estimates. Each spectral
value in the metabolite spectrum was then divided by

the resulting estimate of the intensity of the water

peak.

Within the INTERPRET project, data were acquired

using standard protocols, (i.e., short echo time PRESS

or STEAM), to obtain MRS data measured under

acquisition parameters that are as uniform as possible
(Table 1). Water normalization compensates for differ-

ences in voxel size and receiver coil sensitivity variations,
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assuming that different brain regions and tissues have

the same water content. However, this assumption is

not completely valid [42]. Absolute quantitation

[30,43,44] might solve this problem, if used with an ex-

ternal reference signal, but is more time consuming

and less practical for routine clinical situations.

3.1.2. Magnitude vs. real spectra

An MRS signal is typically represented by its real and

imaginary part, and the process of ‘‘phasing’’ is required

to correctly produce the real part of the spectrum for clas-

sification. Although automated phasing techniques exist,

they are less suitable for in vivo data with large back-

ground signals. An alternative to using phased spectra is
to calculate themagnitude spectrum,whichmakes the sig-

nal phase independent. In this paper, we compare the use

of real and magnitude spectra for classification. This ex-

tends our previous study on long echo time signals, in

which only magnitude spectra were considered [7].

3.1.3. Baseline correction

Short echo time 1H MRS signals are characterized by
the presence of an unknown broad baseline underlying

the sharper resonances of the metabolites of interest,

that hinders the assessment of the intensity (i.e., quanti-

tation) of low weight metabolites. Several parametric

and nonparametric approaches to model the macromo-

lecular baseline are developed [45–50], but most of these

techniques are integrated as part of a quantitation ap-

proach to estimate the MRS parameters. Independently
of quantitation, the baseline can be modeled, e.g., by

polynomial or spline functions, but this requires the se-

lection of several spectral points to define the fitted base-

line, a process which is heavily user-dependent.

In this paper, another approach was used, which re-

quires the selection of only one parameter. The prepro-

cessed FID was multiplied by an exponentially

decreasing apodization function [12,51], given by
gn = e�bnDt, n = 0,. . .,N�1, with N the number of points

in the FID and a parameter b. The resulting FID is a

model for the broad baseline. The value b = 0.15 was

chosen to avoid, on the one hand a too flat baseline

and hence overestimation of several metabolite reso-

nances because of baseline contributions to the metabo-

lite peaks (b too high), and on the other hand the

underestimation of several metabolite resonances (b
too low). The chosen baseline model was subtracted

from the original signal to obtain the baseline corrected

signal. The performances of classification using the base-

line and nonbaseline corrected spectra are compared.

3.2. Dimensionality reduction by prior knowledge

3.2.1. Complete spectra

The spectra, obtained after preprocessing (Section 2)

were used as input features.
3.2.2. Selected frequency regions

It is well known that characteristic resonance peaks

correspond to important brain metabolites [1,3,42,52–

54]. It seems reasonable then, that these peaks might be

used as discriminatory features to distinguish tumour

types, in particular for those regions of the 1H spectrum
which are clearly different between spectra of different tu-

mour types. Thus, as an alternative to using complete

spectra, selected frequency regions were used which are

assumed to contain most of the information. Hence,

the redundancy generated by spectral noise and artefacts

in the spectrum was reduced. By taking a range of

±0.075ppm around the resonance frequencies [31] of sev-

eral characteristic metabolites, the number of variables
was reduced to 71. The following regions of the spectrum

were selected: L2 (lipids at �0.9ppm; 0.825–0.975ppm);

L1 (lipids at �1.2ppm; 1.125–1.275ppm); Lac (3CH3-

group; 1.235–1.385ppm); Ala (1CH3-group; 1.395–

1.545ppm); NAA (N-acetyl aspartate, 2CH3-group;

1.935–2.085ppm); Glx (4CH2-group; 2.270–2.510ppm);

Cr (total creatine, N(CH3)-group; 2.955–3.105ppm);

Cho (choline containing compounds, N(CH3)3-group;
3.115–3.265ppm); mI (5CH-group) + Tau (taurine,
2CH2-group) (3.195–3.345ppm); mI/Gly(glycine) (1CH-,
3CH-, 4CH-, and 6CH-groups; 3.450–3.680ppm); Tau

(1CH2-group; 3.345–3.495ppm); Glx + Ala (2CH-

groups; 3.665–3.815ppm); and Cr (2CH2-group; 3.845–

3.995ppm). This set of metabolite peaks is an extension

of the one used in our study on long echo time MRS

[7], because several additional metabolites (e.g., Glx,
mI, and Tau) are more visible in short echo time spectra.

