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ABSTRACT

Two different machine-learning algorithms have been used to predict the blood–brain bar-
rier permeability of different classes of molecules, to develop a method to predict the ability
of drug compounds to penetrate the CNS. The � rst algorithm is based on a multilayer
perceptron neural network and the second algorithm uses a support vector machine. Both
algorithms are trained on an identical data set consisting of 179 CNS active molecules and
145 CNS inactive molecules. The training parameters include molecular weight, lipophilic-
ity, hydrogen bonding, and other variables that govern the ability of a molecule to diffuse
through a membrane. The results show that the support vector machine outperforms the
neural network. Based on over 30 different validation sets, the SVM can predict up to 96%
of the molecules correctly, averaging 81.5% over 30 test sets, which comprised of equal
numbers of CNS positive and negative molecules. This is quite favorable when compared
with the neural network’s average performance of 75.7% with the same 30 test sets. The
results of the SVM algorithm are very encouraging and suggest that a classi� cation tool like
this one will prove to be a valuable prediction approach.

Key words: neural net, support vector machine, machine-learning algorithms, blood brain barrier,
central nervous system, predictive methods, kernel methods.

INTRODUCTION

Predicting the ability of a molecule to enter the central nervous system (CNS) through the blood–
brain barrier (BBB) would be an extremely useful tool for designing drug compounds. Designing

drugs for targets in the CNS is a dif� cult task because of the presence of the blood–brain barrier. The
BBB is a selective membrane that prevents small molecules from entering the CNS, making drugs that
are effective in other parts of the body virtually useless for CNS targets. As a result, bacterial and viral
infections can harbor in the CNS, making it dif� cult to fully eliminate the infection through conventional
antibiotic therapies. As a preliminary step to designing more useful drugs that can act on targets in the
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CNS, we are developing a methodology for predicting the permeability and, ultimately, the bioavailabilityof
different classes of molecules into the CNS. While there are in vitro assays to measure the log blood–brain
permeation coef� cient, these methods are expensive, time consuming, and not very practical when screening
large libraries of potential molecules. Hence, the ability to predict blood–brain barrier permeability will be
an enormous help in designing drugs that target the CNS.

Most attempts to predict BBB transport have varying degrees of success. Several attempts have been
made to correlate the octanol-water partitioning coef� cient, log P, with BBB permeability. Pardridge (1998)
has shown that log P is well correlated with BBB penetration for molecules below 400 Da. van de
Waterbeemd et al. (1998) used molecular size, shape, and hydrogen bonding characteristics as descriptors
of BBB permeability. They were able to identify a correlation between the molecular size and polar surface
area of CNS active and inactive compounds. van de Waterbeemd does not give any form of an equation for
predicting BBB permeability, but rather gives guidelines on general properties that make a molecule CNS
active. Another prediction method created by Crivori et al. (2000) uses three-dimensional structure analysis
of small molecules to generate a model of BBB permeability. Crivori used a computer modeling program
to transform 3D � elds into a descriptor set of the molecules. Through a principal component analysis and
partial least squares discriminator analysis they were able to generalize the data and use the results to
predict the BBB permeability of novel compounds. Their prediction method was successful in predicting
over 90% of unseen CNS active molecules correctly, but only 65% of the CNS inactive molecules correctly.
Luco (1999) also used statistical analysis of structural-based descriptors and this study had a success rate
similar to Crivori’s method. Of the 25 molecules tested, Luco was able to predict 100% of the CNS active
molecules correctly and 84.6% of the CNS negative molecules.

In this study, the BBB prediction algorithm is based on physical and structural descriptors. A training
set of 324 molecules was used to train a multilayered backpropagation neural network and a support vector
machine to predict the molecule’s ability to enter the CNS. Neural networks have been used successfully by
Ajay et al. (1998) to distinguish between drugs and nondrugs, as well to identify CNS active compounds
(Ajay et al., 1999). Although the neural network approach may be promising if a large enough database
is used for training, this study suggests that support vector machines are capable of outperforming neural
networks, particularly in situations utilizing smaller datasets.

MATERIALS AND METHODS

The drug database

The database is comprised of 324 drugs and biologically active molecules that have been accumulated
from several sources to make up the training set (Appendix A). These molecules were taken from previous
papers discussing BBB transport, primarily Fischer et al. (1998), Ajay et al. (1999), and van de Waterbeemd
et al. (1998). These resources did not provide a suf� cient number of molecules for training, so additional
molecules were identi� ed from the psychotropic database (Lundbeck et al., 2000), the Physicians’ Desk
Reference, and the National Library of Medicine’s Medline Plus Health Information website. The CNS
activity of each molecule was determined by one of three general classi� cation factors: previously published
results, where the molecule was considered to be CNS active or inactive; whether or not the molecule
was listed in the psychotropic database, where all listed molecules are considered to be CNS active; and
� nally, the medical use, mechanism of action, and contraindications of the molecule.

The chemical and physical descriptors of the molecules were obtained from the NCI structural and
physical properties database produced by ChemSW.

The neural network

The neural network algorithms have been implemented using the Matlab Neural Net Toolbox. This
software package provides the functions necessary to build and train a backpropagation network. The Neural
Net Toolbox contains several training algorithms that are all variations on the general algorithm described
above. In this study, the resilient backpropagation algorithm was used to reduce the time necessary to train
the network. This algorithm works on the same principles as the gradient descent algorithm; however,
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instead of using the product of the activation and the error of the node, it uses only the sign of this value
to determine the change in the weight.

The backpropagation network uses a sigmoidal squashing function to provide a continuous activation
function. The nature of this function is that its slope approaches zero at the extreme values, so the product
of the derivative of the activation and the error is often a very small value. This leads to very small
changes in the weight, resulting in very slow training. The resilient backpropagation algorithm uses a
separate parameter to determine the size of the step it takes when calculating a new weight. This parameter
is slightly increased each time the derivative of the performance function has the same sign for two
successive iterations with respect to the weight. The parameter is decreased when the sign of the derivative
changes from the previous iteration. This modi� cation from the original gradient descent algorithm reduced
the time necessary to train the network by at least an order of magnitude.

