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Abstract

Modified nucleosides were recently presented as potential tumor markers for breast cancer. The

patterns of the levels of urinary nucleosides are different for tumor bearing individuals and for healthy

individuals. Thus, a powerful pattern recognition method is needed. Although backpropagation (BP)

neural networks are becoming increasingly common in medical literature for pattern recognition, it

has been shown that often-superior methods exist like learning vector quantization (LVQ) and

support vector machines (SVM). The aim of this feasibility study is to get an indication of the

performance of urinary nucleoside levels evaluated by LVQ in contrast to the evaluation the popular

BP and SVM networks. Urine samples were collected from female breast cancer patients and from

healthy females. Twelve different ribonucleosides were isolated and quantified by a high perfor-

mance liquid chromatography (HPLC) procedure. LVQ, SVM and BP networks were trained and the

performance was evaluated by the classification of the test sets into the categories ‘‘cancer’’ and

‘‘healthy’’. All methods showed a good classification with a sensitivity ranging from 58.8 to 70.6% at

a specificity of 88.4–94.2% for the test patterns. Although the classification performance of all

methods is comparable, the LVQ implementations are superior in terms of more qualitative features:

the results of LVQ networks are more reproducible, as the initialization is deterministic. The LVQ

networks can be trained by unbalanced sizes of the different classes. LVQ networks are fast during

training, need only few parameters adjusted for training and can be retrained by patterns of ‘‘local

individuals’’. As at least some of these features play an important role in an implementation into a

medical decision support system, it is recommended to use LVQ for an extended study.
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1. Introduction

Breast cancer is the most frequent female cancer in Europe and in the USA [33]. Among

many publications directed at the investigation of diagnosing and monitoring cancer,

methods based on the use of objectively derived laboratory data for the diagnosis and

prognosis of cancer show several benefits in theory [51]: the parameters can be contrasted

for accuracy and precision and methods can be developed, which can be easily transferred

from institution to institution. A final aim could be the implementation of these methods in

a user-friendly automated medical decision support system.

Recently, modified nucleosides (MN) were presented as potential tumor markers by

different groups [47,55,58]. They are also excreted in the urine of healthy subjects, but their

levels show different patterns from tumor bearing organisms. The pathological process is

often a gradual change and therefore it is difficult to assign numerical decision limits

to single laboratory data. More often, these changes affect several laboratory data by

only slight alterations compared to the differences between individuals, resulting in

patterns of several changes to be discerned. There have been many attempts of exploiting

computer-based models for the pattern recognition of pathological processes. Many

studies are based on traditional statistical techniques like discriminant analysis (LDA)

[58] or rule induction (CART) [16], but in numerous publications artificial neural

networks (ANNs) provided more accurate predictions [22,30,37,48,58]. Thus, the use

of ANN is becoming increasingly popular in several fields of medicine concerned

with pattern recognition like decision-making in pathology [58,15], prediction of morta-

lity of patients suffering from different diseases [7,12,15,20,34,49], analysis of EKG

patterns [9], decision making in mammography [10,53] and many more [3,11]. Also a

preliminary study showed that ANNs are outperforming common machine learning

methods like CART, LDA and k-nearest neighbor (KNN) in terms of the classification

performance.

Nevertheless, it astonishes that almost all studies published in clinical literature use

practically only one class of neural networks, the backpropagation networks [11]. Back-

propagation (BP) networks show a very broad range of applications like approximation of

functions, prediction of output values, classifications of objects, recognition of patterns in

multifactorial data and are therefore often considered to be the most universal tool among

the different classes of neural networks. Nevertheless, several publications in different

fields of science proved that vector-based neural networks, especially learning vector

quantization (LVQ) [25–27,35], outperform BP in the field of supervised pattern recogni-

tion [18,21,32,36,37,40,48]. However, LVQ is much unknown in cancer research, indicated

by references available on MEDLINE Database (1960 to July 2002): the search ‘‘neural

networks’’ and ‘‘cancer’’ or ‘‘malignant’’ returned 342 hits with nearly all references

using BP, whereas a search using ‘‘LVQ’’ and ‘‘cancer’’ or ‘‘malignant’’ returned only

11 hits. These 11 references utilize LVQ for image and morphometry analysis, but no

publication was found on LVQ for pattern recognition of laboratory data like analyte

concentrations.