3.2.3. Peak integration

Another approach to select the most discriminatory

input is based on peak integration. However, precise es-

timation of the peak integrals is difficult due to several

factors, including nonzero baseline, peak overlap, noise,

and the discrete nature of the spectrum. Peak integra-
tion in the current study was performed using the trap-

ezoidal rule [55]. For each selected metabolite the area

under the frequency peak in the spectrum was calculat-

ed. We used the same frequency ranges as for the select-

ed frequency regions above, and so reduced the number

of input variables to 13.

3.3. Experimental setting

3.3.1. Binary classification

Given four types of brain tumours, six binary

classifiers can be constructed to separate the following

pairs: glioblastomas vs. meningiomas (class 1 vs. 2),

glioblastomas vs. metastases (1 vs. 3), glioblastomas

vs. astrocytomas grade II (1 vs. 4), meningiomas vs.

metastases (2 vs. 3), meningiomas vs. astrocytomas
grade II (2 vs. 4), and metastases vs. astrocytomas grade

II (3 vs. 4).
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We applied the aforementioned techniques in the fol-

lowing way:

(1) LDA and LS-SVM with a linear kernel were used as

linear techniques, while LS-SVM with an RBF ker-

nel was used as a nonlinear technique.

(2) LS-SVM techniques were applied using the complete
spectra, using the selected frequency regions as well

as using peak integration.

(3) Feature selection using PCA prior to LDA was ap-

plied except for the case of peak integration where

a specific dimensionality reduction was already ap-

plied. PCA reduces the original number of spectral

variables to a minimal set of variables that accounts

for 75% of the variance of the data. Increasing the
number of selected PCs, for example, by taking 80

or 85% of the variance, causes rank deficiency when

applying LDA. Rank deficiency typically occurs

when the number of input variables is too high with

respect to the number of training data. An alterna-

tive criterion could be the selection of the number

of PCs by inspecting a scree plot [56], but this was

excluded as it is difficult to automate.

LS-SVM classification was applied using KULeu-

ven�s MATLAB/C LS-SVMlab toolbox [39,57,58] using

the same approach as described in [7]. The experiment

consisted of the following steps:

(1) division of the dataset into a training (2/3 of the da-

ta) and a test set (remainder),

(2) training the classifiers using the training set,
(3) evaluation of the performance using the test set.

Stratified random sampling was used while dividing

the dataset to preserve the proportion of the classes.

The procedure was repeated 100 times to avoid bias pos-

sibly introduced by selection of a specific training and

test set. In this way, we tried to obtain a representative

test performance. ROC [25–27] analysis was applied to
measure the discrimination ability of the binary classifi-
Fig. 2. Two-step classification. The left part shows step one, classification of

and aggressive tumours (5). The right part, or step two, further refines the c

either to glioblastomas (class 1) or metastases (3).
ers. The classification performance was then measured

by the mean AUC and its pooled standard error (SE)

calculated from 100 randomizations, as described in

[7]. The z ratio [59] was applied to statistically test

whether the areas under two ROC curves derived from

the same samples differ significantly from each other at
a significance level of 0.05. We note that when interpret-

ing the reported results the mean AUC as well as its

pooled SE should be taken into account. The mean

AUC, as an average performance, gives an indication

of a typical AUC obtained using the given input data,

while the pooled SE indicates how reliably the mean

AUC is estimated.

3.3.2. Multiclass classification

Using a binary classifier, a new spectrum of unknown

tumour type may be assigned to one of the two consid-

ered classes. However, in medical practice, the number

of possible tumour types is mostly not restricted to

two types. Therefore, a multiclass scheme has been de-

veloped to handle all classes in one construction, thereby

extending the restricted use of the binary classifiers men-
tioned in Section 3.3.1.