The support vector machine

The SVM used in this study was implemented using the SVM Light package available from Thorsten
Joachims (www.ais.gmd.de/»throsten/svm_light). This software package implements a classi� cation algo-
rithm, which is based on the soft margin algorithm. The SVM Light package provides four different kernel
methods: a linear kernel, a polynomial kernel, a radial basis function kernel, and a sigmoidal kernel. In
addition to choosing the kernel function, the architecture of the SVM can also be modi� ed by a training
parameter (called C) that sets the tradeoff between training error and the margin size. The kernel function
and the speci� city of the training parameter proved to be the most signi� cant factors when optimizing the
SVM algorithm (see results below).

Training times for the SVM varied signi� cantly with the kernel function. The radial basis function (RBF)
was the fastest, with training taking less than 0.5 seconds of CPU time on a Sun UltraSparc. The quadratic
kernel was signi� cantly slower, taking 350 seconds on average for training with a C value of 5. The SVM
using the RBF kernel carries out the training signi� cantly faster than the NN, which had training times
that were at least 100 times slower for the identical training sets.

Measuring the predictive performance of the algorithms

For both the NN and the SVM, the performance of the algorithm was measured by counting the number
of molecules in the validation set that were correctly classi� ed. One of the standard methods for evaluating
machine learning algorithms is the cross validation method, where the data set is split into three equally
sized groups and then the training is carried out on two thirds of the data points and the remaining third is
used for validation. In this study, the data set is quite small compared to other machine learning problems,
so cross validation makes the training set too small to well represent the problem.

A different method for validation has been used here that is based on a “bootstrapping approach,” as
follows. The validation set is made up of 50 molecules: 25 CNS active and 25 CNS inactive molecules are
selected at random from the complete data set. To get an accurate measure of the algorithm’s predictive
performance, 30 different validation sets were used. The NN or SVM was trained independently for each
of the 30 validation sets, and the average performance over all 30 validation sets is taken as the predictive
ability of the algorithm.

RESULTS

Designing the neural network

To optimize the performance of the network, several parameters were modi� ed during training of the
network including the number of hidden units and the stopping error of the training algorithm. One of the
complications in using neural networks is that there is no way to predetermine what the optimal values
for these parameters should be. Each data set is unique and each network is unique, so there are no rules
de� ning the optimal level of training or the optimal number of hidden units. There are several common
heuristics that can be followed to reach a point where the network’s performance is “good enough,” even
if it is not completely optimized.
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In this study, a descriptor set of nine variables is used as inputs to the neural network. The input
set consists of molecular weight, molecular volume, surface area, the percent of the surface area that is
hydrophilic, the log P (octanol/water partitioning coef� cient), the number of hydrogen bond donors, the
number of hydrogen bond acceptors, the hydrophilic/lipophilic balance, and a three-dimensional repre-
sentation of the number of hydrogen bonds. These variables were decided on based on the parameters
previously determined to be important in BBB transport (Pardridge, 1998; Crivori et al., 2000; Fischer
et al., 1998) as well as on the information available from the ChemSW database. Passive diffusion is the
primary method of transport looked at in this study, and each of these variables is important in determining
the ability of a molecule to diffuse through a lipid bilayer.

The performance of the network suggests that these input parameters are adequate for predicting the
CNS active molecules, but that additional descriptors may be necessary for describing the CNS inactive
molecules. This is most likely due to the presence of the ef� ux proteins, which remove many molecules
that are capable of penetrating the BBB.

The values obtained from the ChemSW database are normalized to a mean of zero and a unit standard
deviation before being used to train the network. Using the normalized data is advantageous because it
prevents one input from dominating the training process. In this data set, the molecular weight has a much
larger variance than the log P or hydrogen bonding values, so if the actual data values are used, the network
will be heavily weighted for the molecular weight. This could lead the network to view molecular weight
as a more important input variable than it actually is, skewing the results.

The number of hidden units in the network is generally thought to be an important variable because
the hidden units act as the pattern identi� ers during the training. A general heuristic is that the number of
hidden units should be equal to the number of patterns expected in the data set. The number of hidden
units should also be less than the number of data points in the training set. As the number of hidden units
approaches the number of data points in the training set, the network becomes merely a lookup table,
rather than a network that can generalize from the inputs.

For this speci� c network, there does not appear to be one optimal value for the number of hidden units.
Our results show that performance increases with the number of hidden units, up to 60 hidden units, and
then the performance remains consistently in the high 70% range (Fig. 1). In addition to these results,
many other tests have been run and results have been highly variable, such that for any given data split
there is a different optimal number of hidden units. For this study, the results are given for hidden unit
values of 45 and 60. Networks of this size have consistently been some of the best performers and should
provide an adequate representation of the predictive powers of the network. Continuing above 60 hidden
units was not necessary because there is only a slight increase in performance, and this increase did not
merit the substantial increase in training times.

FIG. 1. The number of hidden units versus the performance of the NN. From this graph, it can be seen that the
performance of the network increases as the number of nodes increases, but then levels off above 60 hidden units.
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FIG. 2. This graph shows how the performance of the network varies with the stopping error. The best perforance of
test set 1 occurred with a MSE of 0.017. Test set 2 had the highest performance at a MSE of 0.026. From the results
of this graph, a target MSE of 0.02 was used during network training.

The stopping error, or the point where the network has trained enough, is determined by an error-
checking procedure known as early stopping. In early stopping, the data set is split into three sets, the
training set, the validation set, and the testing set. As the network is trained, the performance of the network
is measured on the validation set. When the error on the validation set begins to increase, which indicates
that the network has begun to over� t the data, the training stops. The validation set is then added back
into the training set and the network is trained brie� y with the combined training set, so that the validation
can also be used to generalize for the testing set.

Implementing this early-stopping algorithm actually decreased the performance of the network by an
average of nearly 3.5%. This result was very unexpected, as early stopping should typically lead to an
improved performance on the test set. One possible explanation for this result is that because of the small
size of the data set, removing the validation set from the training set makes the training set too small
to properly train the network. Removing an additional 50 molecules for the validation set leaves only
274 molecules to train the network. The validation set is added back into the training set once the early
stopping has occurred and the network is brie� y trained on this larger training set. It is possible that
because the network only sees these additional 50 molecules following the early stopping, this does not
provide suf� cient training time to fully incorporate these molecules into the weighting of the network.