In this study, the patterns of urinary nucleoside levels of healthy individuals and breast

cancer patients are evaluated by two different LVQ implementations and by BP networks

and support vector machines (SVM) as references. SVM have gained an increasing
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popularity in the field of computer-based classifications in medicine and in decision

support systems during the last few years [6,8,13,17,19,56]. The aims of this feasibility

study are to find a reasonable indication of the classification performance of urinary

nucleosides quantified by HPLC and evaluated by ANNs, to find an easier pattern

recognition method than BP and to present advantages and drawbacks of LVQ compared

with the more popular BP and SVM in respect to an implementation in a medical decision

support system.

2. Methods

2.1. Collection of urine samples

Spot urine samples were collected from 85 female breast cancer patients 1 day before

they underwent tumor removal at Tuebingen Frauenklinik. The diagnosis ‘‘breast cancer’’

was confirmed in each case by histopathological examination of the tumor tissue. All the

patients were then staged concerning the TNM system. The patients included in the study

were aged between 25 and 85 years.

The control group consisted of 121 healthy female volunteers in the same range of age.

All these individuals did not take any form of medical treatment. In particular, anyone

suffering from any infectious or malignant disease was excluded.

After collection, the urine samples were immediately frozen without any preser-

vatives and stored at �20 8C. Directly before analysis the samples were thawed at room

temperature.

2.2. Determination of the different nucleosides

The concentrations of 12 different major and minor ribonucleosides (uridine (U),

cytidine (C), adenosine (A), guanosine (G), inosine (I), xanthosine (X), pseudouridine

(PseU), 1-methyladenosine (m1A), 3-methylguanosine (m3G), 1-methylinosine (m1I),

1-methylguanosine (m1G) and 2-methylguanosine (m2G)) in urine were assayed by a

completely validated reversed phase HPLC procedure. The ribonucleosides were first

isolated from urine by affinity chromatography on phenylboronate gel columns. This gel

selectively binds ribonucleosides at alkaline pH, thus separating them from interfering

substances in urine. The ribonucleosides were then eluted by lowering the pH of the

columns’ bed. Finally, the nucleosides were separated and quantitated by an internal

standard method with a HPLC apparatus using a reversed phase column and UV detection.

The HPLC analysis enabled the direct determination of nucleoside concentrations (mM)

in urine; these were then transformed in nmol/mmol creatinine. The concentrations of

creatinine in the urine samples were determined by using a modified Jaffé method [5]. A

previous publication has described in detail the reagents, the nucleoside standard com-

pounds, the instrumentation, the HPLC buffers, the chromatographic column and the

phenylboronate affinity chromatography clean-up for nucleoside isolation [31]. Further-

more, the two classical tumor markers for breast cancer, CEA and CA15-3, were performed

on an enzyme linked immunoassay.
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2.3. Artificial neural networks

ANNs can learn and recognize patterns by imitating the learning process of the human

brain. They consist of a number of simple neurons, which are also called nodes or units.

These neurons are connected by links, which have strength or ‘‘weights’’ that are learned

during a training step by the network. The training of an ANN used for classification is an

iterative process in which the network learns by example to categorize data among different

classes. Thereby, the patterns are presented to the input neurons of the network and the

network estimates a category presented by an output neuron. If the category is not within an

error tolerance of the true category of the corresponding pattern, the network’s internal

structure (mostly the weights) is adapted to reduce the error. The classification performance

is finally measured in a test phase using separate test data. Thereby, the network predicts the

category of patterns not encountered in training just on the basis of the patterns themselves.

This results in the need of two independent data sets, a test set and a training set. Due to

the frequently limited sizes of the data in clinical research two methods are common in

literature to divide one single data set into training and test sets: the leave-one-out

technique (also called round-robin or full cross-validation) and the leave-n-out technique

[4,15,54]. For this study the leave-one-out strategy was used simulating a confrontation of

a network with a new object never encountered before.