MR spectra of class 1 (glioblastomas) and class 3

(metastases) show a very similar pattern (Fig. 1), hence

both classes are merged, resulting into a new group of

aggressive tumours, labeled as class 5 (cf. [7,16]). A

scheme to discriminate classes 2, 4, and 5 is depicted

as step one on the left part in Fig. 2. A voting scheme

has been applied to decide which class is chosen based
on the three outputs of the contributing binary classifi-

ers. A certain class is taken if two of the binary classifiers

give the same output, otherwise the classifier considers

the output as undecided. Step two is carried out as illus-

trated in the right part: if the output of step one is class

5, then the spectrum is further classified either into class

1 or 3 using the binary classifier 1 vs. 3. The output of

step two does not change if step one gives class 2 or 4
as output. Four binary classifiers are the building blocks

of this multiclass classifier: classifiers 1 vs. 3 and 2 vs. 4,

and meningiomas vs. aggressive tumours (class 2 vs. 5),
three tumour classes: meningiomas (class 2), astrocytomas grade II (4),

lassification if the output is class 5 and assigns the spectra of this class



Table 5

Binary classification using L2-normalized complete magnitude spectra

with baseline correction

Classes PCA/LDA LS-SVM lin LS-SVM RBF

1 vs. 2 0.9591 ± 0.0265(5) 0.9625 ± 0.0271 0.9616 ± 0.0269

1 vs. 3 0.5762 ± 0.0939(5) 0.5914 ± 0.0931 0.6002 ± 0.0930

1 vs. 4 0.9650 ± 0.0295(4) 0.9584 ± 0.0335 0.9587 ± 0.0334

2 vs. 3 0.9607 ± 0.0388(5) 0.9685 ± 0.0308 0.9736 ± 0.0281

2 vs. 4 0.9965 ± 0.0099(13) 0.9973 ± 0.0082 0.9960 ± 0.0100

3 vs. 4 0.9725 ± 0.0411(3) 0.9813 ± 0.0309 0.9836 ± 0.0282

For further explanation we refer to Table 3.

Table 6

Binary classification using L2-normalized complete real spectra with-

out baseline correction

Classes PCA/LDA LS-SVM lin LS-SVM RBF

1 vs. 2 0.9543 ± 0.0279(6) 0.9743 ± 0.0196 0.9742 ± 0.0199

1 vs. 3 0.5628 ± 0.0984(4) 0.5655 ± 0.0970 0.5753 ± 0.0973

1 vs. 4 0.9755 ± 0.0240(5) 0.9717 ± 0.0264 0.9691 ± 0.0278

2 vs. 3 0.9562 ± 0.0425(6) 0.9702 ± 0.0319 0.9734 ± 0.0288

2 vs. 4 0.9959 ± 0.0102(13) 0.9947 ± 0.0119 0.9917 ± 0.0154
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and astrocytomas grade II vs. aggressive tumours (class

4 vs. 5) as two additional classifiers.

Similarly as for binary classification, stratified ran-

dom splitting was applied to select 2/3 of the dataset

as training and the remainder as test set. The multiclass

classifier was trained by feeding all training data to the
classifier and each binary classifier was trained with

the corresponding classes. For example, the training da-

ta of classes 2 and 4 were used to train the binary clas-

sifier 2 vs. 4, and similarly for the others. This fully

determined the multiclass classifier constructed by four

binary classifiers (Fig. 2). The resulting classifier was ap-

plied to the independent test set. This procedure was re-

peated for 100 runs. The test performance is given by the
mean correct classification rate, the mean misclassifi-

cation rate, the mean percentage of undecided cases,

and their standard deviation. The correct classification

rate is defined as the percentage of correctly classified

spectra, while the misclassification rate is the percentage

of misclassified cases.

3 vs. 4 0.9924 ± 0.0167(4) 0.9893 ± 0.0210 0.9875 ± 0.0233

For further explanation we refer to Table 3.