In order to avoid using a smaller training set, a different form of early stopping that does not split the
training set has been implemented. In this method the stopping error is predetermined before the training
begins. Using decreasing stopping errors, it was possible to determine the optimal stopping point for
the network. The network’s performance quickly improves as the mean squared error of the training set
decreases, but then begins to plateau and then begin a slow descents as the MSE decreases further (Fig. 2).
These results agree with the theory behind the early stopping algorithm, and the peak of this graph was
used as the target error when training the network.

The performance of the neural network

Two different networks have been used to measure the predictive ability of the neural network. The
networks use the normalized data, a target-training mean squared error of 0.2, and either 30 or 45 hidden
units. Each network has one output node, which uses a tangent sigmoidal function to con� ne the output
values between ¡1 (CNS inactive) and 1 (CNS active). Over 30 different test sets (each test set consists of
25 CNSC and 25 CNS¡ molecules selected at random from the data set and are withheld from training)
the neural network correctly predicted 75.7% of the molecules when using 30 hidden nodes and 75.0%
of the molecules when using 45 hidden nodes. The network correctly classi� ed 81.5% of the CNS active
molecules and 69.9% of the inactive molecules.
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Table 1. A Comparison of the Different Kernel
Methods and Training Errors

Performance of SVM with speci�ed kernel and C value

Kernel C D 0 C D 1 C D 5 C D 10

Linear 69.6 71.6 74 73.6
Quadratic 70.4 75.2 73.6 75.6
RBF 77.2 78.4 80.4 76.4

Design of the support vector machine

In this approach, three different kernel methods were compared: (i) a linear kernel that essentially used
the 275 dimensional input space as the feature space; (ii) a quadratic function that produced a slightly
more complicated decision surface by looking at the relationships between pairs of inputs; and (iii) a radial
basis function (RBF) which uses a Gaussian equation to map the inputs to an even more complicated
feature space. In addition, higher-degree polynomial functions and a sigmoidal function were also tested
as possible kernel functions, but they did not outperform any of the kernels described here.

For each of the kernel functions, four different levels of training speci� city were compared to see which
led to the best performance. The training error is controlled by the parameter C of the learning algorithm.
The initial algorithm, with C equal to 0, led to 30 training points being misclassi� ed. As the penalty for
misclassifying data increases, the number of misclassi� ed data points decreases so that for C equal to 5,
only 3 data points are misclassi� ed on average, and for C equal to 10, this number drops to 2. Table 1
shows how adjusting the training error affected the performance of the three different kernel methods.

From Table 1 it can be seen that the RBF kernel is the best kernel function for classifying this data
set. The results also show that using a C value of 5 leads to the optimal level of training and the best
performance of this kernel function. A SVM with a RBF kernel function and C set to 5 was therefore used
to predict the ability of the drug molecules to penetrate the BBB.

Performance of the support vector machine

The SVM was trained in parallel with the NN system. The total database of molecules consists of 324
molecules, of which 50 molecules (25 CNSC and 25 CNS¡) were selected at random and used as the
validation set, leaving 274 molecules to be used for training. Each molecule was represented by the same
nine parameters used in the NN training. The number of molecules correctly classi� ed in the validation
set is used to measure the performance of the SVM. In order to obtain a more accurate measure of the
performance, 30 different splits of the data were used to calculate the average performance of the SVM.

SVM’s overall average in correctly classifying both CNSC and CNS¡ molecules was 81.5% over the
30 different data splits. The performance ranged from a low of 66% to a high of 96%, with a median
and mode value of 82%. When looking at the performance on the CNSC and CNS¡ subsets, the SVM
correctly classi� ed 82.7% of the CNSC molecules and 80.2% of the CNS¡ molecules. The ability to
accurately predict not only CNSC but also CNS¡ compounds highlights the strength of the SVM over the
NN approach.

Pruning the descriptor set

As the level of complexity increases during machine learning, the resulting decision surface becomes
more speci� c to the particular data set and often the level of generalization decreases with increased
complexity. In order to determine if the descriptor set used here was leading to overly speci� c training and
poor generalization, training was attempted in the absence of each descriptor to see if the performance would
increase. Removing any of the descriptors actually lowered the performance of the SVM (Table 2). The
hydrogen-bonding characteristics have the largest impact on the data, lowering the performance by 7.2%.
No other parameter had a signi� cant impact on the performance of the SVM. Several smaller combinations
of the parameters were used to train the SVM to see if a better training set could be identi� ed. Using just
the hydrogen bonding characteristics, the SVM’s performance only decreased by 6.2%, again showing the
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Table 2. The Effect of Removing Each of the Parametersa

Effect of removing descriptors

Descriptor log P MW Vol SA % hydro SA Hbond HLB log P and Hbond

% change ¡0.96 ¡0.76 ¡0.24 ¡0.96 ¡1.12 ¡7.2 ¡0.4 ¡4

aFrom left to right, log P is the octanol/water partitioning coef� cient, followed by the molecular weight, volume, surface area,
percent of hydrophillic surface area, hydrogen bond donors/acceptors and 3D hydrogen bonding, and the hydrophilic–lipophilic
balance. The � nal column shows the results of training with log P and the hydrogen bonding characteristics alone.

Table 3. Common False Positives and Common False Negativesa

False negatives False positives

Methylpentynol Arecoline Fluoridine Clotrimazole
Etazolate Uridine Melphalan Ibuprofen
Haramalol Meclofexonate Ethacrynic Acid Pheniramine
Phenelzine sulfate Pimpamperone Hyoscyamine Phenylbutazone
Benactyzine Meprobomate Indomethacin Chlorambucil

Mequitazine Propranolol
Coumarin Hydralazine
Spironolactone

aThese molecules either appeared incorrectly classi� ed in multiple testing sets, or were given
very large incorrect scores.