The concentration levels of the MN, which represent the patterns, were mean-centered

for each MN by subtracting the average from each MN level. Furthermore, dividing the

data by the variance of the corresponding nucleoside level standardized the patterns.

Hence, all MN levels are given the same weight to influence the estimation of the category.

The category of the patterns was coded 0 for ‘‘healthy pattern’’ and 1 for ‘‘cancer pattern’’.

The main difference between BP, LVQ and SVM is the method by which knowledge is

learned and stored. BP fits a function to the training data and the classification is performed

according to the output, which is calculated by the network with the given unknown

pattern. The LVQ partitions the feature space of the training data into clusters and models

prototypes for these clusters. The classification of the LVQ is based on the similarity of

the unknown data and these prototypes. SVM partitions the feature space of the training

data by finding a maximum margin hyperplane after the projection of the data into an

n-dimensional space. The classification is performed by projecting the test data into the same

space and by assigning the data to the class of the corresponding side of the hyperplane.

2.4. Learning vector quantization

According to Fig. 1, the LVQ network can be described as a three-layer neural network.

The input layer has as many neurons as the pattern variables. The second layer contains at

least one ‘‘prototype neuron’’ for each class. These prototype neurons and the correspond-

ing weighted links between the input neurons and the prototype neurons form prototype

patterns, also called codebook vectors. For example, the two weights w1 and w2 form the

black codebook vector belonging to the class ‘‘cancer’’ in Fig. 1. The output layer and the

links to the output layer serve as static linear map transforming the class of the codebook

vectors into the classes presented at the output neuron and do not have any adaptable

parameters.

268 F. Dieterle et al. / Artificial Intelligence in Medicine 28 (2003) 265–279



The algorithm for the LVQ networks used in this study can be described by four steps:

1. Initializing the codebook vectors.

2. First training of the codebook vectors (450 cycles).

3. Balancing of the codebook vectors.

4. Second training of the codebook vectors (2500 cycles).

2.4.1. Initialization

The LVQ networks used in this study were initialized with five codebook vectors belong-

ing to the class ‘‘cancer’’ and five codebook vectors belonging to the class ‘‘healthy’’. The

initial vector values of the codebook vectors were picked up from the training data one at a

time resulting in a rather high number of objects to be involved in the initialization process.

Thereby, a KNN classification takes care that theses initial codebook vectors fall within the

borders of the corresponding classes [24].

2.4.2. Training

LVQ networks are trained by iteratively optimizing the prototype codebook vectors.

Thereby, an input pattern is compared with the codebook vectors by calculating the

distance:

jjx ¼ mijj (1)

with x as the presented input pattern and mi as the codebook vectors. The codebook vector

showing the smallest distance is most similar to the input pattern and therefore is the winner

mc. If the winner and the input pattern belong to the same class, the codebook vector is

made more similar to the presented output pattern by moving the winner codebook vector

towards the input vector:

mcðt þ 1Þ ¼ mcðtÞ þ acðtÞ½xðtÞ � mcðtÞ� (2)

Each codebook vector has its individual learning rate ac(t), which decrease over time and

thus speeds up the convergence of the learning phase. The optimal learning rates are

determined during the learning by the algorithm itself. This learning scheme is called

OLVQ1 whereby more details can be found in [24].

Fig. 1. LVQ network architecture. The network uses two input neurons for patterns consisting of two variables.

Two codebook vectors for the patterns of healthy individuals (gray) and one codebook vector for cancer patterns

are schematically shown.
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Conversely, if the winning codebook belongs to the wrong class, it is made less similar to

the presented input pattern by moving the winner away from the input pattern:

mcðt þ 1Þ ¼ mcðtÞ � acðtÞ½xðtÞ � mcðtÞ� (3)

The comparing step and the adaptation of the winning codebook form one training cycle.

For this study, the number of training cycles of the first training (100–1000) and for the

second training (500–5000), the initial learning rate (0.9–0.1) and the number of codebook

vectors (2–20) were systematically varied using a full factorial design. The best parameters

in terms of lowest classification errors corresponded to 450 training cycles during the first

training phases, 2500 training cycles during the second training phase, an initial learning

rate of 0.2 and 5 initial codebook vectors for each class. All calculations were performed by

the program LVQ_PAK [28].