Table 7

Binary classification using selected frequency regions of the L2-

normalized magnitude spectra without baseline correction

Classes PCA/LDA LS-SVM lin LS-SVM RBF

1 vs. 2 0.9060 ± 0.0430(2) 0.9748 ± 0.0202 0.9733 ± 0.0200
4. Results

4.1. Binary classification

The test performance of the classifiers using the

L2-normalized complete magnitude spectra without

baseline correction is shown in Table 3. Tables 4–8 each
Table 3

Binary classification using L2-normalized complete magnitude spectra

without baseline correction

Classes PCA/LDA LS-SVM lin LS-SVM RBF

1 vs. 2 0.9556 ± 0.0278(4) 0.9725 ± 0.0210 0.9730 ± 0.0204

1 vs. 3 0.5907 ± 0.0967(4) 0.5917 ± 0.0939 0.5873 ± 0.0942

1 vs. 4 0.9660 ± 0.0292(3) 0.9635 ± 0.0305 0.9615 ± 0.0314

2 vs. 3 0.9540 ± 0.0441(4) 0.9770 ± 0.0263 0.9781 ± 0.0254

2 vs. 4 0.9965 ± 0.0093(11) 0.9959 ± 0.0100 0.9902 ± 0.0168

3 vs. 4 0.9856 ± 0.0248(2) 0.9916 ± 0.0178 0.9903 ± 0.0194

As performance measure we use the mean test AUC and its pooled

standard error SE from 100 runs of stratified random samplings. The

number between the brackets mentions the number of principal com-

ponents used (column PCA/LDA).

Table 4

Binary classification using water normalized complete magnitude

spectra without baseline correction

Classes PCA/LDA LS-SVM lin LS-SVM RBF

1 vs. 2 0.8399 ± 0.0607(1) 0.9294 ± 0.0397 0.9581 ± 0.0281

1 vs. 3 0.5492 ± 0.0935(1) 0.5917 ± 0.0928 0.5950 ± 0.0935

1 vs. 4 0.9485 ± 0.0403(1) 0.9560 ± 0.0339 0.9598 ± 0.0326

2 vs. 3 0.8924 ± 0.0618(1) 0.9616 ± 0.0470 0.9704 ± 0.0309

2 vs. 4 0.7427 ± 0.1199(1) 0.9930 ± 0.0139 0.9793 ± 0.0303

3 vs. 4 0.9784 ± 0.0297(1) 0.9757 ± 0.0386 0.9837 ± 0.0284

For further explanation we refer to Table 3.

1 vs. 3 0.5959 ± 0.0932(2) 0.5898 ± 0.0945 0.6085 ± 0.0930

1 vs. 4 0.9500 ± 0.0358(1) 0.9636 ± 0.0318 0.9620 ± 0.0315

2 vs. 3 0.9495 ± 0.0468(2) 0.9712 ± 0.0316 0.9683 ± 0.0336

2 vs. 4 0.9958 ± 0.0103(7) 0.9956 ± 0.0105 0.9971 ± 0.0086

3 vs. 4 0.9947 ± 0.0133(1) 0.9924 ± 0.0172 0.9929 ± 0.0165

For further explanation we refer to Table 3.

Table 8

Binary classification using peak integrated values of the L2-normalized

magnitude MR spectra without baseline correction

Classes LDA LS-SVM lin LS-SVM RBF

1 vs. 2 0.9675 ± 0.0243 0.9704 ± 0.0221 0.9713 ± 0.0210

1 vs. 3 0.5054 ± 0.0940 0.5762 ± 0.0956 0.6073 ± 0.0935

1 vs. 4 0.9580 ± 0.0335 0.9616 ± 0.0328 0.9539 ± 0.0355

2 vs. 3 0.9641 ± 0.0364 0.9640 ± 0.0378 0.9632 ± 0.0379

2 vs. 4 0.9968 ± 0.0090 0.9965 ± 0.0092 0.9875 ± 0.0201

3 vs. 4 0.9892 ± 0.0219 0.9938 ± 0.0147 0.9938 ± 0.0146

Note that in this case no PCA prior to LDA is applied, because peak

integration already involves dimensionality reduction. For further

explanation we refer to Table 3.
differ from Table 3 in one single aspect. By comparing