Table 4. Common False Positive and Negative Moleculesa

MW Volume SA % hydro log P HLB H acc H donor H 3d

False Pos ¡53.03 ¡30.1 ¡4.27 ¡13.44 1.46 ¡2.24 ¡0.6801 ¡0.42 ¡4.55
False Neg ¡68.94 ¡46.51 ¡5.32 18.13 ¡1.615 3.8 0.2 0.19 1.42

aThe chart shows that difference between the average values for the 9 descriptors of the false positive/negative molecules and the
overall averages.

importance of these parameters. When log P was added back in, so that the SVM was trained with the
hydrogen bonding and log P descriptors only, the performance was decreased by just 4%.

A very interesting result is that when log P and hydrogen bonding were removed from the descriptor
set, the learning algorithm did not converge, meaning the SVM could not classify the molecules in the
absence of these two parameters. This indicates that the primary descriptors being used for classi� cation
are the hydrogen bonding descriptors and the log P descriptors. However, the remaining parameters should
not be ignored because they do enhance the performance of the SVM.

Analysis of false positive and false negative outputs

To get a better understanding for why 20% of the molecules are being misclassi� ed, the outputs from
10 different test sets have been analyzed. These test sets give a broad selection of the molecules in the
database, and through the repetition of some molecules in multiple testing sets, it is possible to identify
common themes among the false positive and false negative results. Molecules that were misclassi� ed
at least twice, or molecules that were severely misclassi� ed (i.e., a molecule that is CNS¡, but the
SVM reports a score of C1 or greater) were identi� ed as false positives or negatives. In the 10 test sets,
10 molecules were identi� ed as false negatives and 15 molecules were identi� ed as false positive (Table 3).

The results show that the false positive molecules are signi� cantly smaller, more lipophilic, and have
fewer hydrogen bond donors and acceptors (Table 4). This is all consistent with the expected model that
CNS positive molecules are small, lipophilic molecules. One of the most obvious classes of molecules
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that appear in the false positive set is the antihistamines. Mepiramine and pheniramine are H1 agonists
and are classi� ed as CNS inactive, but other antihistamines such as diphenhydramine are classi� ed as
CNS active. The structure of pheniramine and diphenhydramine are quite similar and pheniramine actually
has a higher log P value and fewer hydrogen bonds, so this would seem to make it more likely to cross
the BBB than diphenhydramine. Another molecule that stands out is hyoscyamine. This molecule is an
anticholinergic drug, classifying it as CNS inactive. However, the SVM predicted outputs of 1.69 and 1.62
for this molecule, suggesting that it very easily penetrate the BBB. In this study, BBB permeability is
equated with CNS activity, and as these results suggest, this simpli� ed method of classi� cation can be
somewhat misleading. There are molecules that have the physical ability to cross the BBB, but then do
not interact with any speci� c receptor in the CNS, making them CNS inactive, but capable of penetrating
the BBB.

The false-negative compounds are less lipophilic than the average CNS active compounds. What is
interesting is that these molecules are signi� cantly smaller than the rest of the CNS active molecules. The
smaller size of these molecules can also account for some of the decrease in the log P values. In general,
the algorithm misclassi� es fewer CNS active molecules than CNS inactive molecules; this could be due to
the fact that the CNS active molecules have less variance in the values for the 9 descriptors than the CNS
inactive molecules. This can also be attributed to the fact that there is less ambiguity in classifying CNS
active molecules than classifying CNS inactive molecules.

Analysis of the outputs of the NN and SVM

The goal of this study is not only to design a method of classifying drug molecules based on the ability to
enter the CNS but to also use this information to classify potential drug molecules in drug design screens.
Neural networks and support vector machines are binary classi� ers capable of separating a complicated
data set into two distinct classes. The outputs from these algorithms range from ¡1 to C1 for the NN
algorithm and, while for SVM there are no bounds on the output, in general they range between ¡1.8 and
C1.8. If these outputs are to be used for designing molecules speci� cally targeting the CNS, it would be
a great advantage if the outputs could be used as a quantitative measure of BBB permeability.

The test sets of the SVM were � rst searched for molecules with similar structures. Ideally, if the outputs
are proportional to BBB permeability, then molecules with similar structure should have similar output. In
test set 1, both apomorphine and morphine are present. Apomorphine is synthesized from morphine and
these molecules are similar chemically although dissimilar pharmacologically in that they interact with
different receptors. However, looking at the results of the SVM, you would not know this. Apomorphine is
assigned an output of 0.03, making it only slightly CNS active. Morphine on the other hand is assigned an
output of 0.99, making it a de� nite CNS active molecule, as one would expect. The output for morphine
is encouraging, although we continue to work towards enhancing the performance of the algorithm so that
apomorphine can be correctly predicted.

Test set 9 contains both temazepam and medazepam and they are assigned values of 0.80 and 0.58,
respectively. These molecules are both anxiolytic compounds and are both CNS active. They have similar
structures and differ in that temazepam contains a carbonyl and a hydroxyl group that are not present in
medazepam. This raises the level of hydrogen bonding in temazepam and lowers its log P value. Based
on these facts, it would seem that temazepam should be less able to penetrate the BBB, but the SVM
algorithm scores temazepam higher than medazepam.

In another set of test sets (data not shown) clomipramine and imipramine are assigned outputs of 1.72
and 1.03, respectively. These molecules are both tricyclic antidepressants and differ only in the addition of
a chlorine atom in clomipramine. The two molecules have identical hydrogen bonding characteristics and
their log P values differ by only 0.5. It is dif� cult to say if clomipramine is really 70% more able to cross
the BBB, but it encouraging that two similar obvious CNS active structures both received high positive
outputs. Clomipramine appears in 4 of the 10 test sets and is assigned values of 0.77, 0.92, 1.65, and 1.72.
These values show that across different training sets the actual values of the outputs cannot be simply
compared because of variations within the training set which leads to different weights and, consequently,
varying the outputs.