2.4.3. Balancing

The balancing step between the two training steps follows the strategy that for an optimal

approximation of the class borders the average distances between adjacent codebook

vectors should be the same in every class as the borders are represented piecewise linearly

by segments of midplanes between codebook vectors of neighboring classes (borders of the

so-called Voronoi tessellations). Therefore, the balance step calculates the medians of the

shortest distances between the codebook vectors of each class. If the distances are very

different new codebook vectors are added to the class with the longest distance. After that

all codebook vectors are retrained in a second training phase.

In general the LVQ can be described as a prototype based method, which improves the

Voronoi partition of the input space induced by the initial prototype codebook vectors by

minimizing the empirical error using the training and balancing steps. Although LVQ can

overfit the data similar to BP, the rather low number of codebook vectors used in this study

helps to reduce the risk of overfitting.

2.5. Dynamic learning vector quantization

In contrast to LVQ, the dynamic learning vector quantization (DLVQ) generates the

second layer dynamically during the training phase. The DLVQ algorithm works the

following way:

1. For every class of the training data one codebook vector is calculated as the mean

vector.

2. Each pattern of the training is presented to the network and the codebook vectors are

adapted similar to LVQ. This cyclical process is repeated until the number of correctly

classified vectors no longer increases.

3. A new codebook vector ma is calculated from the vectors of a class a associated with a

wrong class b. For every class one of the new mean vectors is added to the net. The

algorithm returns to step 2.

For this study, the number of learning cycles of step 2 was limited to 50 and the maximal

number of codebook vectors added to each class was set to 10. All calculations were

performed by SNNS [57].
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2.6. Support vector machines

SVM are an effective algorithm to find a special kind of linear model, the maximal

margin hyperplane, to separate two classes of patterns. Thereby, a transformation of the

data into a higher-dimensional space by a nonlinear mapping allows a linear separation of

classes, which could not be linearly separated in the original space. The principles of SVM

and the maximal margin hyperplane are illustrated in Fig. 2. The two classes of the black

and the white triangles are linearly separable by any hyperplane between the hyperplanes

H1 and H2. These two hyperplanes board the two classes. The objects that are located on

these two hyperplanes are the so-called support vectors. The maximal margin hyperplane

H, which is located in the middle of H1 and H2, gives the greatest separation between the

classes. The maximal margin hyperplane is uniquely defined by the support vectors. The

support vectors can be regarded as selected representatives out of the training data, which

are most critical for the separation of the two classes. As usually only few support vectors

are used there are only some parameters adjustable by the algorithm and thus overfitting is

unlikely to occur. For polynomial kernel support vector machines, which were used in this

study, the maximal margin hyperplane can be written as:

x ¼ b þ
X

aiyiðaðiÞaÞn
(4)

Thereby, yi is the class value (þ1/�1) of the training object a(i), a the object to test, b and

ai the weights (parameters) determined by the algorithm and n the degree of polynomials

determining the nonlinearity of the projection. Only training objects that serve as support

vectors have a weight ai different from zero. The support vectors for the training data and

the weights can be determined by a constrained quadratic optimization, whereby many

special algorithms have been developed to speed up learning. For data sets, which are not

separable by SVM, the weights ai have to be limited by an upper bound whereby this

parameter has to be adjusted by the user.

For this study, the degree of polynomials (1–20) and the upper bound for the weights

(1–10) were systematically varied using a full factorial design. The best parameters in

terms of lowest classification errors corresponded to a degree of polynomials of 8 and an

Fig. 2. Separation of two classes by SVM using two support vectors of each class and the maximal margin

hyperplane H.
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upper bound for the weights of 5. A special implementation of the WEKA machine

learning project was used for the SVM applied in this study [44,52].

2.7. Backpropagation

Due to the numerous excellent textbooks [23,41,42,59] describing in detail multilayer

feedforward backpropagation (BP) networks only the differences between BP, SVM and

LVQ will be outlined:

Most common in literature are BP networks consisting of three layers of neurons. In

contrast to LVQ, there is no winner in the second layer, but all neurons will contribute to the

output during training and prediction. The neurons of the third layer and the connections

between the second and third layer are not static but have the same function as the

preceding layer: each neuron sums up the inputs from the connected preceding neurons,

applies a sigmoidal transfer function and feeds the output to the connected succeeding

neurons. During the training phase, the error of prediction is sent backwards through the

network and the weights of all connections are adjusted to reduce this error.