Table 3 with Tables 4–8, the individual effect on the clas-

sification performance of normalization, baseline correc-

tion, real vs. magnitude spectra, dimensionality

reduction by selected frequency regions, and peak inte-

gration, respectively, can be determined. In order not



Table 10

One-step multiclass classification using complete spectra

PCA/LDA (%) LS-SVM lin (%) LS-SVM RBF (%)

Correct 85.0882 ± 4.2939 87.2794 ± 3.6466 86.6324 ± 3.4857

Misclass 9.3676 ± 3.6722 8.7941 ± 3.5409 9.8971 ± 3.4336

Undecided 5.5441 ± 2.4183 3.9265 ± 2.0592 3.4706 ± 1.9102

Average test performance from 100 runs of stratified random sam-

plings of the L2-normalized magnitude MR spectra without baseline

correction. The first, second, and third rows give, respectively, the

mean correct classification rate, the mean misclassification rate and

the mean percentage of undecided cases, each with their standard

deviation.

Table 11

Two-step multiclass classification using complete spectra

PCA/LDA (%) LS-SVM lin (%) LS-SVM RBF (%)

Correct 67.6176 ± 4.9418 69.4118 ± 3.6082 68.5441 ± 4.0417

Misclass 26.8382 ± 4.5043 26.6618 ± 3.6122 27.9853 ± 4.0984

Undecided 5.5441 ± 2.4183 3.9265 ± 2.0592 3.4706 ± 1.9102

Average test performance from 100 runs of stratified random sam-

plings of the L2-normalized magnitude MR spectra without baseline

correction.
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to overload the paper, the results for the other cases are

not tabulated, but can be obtained by correspondence

with the authors. We will further discuss only the tabu-

lated results included in this paper in detail. However,

the classification results for the other input features all

showed a similar behaviour.
In general, all techniques achieved a good perfor-

mance with mean AUCs up to 0.9971, with only slightly

and nonsignificantly different results when mutually

comparing classification techniques. However, the dis-

crimination of glioblastomas and metastases remains a

very difficult binary problem, resulting in a very poor

performance (with a mean AUC in between 0.5054

and 0.6085 and a high pooled SE of up to 0.0984) for
all the classification techniques investigated. A slightly

lower performance was observed for the discrimination

of glioblastomas and metastases when applying PCA/

LDA as compared to LS-SVMs (Tables 4, 5, and 8),

but for all other binary classification problems a high

performance was reached with a mean AUC of more

than 0.95. An exception occurred when using water nor-

malized spectra and selected frequency regions, for
which almost all results are worse with respect to using

L2-normalized complete spectra. The discrimination of

classes 1 and 2 and of classes 2 and 4 yielded a signifi-

cantly lower performance for water normalization, using

PCA/LDA (classes 1 vs. 2 and 2 vs. 4) and using LS-

SVM with a linear kernel (classes 1 vs. 2). Although less

striking, when using selected frequency regions a signif-

icantly lower performance was obtained for the classifi-
cation of classes 1 vs. 2 when applying PCA/LDA as

compared to using the complete spectra.

4.2. Multiclass approach

After merging of glioblastomas and metastases into

one class of aggressive tumours, two additional binary

classifiers were constructed in addition to those previ-
ously discussed. Table 9 shows the performance of these

classifiers using the complete spectra as input. Tables 10

(first step) and 11 (second step) report the multiclass test

results using complete spectra. A mean correct test clas-

sification rate of 85.1% (PCA/LDA), 87.3% (LS-SVM

lin), and 86.6% (LS-SVM RBF) has been reached after

the first step for all classification techniques. After the
Table 9

Binary classification using complete spectra for two additional binary

problems, needed to implement the multiclass classification

Classes PCA/LDA LS-SVM lin LS-SVM RBF

2 vs. 5 0.9570 ± 0.0245(4) 0.9803 ± 0.0148 0.9801 ± 0.0148

4 vs. 5 0.9701 ± 0.0232(3) 0.9728 ± 0.0225 0.9725 ± 0.0226

Average performance on the test set from 100 runs of stratified random

samplings of the L2-normalized magnitude MR spectra without

baseline correction. As performance measure we use the mean AUC

and its pooled standard error SE.
second step, the test performance has been reduced to

67.6% (PCA/LDA), 69.4% (LS-SVM lin), and 68.5%

(LS-SVM RBF) because of the difficulty in discriminat-

ing classes 1 and 3.
5. Discussion

We next discuss various issues concerning the results

we obtained using the short echo time 1H MRS data

available. We do not necessarily claim that these re-

marks generally hold for similar analyses on other data.