The important question is how do these outputs for clomipramine compare to the rest of the testing
set. Clomipramine is consistently one of the highest outputs of the testing sets. In the two test sets where
clomipramine was assigned values below 1, none of the molecules in the test set were assigned values
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FIG. 3. The tricyclic antidepressants. The molecule and its structure are shown along with the SVM algorithm’s
predicted BBB permeability. All tricyclic antidepressants are CNSC.

above 1, showing that relative to the other molecules in the test set clomipramine can consistently be
considered to easily cross the BBB. Two additional test sets have been created to test the ability of
the algorithm to rank closely related molecules. The � rst test set contains the tricyclic antidepressants,
clompiramine, imipramine, desipramine, trimipramine, and doxepin. The second test set contains codeine,
hydrocodone, and oxycodone, three narcotic analgesics with related structures. The SVM was trained using
all of the remaining molecules in the data set (319 molecules and 321 molecules, respectively), so these
test sets can be thought of as novel molecules, simulating a design situation.

The results from the tricyclic compounds are encouraging (see Fig. 3). First, all � ve molecules are
correctly classi� ed as CNS+ molecules, which shows that the SVM is effective in binary classi� cation.
Second, the molecule with the highest hydrogen bonding has the lowest predicted BBB permeability.
This result is consistent with the expected negative correlation between hydrogen bonding and BBB
permeability. Of the four remaining compounds, clomipramine receives the highest score and trimipramine
the lowest. This result is somewhat surprising. One would expect that the polar nature of the chlorine atom
in clomipramine would reduce its BBB permeability and the additional methyl group in trimipramine would
raise its BBB permeability. Unfortunately, no data is currently available on the actual logBBB (blood–brain
barrier partitioning coef� cient) of these molecules, so that these results predicted by the algorithm remain
to be con� rmed.

The results of the narcotic analgesics are also encouraging (see Fig. 4) because again the molecule
with the most hydrogen bonding, oxycodone, has the lowest predicted BBB permeability. It is interesting
that hydrocodone has a predicted BBB permeability that is half of codeine. This suggests that hydrogen
bond acceptors may hinder crossing the BBB more than hydrogen bond donors do. Again, there is a
lack of experimentally determined values of BBB permeability, and the predicted results remain to be
experimentally con� rmed.

The results from comparing the various test sets and from the smaller speci� c test sets suggest that the
outputs given by the SVM can be viewed as preliminary predictions for BBB permeability. As the exact
values of predictions are only meaningful within the context of the speci� c test set, the output for any
particular compound cannot be taken as a quantitative value. Values generated between test sets cannot be
quantitatively compared because of variations in the training sets that alter the weights of the classi� cation
function and thus the scale of the outputs. Nevertheless, this SVM methodology appears to be an excellent
starting point for narrowing down a large library of potential drug molecules.

http://www.liebertonline.com/action/showImage?doi=10.1089%2F10665270260518317&iName=master.img-003.png&w=376&h=241
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FIG. 4. Narcotic analgesics. The structure and predicted BBB permeability are shown for three CNSC molecules of
related structure.

DISCUSSION

The support vector machine outperforms the neural network

This study has compared the ability of two different machine-learning algorithms to predict the ability
of drug molecules to cross the BBB and enter the CNS. The results show that over the same data set, using
identical training and validation sets, the support vector machine outperforms the neural network by about
6% (81.5% to 75.7%). The result of the SVM algorithm is very encouraging, as it is comparable to other
studies that have been done in this area. Ajay et al. (1999) used a database of over 9,000 molecules and
achieved an 80% predictivity. The prediction methods of Luco (1999) and Crivori (2000) based on three-
dimensional structure analysis both achieved around 90% predictivity. The SVM algorithm is impressive
because even with a very small data set it performs comparably to the other methods used.

The SVM algorithm is also advantageous because it accurately classi� es both CNS active and CNS
inactive compounds. The neural network correctly classi� ed 81.5% of the CNS active and 69.9% of the
inactive molecules. The neural network used by Ajay correctly classi� ed 92% of the CNS active molecules,
but only 71% of the inactive molecules. The SVM correctly classi� ed 82.7% and 80.2% of the CNSC and
CNS¡ compounds, respectively, suggesting that the SVM is better able to handle classi� cation problems
such as the one described here.

An assumption that has been made for the prediction algorithms is that BBB permeability is equated
with pharmacological activity in the CNS. However, this simpli� ed assumption may not be true for some
molecules, where CNS inactivity is not necessarily due to an inability to cross the BBB but due to the lack
of target proteins such as receptors in the CNS. It is also possible that molecules can facilely penetrate
the BBB but are then quickly removed from the CNS by the P-glycoproteins and other ef� ux proteins
present on the BBB. In the parameters used by this study, passive diffusion is the only method of transport
considered. This can result in high predictive values even with molecules that transported quickly out of
the CNS (hence, low CNS bioavailability) as these algorithms currently focus primarily on permeability.

AZT (azidovudine) is often a common example of a molecule that is able to penetrate the BBB by
passive diffusion, but is then removed from the CNS by the ef� ux proteins (Physician’s Desk Reference).
When AZT is tested using the SVM approach, an output of C1 is obtained, indicating that the network
believes this molecule can penetrate the BBB. In this case, the network was trained correctly because
AZT does indeed penetrate the BBB, but AZT’s CNS bioavailability is low due to its rapid removal by
transport mechanisms. To further increase the usability of the SVM approach, transport properties need
to be accounted for, a complicated task as experimental data and fundamental understanding of speci� c
transport mechanisms that operate in the CNS are limited.

CONCLUSION

While SVMs are frequently being used in other disciplines, they are still being explored in the � eld of
medicinal chemistry. The results of this study show that SVMs can be used to improve current prediction
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methods for the BBB problem and many similar classi� cation problems that are important in this � eld.
SVMs are advantageous over neural networks because they have faster training times, they are convex
problems with no local minima, and most importantly, they appear to be better able to classify small data
sets like this one.

The SVM algorithm described here is a good starting point for developing a method of screening potential
drug molecules based on their ability to penetrate the BBB. The SVM will reliably indicate whether a
molecule will cross the BBB and we are currently developing a method for generating a dependable,
quantitative prediction of BBB permeability.