BP networks are affected to a greater extend by an overfitting [50] than SVM and LVQ

networks. An overfitted ANN memorizes the often too small training set instead of

generalizing the patterns and consequently performs badly on new data. The overfitting

was anticipated by the so-called early stopping [46]. Early stopping means that the training

is stopped when the error of cross-validation starts going up, as the net may start loosing its

generalization ability at this moment.

For the BP networks implemented in this study a full factorial experimental design was

used to find an optimal network topology. Thereby, the number of hidden neurons (1–20)

and the number of hidden layers (1–2) were varied to minimize the classification errors

evaluated by a full cross-validation. The best network topology consisted of 12 input

neurons, 1 layer of 4 hidden neurons and 1 output neuron. The training included a

maximum of 1000 learning cycles with an early stopping procedure. Scaled conjugate

gradient (SCG) was used as training algorithm [38]. In contrast to standard backpropaga-

tion SCG converges faster, is more capable of dealing with local minima and is not

sensitive to any parameters, which were all set to standard values suggested in [38]. All

calculations were performed by a new implementation of the Stuttgart Neural Network

Simulator [57,43] on a personal computer.

3. Results

For a valid comparison, only the results of the test data will be used, simulating a

confrontation of the networks with new cases in a clinical setting. The three methods are

compared by the sensitivity, specificity and the prediction rate. Clinical sensitivity is the

percentage of true positives, clinical specificity is the percentage of true negatives and the

prediction rate is the percent of true positives and true negatives in all individuals.

The results for all methods are shown in Table 1. LVQ classified 60 out of 85 cancer

patients and 109 out of 121 healthy patients correctly, resulting in a sensitivity of 70.6%,

a specificity of 90.1% and a prediction rate of 82.1%. A so-called sammon mapping [24]
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can be used to reduce the 12-dimensional classification problem to 2-dimensions while

trying to preserve the distances between all vectors. The classifications are visualized in

Fig. 3. Thereby, the seven healthy codebook vectors and the five cancer codebook vectors,

which represent the prototype training patterns vectors, are projected into this map as well

as the 206 patterns of the data. It is visible that most correctly classified patterns are located

in the outskirts of the cloud of patterns (for example the healthy patterns on the top left and

bottom right side and the cancer patterns on the top right side). In the middle of the cloud

the situation is more unclear with a number of misclassified cancer patterns surrounded

by many correctly classified healthy patterns and by some misclassified healthy patterns.

Table 1

Results of the classification of the training and test objects

Method Training patterns Test patterns

True cancer

(%)

True healthy

(%)

Overall

classification

rate (%)

True cancer

(%)

True healthy

(%)

Overall

classification

rate (%)

LVQ 88.2 96.7 93.2 70.6 90.1 82.1

DLVQ 72.9 99.2 88.4 58.8 94.2 79.6

SVM 91.8 93.4 92.7 68.2 88.4 80.1

BP 94.1 95.0 94.7 70.6 91.7 83.0

Overview of the of the classifications by LVQ, DLVQ, SVM and BP for the training patterns and the test

patterns.

Fig. 3. Sammon mapping of the classification of the test data performed by LVQ.

F. Dieterle et al. / Artificial Intelligence in Medicine 28 (2003) 265–279 273



This means that most misclassified cancer patterns are misclassified due to features, which

are very similar to features of healthy patterns, and not due to outlying different features.