5.1. Classification techniques

LDA has been widely used and has obtained good re-

sults for many applications including brain tumour clas-

sification [7,16,60]. The method has the strength of being

simple and computationally fast, and works well for da-

ta that are linearly separable. Nevertheless, LDA also

has some disadvantages. These include the nonunique-

ness of the derived discrimination function [61] and
the potential poor performance in the case of severe

nonlinearity. Moreover, in the case of a high number

of variables relative to the number of training data

(e.g., in the paper presented), LDA requires the data

to be reduced in dimensionality, as by PCA for example.

In contrast to classical techniques, LS-SVM as a kernel-

based technique is also suited for linearly nonseparable

problems and is able to find a global solution [39]. Ker-
nel-based methods are also less sensitive to the number

of data. Although the dimension is larger than the

number of data, these classifiers have the advantage to
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robustly learn the peak pattern and draw an optimal

separating boundary, even without applying any dimen-

sionality reduction. Linear as well as nonlinear classifi-

ers can be selected by choosing an appropriate kernel.

However, in contrast to classical techniques, LS-SVM

is a more complex method that requires to select a set
of hyperparameters in order to obtain a high perfor-

mance.

LDA, as a linear classifier, performed quite well in

discriminating brain tumours using complete spectra.

Except for the most difficult binary classification to dis-

criminate glioblastomas and metastases, classification

of L2-normalized non-baseline corrected complete mag-

nitude spectra reached a mean AUC of at least 0.95. Us-
ing the same input features as LDA, LS-SVMs with a

linear and an RBF kernel both reached a mean AUC of

at least 0.96, which is similar to the performance of

LDA. Although the tables indicate a few differences in

the classification performance, no statistical significance

was found between the AUC values from different classi-

fication techniques. Due to the limited number of data

available (i.e., limited in terms of classification), nonlin-
ear techniques, in this case LS-SVMswith anRBFkernel,

cannot fully exploit the advantage of a nonlinear method.

These findings are in agreement with our previous

study on long echo time spectra reported in [7] and re-

sults described in [16]. Direct comparison of the perfor-

mances even reveals overall slightly higher mean AUC

values with respect to the use of long echo time spectra

(confront Tables 3, 7, and 8 with [7]), but this was not
statistically tested because different datasets were used.

5.2. Influence of input features

The purpose of normalization is to obtain consistent

scaling of the measurement data. Using the complete

magnitude spectra without baseline correction, a lower

performance was found for water normalization com-
pared to L2-normalization. This includes a few signifi-

cant differences when using PCA/LDA and LS-SVM

with a linear kernel. Only slightly different results were

observed due to the normalization method when using

nonlinear techniques.

Although Klose�s method was used to phase the spec-

tra, there still exists residual phase variation in the real

spectra, which may reduce the accuracy of classification.
Phasing problems can be avoided by using magnitude

spectra, but this yields a significant broadening of the

peaks [55]. Hence, magnitude calculation results in a

larger overlap of the individual peaks, which potentially

distorts the information contained in the spectrum.

However, no significant differences in classification per-

formance were found between the use of complete real

and magnitude spectra without baseline correction.
In short echo time spectra the appearance of the me-

tabolite peaks is heavily influenced by peak overlap and
the presence of a macromolecular baseline, hence a

baseline correction was applied in an attempt to im-

prove resolution of the metabolite peaks. Spectra with

baseline correction were expected to have clearer peak

patterns and to result in a more robust classification,

but no improvement was found. Although our baseline
correction may simplify the identification of metabolite

peaks, macromolecule signals included in the baseline

may contribute to the biochemical fingerprint of the

tumours. Hence, baseline correction may result in loss

of some valuable information, which may explain

why classification does not improve after baseline

correction.