APPENDIX A. THE DATABASE

Name MW Volume SA % hydro log P HLB H acc H donor H 3d CNS C=¡

CNS inactive molecules

acetaminophen 151.165 83.0793 10.72 49.5386 0.494 12.71 0.8284 0.55476 15.379 ¡1
acetylsalicylate 194.187 115.859 15.27 66.9677 1.62 15.562 0.5441 0.02283 7.60558 ¡1
albuterolsulfate 337.387 47.262 7.565 100 ¡1.23 20 0.4003 0.7762 14.7768 ¡1
allopurinol 136.1128 65.5428 7.909 100 ¡1.486 20 0.8691 0.60792 21.0878 ¡1
Alprostadil 354.486 205.543 27.66 27.1819 1.117 7.3946 1.5299 0.76239 11.6683 ¡1
aminophylline 180.166 90.3217 11.35 100 0.2021 20 0.8354 0.27728 10.6627 ¡1
Amiodarone 645.318 279.083 34.66 19.8972 8.1676 3.9079 0.4861 0.03712 7.64779 ¡1
amoxicillin 365.403 193.257 24.5 65.2894 ¡3.6298 15.504 2.4322 1.3648 14.574 ¡1
ampicillin 349.404 187.438 23.67 59.6211 ¡2.9628 14.553 2.0899 1.09898 11.2776 ¡1
androsan 302.456 207.985 26.72 12.8943 4.048 2.9768 0.5802 0.23101 10.2105 ¡1
aspirin 180.16 104.856 13.74 70.0384 1.394 16.55 0.7865 0.29767 10.9724 ¡1
Astemizole 458.577 346.325 45.14 28.6254 5.024 7.8998 0.6774 0.31075 7.50218 ¡1
atropine 290.382 171.955 22.02 76.4387 2.8666 15.517 0.6934 0.29095 7.76083 ¡1
Auxeomycin 478.885 287.349 37.59 80.1662 ¡7.1642 18.407 3.2498 1.8663 20.4471 ¡1
Betamethasone 392.467 268.728 35.89 30.9187 ¡1.2688 6.7817 1.7962 0.76406 14.9178 ¡1
carbenicillin 378.399 215.944 27.82 63.4068 ¡3.7628 14.97 2.0187 0.88235 11.3847 ¡1
carbidopa 226.232 168.584 24.07 77.1606 ¡1.741 16.369 1.8007 1.32903 16.4799 ¡1
cateolol 292.377 168.782 21.89 42.1378 1.2928 9.8591 1.2196 0.67384 11.1786 ¡1
Cefazolin 454.496 233.831 29.92 84.7014 ¡7.1492 18.632 1.4547 0.60159 13.1859 ¡1
cephapirin 423.458 210.628 26.62 76.5637 ¡4.4932 16.83 1.8601 0.62797 10.3937 ¡1
chlorambucil 304.216 160.074 21.02 51.7515 2.911 12.755 0.6781 0.29357 8.16285 ¡1
chloramphenicol 323.132 180.846 24.57 98.2414 ¡2.347 19.875 2.3382 0.76558 16.1802 ¡1
chlorothiazide 295.715 159.193 21.16 98.979 ¡1.419 19.932 1.4224 1.0417 17.3356 ¡1
chlorpropamide 276.7373 145.39 19.17 79.8239 4.532 17.754 0.9388 0.58784 11.006 ¡1
Chlortetracycline 478.885 287.349 37.59 80.1662 ¡7.1642 18.407 3.2498 1.8663 20.4471 ¡1
chlorthalidone 338.765 202.923 25.93 73.873 0.2252 16.097 1.5965 1.17766 17.0619 ¡1
clo� brate 242.7017 144.398 19.13 60.269 3.5082 15.951 0.4354 0.02836 5.40552 ¡1
clo� bricacid 214.648 130.554 17.39 67.4761 2.2736 16.823 0.6726 0.30209 8.62268 ¡1
clotrimazole 344.843 204.539 23.96 29.1888 5.6497 6.6427 0.1504 0.11901 4.85491 ¡1
corticosterone 346.466 221.089 28.31 28.8915 0.9666 6.0071 1.2404 0.4937 13.3888 ¡1
Cortisone 360.449 244.232 32.14 32.7877 ¡1.3188 7.3282 1.5164 0.52928 13.5909 ¡1
coumarin 146.145 76.2801 8.836 32.6951 2.552 7.6664 0.2385 0.03588 3.30915 ¡1
dapsone 248.299 137.855 16.98 62.5959 ¡0.024 13.546 1.5988 1.06843 13.7996 ¡1
Dehydrocholic Acid 402.53 221.048 28.23 23.3393 1.051 5.2183 1.1413 0.27306 7.36499 ¡1
dexamethasone 392.467 268.728 35.89 30.9187 ¡1.2688 6.7817 1.7962 0.76406 14.9178 ¡1
dicumarol 336.3 172.036 19.74 50.5239 3.845 12.258 1.1678 0.5861 11.6674 ¡1
dicyclomine 309.491 192.096 25.64 23.1637 5.511 7.1144 0.4069 0 5.57391 ¡1
Diethylstilbestrol 268.355 162.747 20.24 18.1899 5.126 4.3254 0.6842 0.58622 13.1931 ¡1
Digitoxin 764.949 473.895 61.11 55.4598 2.5078 12.665 2.9952 1.13669 12.2671 ¡1
Digoxin 780.948 481.651 62.27 57.9109 0.2008 13.149 3.3305 1.36234 13.4658 ¡1
Domperidone 425.917 223.384 26.55 61.3032 2.694 16.845 1.0206 0.56757 8.42175 ¡1
dopamine 153.18 88.0365 11.47 50.9332 0.099 11.238 1.1862 0.91874 17.3773 ¡1
doxorubicin 543.5262 277.528 33.99 77.5749 ¡3.9958 18.192 3.5116 1.66894 17.6936 ¡1
doxycycline 444.44 240.953 30.48 64.8744 ¡7.8772 15.536 3.2504 1.86879 20.94 ¡1
Dyclonine 289.417 171.967 22.07 18.4714 3.714 6.6385 0.4386 0.02234 6.51322 ¡1
Econazole 381.688 204.875 25.06 74.9159 5.1036 16.431 0.3361 0.09037 7.37159 ¡1
enkephalin 554.645 404.493 55.96 58.5473 ¡3.4607 13.137 3.7962 2.332 12.9534 ¡1
Ephedrine 165.235 101.985 13.34 43.7147 1.0366 8.8473 0.6998 0.46011 11.4119 ¡1
epinephrine 183.207 143.461 20.44 90.3025 ¡0.6064 18.359 1.3801 0.99166 18.8934 ¡1
erythromycin 733.935 451.81 60.86 51.6776 0.143 15.081 3.0751 1.13045 10.337 ¡1
estradiol 272.386 208.974 27.34 15.1308 4.304 3.3794 0.6798 0.51262 13.2039 ¡1
estrone 270.3706 203.892 26.43 14.2347 4.062 3.3301 0.5408 0.28628 10.1271 ¡1
Ethacrynic Acid 303.141 147.976 19.16 68.4178 2.3456 16.232 0.9475 0.3012 8.37772 ¡1
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Name MW Volume SA % hydro log P HLB H acc H donor H 3d CNS C=¡