According to Table 1, DLVQ achieved a slightly lower prediction rate than LVQ with a

higher sensitivity of 94.2% and a lower specificity of 58.8%. Thereby, DLVQ used (7–12)

codebook vectors. The prediction rate of 82.1% by BP is practically identical to LVQ with

exactly the same specificity (70.6%) and a slightly higher sensitivity (91.7%). As BP is not

a vector network technology, a sammon mapping makes less sense. Yet, the outputs and

thus the classifications can be visualized by true-predicted plots. Thereby, the calculated

output of the ANN is plotted versus the true diagnosis. A diagonal represents the ideal

output of the ANN and the threshold used for classification is plotted as horizontal line. In

Fig. 4, the true-predicted plot is shown for the 206 patterns. It is obvious that most

misclassified patterns (except of four misclassified healthy patterns) were not predicted as

extreme outliers but rather as samples, which are continuously overlapping with the other

class. This finding is similar to the sammon mapping of the classification by LVQ. The

predictions by the SVM are also very similar to the predictions by LVQ with a slightly

lower sensitivity (88.4%) and a slightly lower selectivity (68.2%). To test the significance

of the prediction rates of LVQ, DLVQ, BP and SVM a Wilcoxon signed ranks test was

performed for the predictions. The null hypothesis H0 demonstrating that there is no

significant difference between the methods was accepted at 5% error level for all

combinations of the four methods.

In terms of the speed of operation, it is important to distinguish the training and the

actual prediction phase. While all four algorithms are very fast classifying new cases

Fig. 4. True-predicted plots of the classification of the test data by BP.
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(practically not measurable for a modern PC), the four methods significantly differ

concerning the time needed for the training: the calculation of the full cross-validation

(206-folds) of the complete data set took 1050 s for BP, 178 s for SVM, 126 s for DLVQ

and 73 s for LVQ whereby the time needed for the classification of test patterns can be

neglected.

4. Discussion and conclusion

This study is part of the worldwide efforts to find objectively derived laboratory

data for the diagnosis and prognosis of breast cancer. Recently, the patterns of MN levels

were presented as potential tumor markers by different groups. In an early publication,

it was indicated that an improved differentiation between healthy female individuals

and breast cancer patients could be achieved by employing backpropagation neural

networks as pattern recognition method for the concentrations of several modified

nucleosides.

The interest in the use of BP is constantly growing in clinical applications. Yet, it has

been shown in many other fields of science, that BP is not always the best choice out of

the large family of neural networks. LVQ has been shown to be one of the most promising

methods on pattern recognition in non-medical applications. Thus, in this study two

implementations of LVQ were compared with the well-known BP and the SVM, which

have become very popular during the last few years. Besides of the classification

performance, the advantages and drawbacks of the different types of neural networks

will be discussed. Especially the so-called qualitative criterions like complexity, retraining,

outlier rejection, and speed will be discussed in respect to an implementation as medical

decision support system.

All four classification methods performed very well on the calibration and prediction

of the data set. The sensitivity of the prediction of the test data ranged from 88.4 to 91.7%,

the specificity from 58.8 to 70.6% and the prediction rate for the test data resulted in

79.6–83.0% with LVQ and BP classifying most patterns correctly. The differences in the

absolute numbers of correctly classifieds patterns for both classes together turned out not to

be significant for all methods. The sensitivity and specificity of all methods are very

promising compared with the most established markers for this type of malignancy CEA

and CA15-3 showing only a sensitivity of 6%, respectively, 18% for the population of this

study. The sensitivity of these two markers is generally below 20% at a specificity of 95%

[2,14]. Nevertheless a definitive judgement of the usefulness of urinary nucleoside levels

being evaluated by neural networks is only possible on the basis of a study incorporating

the investigation of many more patterns. The study presented in this paper with a limited

number of patterns is a feasibility study with two objectives: first, to find an alternative

pattern recognition method which is easier to handle and to understand and more robust

than BP showing at least a comparable performance. The second objective is to find a

reasonable indication of the classification performance of urinary MN quantified by HPLC

and evaluated by NN to justify an extensive and thus a cost intensive study. If in such an

extended study other factors are included, which are also known to be predictive, the

classification performance could even improve.
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Although BP has become well established in several medical applications, many end

users do not understand how neural networks work and often see artificial intelligence as

a computerized oracle [29,45] due to two reasons: first, it is difficult to understand, how