5.3. Influence of dimensionality reduction

In classifying MR spectra using selected frequency re-

gions and peak integration, all techniques achieved at

least a mean AUC of 0.90 except for the binary classifi-

cation problem to discriminate glioblastomas and me-

tastases. In comparison to classification using complete

spectra, classification using selected frequency regions
or peak integrated values reached a similar performance.

This suggests that the selected metabolite regions or in-

tegrated signal areas include most of the information

that correctly distinguishes between types of brain tu-

mour. Only for the discrimination of glioblastomas

and meningiomas PCA/LDA performed significantly

worse using selected frequency regions than using the

complete spectra.

5.4. Multiclass classification

Although no statistical analysis has been carried out

for multiclass classification, we can make some observa-

tions from the results. All classification techniques

reached a high test performance of 85–87% for distin-

guishing classes 2, 4, and 5 in the first step. In the second
step, the test performances reduced with about 18% be-

cause of the difficulties in separating glioblastomas from

metastases, which share very similar peak patterns.

Therefore, separating class 5 (aggressive tumours) into

class 1 (glioblastomas) and 3 (metastases) deteriorates

the total performance of the classifier.

5.5. Clinical practice

We have performed an objective comparison of sever-

al classification techniques, based on several types of in-

put features. This requires the selection of a training set

to construct a classifier and an independent test set to

evaluate that classifier. Therefore we implemented an ex-

perimental setting of 100 stratified randomizations,

which resulted each time in another classifier.
The authors are aware of the fact that, from a clinical

point of view, a practical classification system requires
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only one specific classifier. The classification system is

then used to assign new MRS data to a certain class,

corresponding to the type of the tumour and its grade.

However, our objective comparison makes it possible

to obtain an overview of the performance of several

techniques, with their advantages and disadvantages,
and to evaluate the influence on classification of the type

of input feature used. From such results it should be

possible to make an informed choice of classification

technique, as well as of the most appropriate input fea-

tures and implement this in a practical classification sys-

tem. For example, this selection could depend on the

computational complexity and on the types of brain tu-

mours the system typically should be able to discrimi-
nate. It should be noted that all techniques are applied

automatically, including (hyper-)parameter selection,

training and testing. Hence, for use in clinical practice,

all techniques are easy to automate for analysis of inde-

pendent data.
6. Conclusions

In general, no significant differences were found with

respect to the use of classification techniques. Linear

techniques found the best separating linear boundary

for most of the cases. Kernel-based methods have the

advantage of robustly learning the peak pattern and

were able to reach a high mean AUC (except for glio-

blastomas vs. metastases), even without the use of any
feature reduction. Kernel-based methods are also more

robust against different types of normalization than

LDA, which may be a result of data information loss

due to PCA.

From our analysis, we found that the best classifica-

tion could be obtained using L2-normalised magnitude

spectra without baseline correction and simply using

peak integration or PCA for dimensionality reduction.
This is an important result if it would be generally true

as it means that neither the difficult task of accurate

spectral phasing, or acquisition of a water reference

for lineshape correction and zero order phasing would

be required. Thus, data acquisition times can be reduced

and preprocessing protocols can be simplified. This

would be particularly useful for spectroscopic imaging

data, for which there is a significant time penalty in ac-
quiring a full water reference data set.

Additionally, although peak integration may not ac-

curately quantify overlapping metabolite signals [62]

and PCA only expresses up to 75% of the data, automat-

ed dimensionality reduction by peak integration or PCA

speeds up the computation and does not appear to com-

promise the classification efficiency for the comparison

made in this study. Further studies are still needed to as-
sess whether other approaches to dimensionality reduc-

tion, such as more accurate model-based quantification
methods [48,62], yield any significant improvement in

classification performance.
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Application of independent component analysis to 1H MR

spectroscopic imaging exams of brain tumors, in: Proceedings of

the 19th Annual Meeting of the European Society for Magnetic
Resonance in Medicine and Biology (ESMRMB02), Cannes,

France, August 22–25, 2002, p. 91.

[24] A.R. Tate, J.R. Griffiths, F.A. Howe, J. Pujol, C. Arús,
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