ethinylestradiol 296.408 220.109 28.23 14.0364 3.724 3.1055 0.8044 0.74126 13.2087 ¡1
fenoterol 303.357 189.205 24.25 59.9369 1.2226 13.593 1.7269 1.28282 18.6948 ¡1
� oxuridine 246.1947 132.7 17.46 93.6686 ¡1.0466 18.457 1.5013 0.73168 15.2239 ¡1
Flucloxacillin 453.872 224.664 27.69 59.9976 ¡0.0228 14.925 1.8248 0.60297 9.39797 ¡1
� uoruoracil 130.0783 60.0415 7.868 86.8184 ¡0.771 17.079 0.8902 0.56704 25.357 ¡1
furosemide 330.742 151.203 18.81 69.1891 1.26 15.942 1.5838 1.16672 12.663 ¡1
ganciclovir 255.233 133.802 17.42 100 ¡3.7021 20 2.1215 1.26788 20.7611 ¡1
glycopyrrolate 318.4351 205.249 26.59 52.7151 4.0746 10.816 0.7079 0.28846 6.68983 ¡1
guanabenz 231.084 109.866 14.21 96.9594 0.386 19.825 1.4731 1.37112 11.4574 ¡1
guanethidinesulfate 296.384 35.503 5.409 100 ¡1.23 20 0.4003 0.7762 14.7768 ¡1
homatropine 275.3468 171.955 22.02 76.4387 2.8666 15.517 0.6934 0.29095 7.76083 ¡1
hydralazine 160.178 91.6616 11.22 59.2701 ¡0.5817 13.372 0.8387 0.82897 8.45312 ¡1
Hydrochlorothiazide 297.731 147.013 19.1 98.8687 ¡1.0256 19.932 1.4195 1.17945 18.0304 ¡1
Hydrocortisone 362.465 252.985 33.69 33.1186 ¡0.8568 7.3431 1.6547 0.75479 15.2257 ¡1
hydro� umethiazide 331.284 160.676 21.14 76.9524 ¡0.8556 15.048 1.5797 1.1761 23.1565 ¡1
hyoscyamine 289.3736 170.149 21.33 41.7763 0.674 12.105 0.729 0.25452 10.7743 ¡1
ibuprofen 206.284 172.263 24.24 17.2506 4.099 4.3646 0.5389 0.29288 7.53358 ¡1
indomethacin 357.793 191.765 23.33 56.7074 2.6 15.127 0.8564 0.31856 8.81988 ¡1
isoniazid 137.141 73.3092 9.547 90.9483 ¡2.322 19.412 1.1705 0.8383 8.78401 ¡1
Isoproterenol 211.26 164.361 23.19 69.4358 0.3216 15.635 1.3845 0.99036 17.1127 ¡1
Isoquercitrin 464.382 228.273 27.91 90.4194 ¡1.9486 18.748 3.2493 2.01896 21.6959 ¡1
Ketoconazole 531.438 297.98 36.88 80.2482 4.283 17.361 0.9839 0.08757 7.34864 ¡1
labetalol 328.41 256.547 35.01 53.5117 1.5986 11.703 1.8369 1.26584 13.9555 ¡1
levodopa 197.19 148.354 21.12 67.9608 ¡1.27 14.616 1.8322 1.31758 18.6637 ¡1
mannitol 182.173 96.213 13.85 100 ¡4.2124 20 1.9888 1.35894 27.0935 ¡1
Meclocycline 476.87 255.367 32.08 75.7119 ¡6.9482 17.478 3.238 1.84933 20.3484 ¡1
Meclofenamate 296.152 145.113 17.69 56.7662 5.438 13.709 0.7812 0.56931 7.81618 ¡1
Mefenamic Acid 241.289 136.482 16.71 26.8173 4.661 6.9671 0.7865 0.57028 7.98413 ¡1
me� oquine 378.317 191.919 24.15 21.2789 2.7836 4.4448 1.1732 0.45315 14.5181 ¡1
melphalan 305.2034 157.265 20.71 63.6075 0.583 14.617 1.2779 0.78124 9.84388 ¡1
mepenzolatebromide 340.4413 219.877 27.99 55.2599 4.1106 10.94 0.6919 0.31679 6.46873 ¡1
mepiramine 285.388 179.772 22.99 35.9972 2.6689 10.941 0.3829 0.05861 9.77709 ¡1
mequitazine 322.467 237.082 29.97 6.95848 4.0473 2.4823 0.1129 0.0448 6.08535 ¡1
mestranol 310.435 231.952 29.91 14.2508 4.31 3.6741 0.5609 0.47048 10.1894 ¡1
methantheline 340.4413 218.495 27.75 66.9543 4.808 13.881 0.3565 0.04273 6.40151 ¡1
methotrexate 454.4444 247.989 31.56 73.1409 ¡3.3257 15.901 3.3561 1.8794 15.2169 ¡1
Methyclothiazide 360.23 186.755 24.84 99.1304 ¡0.3276 19.944 1.4517 0.88143 15.4832 ¡1
methyldopa 211.217 162.312 23.23 64.6741 ¡0.871 14.687 1.8383 1.31424 17.5827 ¡1
Methylprednisolone 374.476 256.509 33.83 31.7029 ¡0.8818 7.1075 1.65 0.76379 14.9409 ¡1
Miconazole 416.133 269.993 35.69 91.5355 5.8166 19.132 0.3356 0.08754 7.20945 ¡1
minocycline 457.482 273.01 35.27 58.9386 ¡6.0242 14.437 2.9182 1.60348 18.7531 ¡1
nandrolone 274.402 204.73 27.12 13.9257 3.58 3.2811 0.5773 0.23138 10.856 ¡1
neodicoumarol 408.3636 251.939 31.22 57.5524 3.403 12.986 1.4657 0.5862 11.0684 ¡1
Nicotinyl Alcohol 109.127 64.5981 8.343 41.891 ¡0.373 10.087 0.5525 0.3082 15.1963 ¡1
norethindrone 298.424 218.819 28.55 12.8373 2.87 3.017 0.7019 0.45994 11.0255 ¡1
norfenefrine 153.18 122.17 17.23 57.3852 ¡0.2074 11.632 1.2516 0.91814 19.1952 ¡1
nylidrin 299.412 203.422 26.21 24.6265 3.3946 5.8166 1.0465 0.75063 12.427 ¡1
Oxandrolone 306.444 205.919 26.54 15.8318 4.193 3.9822 0.6523 0.22571 9.43654 ¡1
Oxaprozin 293.321 187.077 22.96 33.0289 3.448 7.7098 0.7603 0.32959 8.15289 ¡1
oxytetracycline 460.44 247.031 31.35 70.8926 ¡10.184 16.822 3.583 2.09517 22.5053 ¡1
papaverine 339.39 308.184 45.45 40.1976 2.752 10.259 0.5563 0.05124 9.33387 ¡1
penicillin G 334.389 194.184 24.78 53.4015 ¡2.4358 13.469 1.4847 0.60827 9.24474 ¡1
phenacetin 179.218 103.122 13.44 37.2465 1.609 11.948 0.5897 0.28394 8.82604 ¡1
phenazopyridine 213.2414 160.982 21.34 64.826 ¡0.8185 13.8 1.3528 1.07707 14.26 ¡1
pheniramine 240.347 199.753 26.92 17.2961 2.605 5.3295 0.2532 0.06294 6.03587 ¡1
Phenolphthalein 318.328 171.447 19.83 31.753 3.789 7.9206 0.9816 0.60766 14.8069 ¡1
phenoxybenzamine 303.831 173.253 21.72 38.0598 4.3146 9.5171 0.2513 0.05553 5.96358 ¡1
Phenylbutazone 308.379 178.593 21.82 23.7635 0.995 7.8523 0.461 0.05572 6.51322 ¡1
pirbuterol 240.302 186.505 26.59 68.5973 0.1066 15.079 1.6078 0.97873 17.2623 ¡1
Polythiazide 439.87 199.357 25.89 79.0971 0.0008 16.179 1.7154 0.88035 16.3174 ¡1
prazosin 383.406 229.603 28.81 84.1259 ¡0.0053 18.848 1.4721 0.54714 12.1142 ¡1
prednisolone 360.449 251.119 33.37 33.2564 ¡1.4008 7.3841 1.65 0.76387 15.4378 ¡1
prednisone 358.433 242.872 31.93 32.9522 ¡1.8628 7.3694 1.5105 0.53829 13.8354 ¡1
probenecid 285.357 157.535 20.76 62.7364 3.136 15.644 0.9655 0.29972 11.0199 ¡1
progesterone 314.467 204.948 25.9 11.2853 4.335 2.799 0.4368 0.00495 6.63421 ¡1
propranolol 259.347 151.092 18.97 36.436 2.4338 8.7231 0.7291 0.436 9.59265 ¡1
proscillaridin 530.657 361.003 47.18 39.9123 4.7306 9.24 1.944 0.92952 11.8398 ¡1
puromycin 471.515 289.645 37.44 67.6296 ¡1.2838 15.792 2.5964 1.25215 14.2959 ¡1
quinidine 324.422 186.816 22.61 28.6244 2.3116 9.0071 0.8617 0.31523 11.2767 ¡1
ribavarin 244.207 120.71 15.8 100 ¡2.9006 20 2.2422 1.22236 18.989 ¡1
rifampin 822.951 489.992 63.58 59.186 1.0672 14.691 3.4197 1.56462 15.7408 ¡1
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Name MW Volume SA % hydro log P HLB H acc H donor H 3d CNS C=¡