BP can classify patterns into different groups just by approximating a function during the

training phase. In this issue, LVQ is a lot easier to understand with prototype patterns being

formulated during training and with classifying by finding the most related prototype

pattern. Also a graphical representation by a 2-dimensional mapping of LVQ classifica-

tions is more overt than true predicted plots of BP classifications. Although the classifica-

tion by SVM can also be described by example patterns, which are most critical for a

correct classification and which set up a boundary hyperplane, the high-dimensional

projection makes this approach less insightful than LVQ. The second issue is the number of

parameters used for training. While BP needs a lot of decisions to be made by the user for

training, like choosing the number of hidden layers, the number of neurons, the type of

activation function, parameters for cross-validation, several parameters for the learning

function and several parameters for a possible pruning step, LVQ and SVM only need few

parameters set by the user. This implies a more reliable classifier and an easier compar-

ability between different studies. Further, the initialization of LVQ and SVM is determi-

nistic in contrast to BP. The random initialization of the weights of BP results in different

outputs for each run even when using the same datasets for training and prediction and

thus complicates the reproducibility and comparability. In addition, the implementation

of LVQ into software is easy, as the algorithms are very simple, whereas the algorithms for

the SVM are more complicated and the algorithms for BP networks are often highly

sophisticated. Another qualitative feature is the outlier rejection. LVQ, which is based on

classifying by distance, can easily be configured to reject patterns that are not within a

certain distance of the prototype patterns. For SVM the outlier detection is more difficult as

the classification is based on the maximal margin hyperplane, which is set up only by the

most critical training instances. The outlier detection of BP is also more difficult, which

needs the notion of an object’s classification margin introduced recently [1]. It has been

further shown in this study that LVQ is the fastest method followed by SVM whereas BP

needs significantly more time for training. In the case of studies using several hundred

times more patterns, the time needed for training becomes an important issue, as the time

increases nonlinearly with the number of patterns.

Two topics not investigated in this study due to the limited number of patterns are the

unbalanced number of training patterns in different classes and the retraining. If a BP

network is trained by patterns belonging to two groups of very different quantities, the

network tends towards classifying all objects into the large group [21,39]. As LVQ uses

prototypes of patterns for each group, this danger is not present. On the contrary, the

number of patterns that are more frequent and easier to find can be increased to improve the

overall classification performance of LVQ networks. Also the SVM should not be subject

to tend to misclassifying patterns, which belong to the smaller class, as long as enough

training patterns are available for selecting support vectors which build a reasonable

maximal margin hyperplane. The second topic concerns the retraining, which is important

if incremental learning is important. This could happen if further studies show that the

classification of a local population is improved with a global model being retrained by a

training set of local individuals. In this case, the model should be able to learn the new data
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without forgetting learned knowledge. In [32], it is shown that the degradation of learned

knowledge during retraining is less for LVQ than BP. From the theoretical point of view, the

SVM should allow a retraining without a degradation of learned knowledge, whereas no

study is known to the author investigating this topic.

While in respect of the classification performance all four algorithms perform well, LVQ

outperforms BP in terms of the qualitative criterions like complexity, speed, retraining,

unbalanced sizes of different classes and reproducibility. DLVQ is not mentioned extra in

this discussion as it shows similar qualities as the original LVQ implementation in respect

to most qualitative criterions, whereas the training time and the specificity are slightly

inferior. The SVM can be considered as being between LVQ and BP for the ensemble of

qualitative criterions. Thus, based on the results of this study, it is recommended to use the

LVQ implementation for a further more extended study. Considering other studies inside

and outside the medical literature in addition [18,21,32,36,37,40,48] it is advisable always

considering LVQ when a powerful pattern recognition method is needed.

To prevent misunderstandings, some of the qualitative features discussed in this study

like speed of the training, complexity and retraining capabilities are not always of primary

importance in possible clinical applications. A common situation might be a network being

trained with thousands of patterns on a fast computer by an expert on artificial intelligence

outside the clinical application. Afterwards this neural network will be implemented in

user-friendly software. In a clinical application, the end user will feed this software with the

urinary nucleoside levels and in less than a second, the program will indicate the risk of the

individual bearing breast cancer. One could think of implementing the trained network into

the HPLC software, or even of assembling a dedicated device, which consists of an HPLC,

automated HPLC software and a well trained LVQ network. This would be a user-friendly

fully automated system supporting the oncologist in the decision making process without

the need of exactly understanding what is inside the black box.
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