salicylicacid 138.123 71.5378 9.124 55.8614 1.218 12.459 0.8654 0.56709 17.073 ¡1
scopolamine 318.3919 191.136 24.08 75.3614 1.4188 15.157 0.7675 0.25473 10.0616 ¡1
Spironolactone 416.574 257.6 32.58 28.0484 4.4606 7.4952 0.7958 0.00502 7.31896 ¡1
Stanozolol 328.497 223.69 28.12 15.573 5.23 3.5336 0.6409 0.52238 9.58619 ¡1
sulfasalazine 398.392 213.513 26.26 84.9605 ¡2.9837 18.288 1.477 0.93785 15.0043 ¡1
Terconazole 532.469 304.611 37.99 68.1939 6.5688 16.198 0.9041 0.09305 6.72487 ¡1
testolactone 300.3968 205.906 26.67 19.9009 3.433 5.5947 0.5553 0.01389 7.52859 ¡1
testosterone 288.429 181.713 22.82 13.8033 3.529 3.1216 0.5779 0.23164 10.5197 ¡1
TetraCycline 444.44 240.953 30.48 64.8744 ¡7.8772 15.536 3.2504 1.86879 20.94 ¡1
theophylline 180.166 90.3217 11.35 100 0.2021 20 0.8354 0.27728 10.6627 ¡1
thioguanine 167.188 77.9088 9.504 94.5837 ¡0.9021 19.879 1.4832 1.10941 17.3205 ¡1
tolazamide 311.3982 179.386 23.37 54.1322 4.488 12.858 0.932 0.60188 10.0246 ¡1
tolbutamide 270.3458 148.793 19.6 50.1809 4.997 12.736 0.9391 0.58071 10.4155 ¡1
Triamcinolone 394.439 263.878 35.27 39.1234 ¡3.0376 8.2703 2.1255 0.99188 16.1291 ¡1
Triamterene 253.266 134.617 16.05 65.5448 ¡1.0061 13.911 2.2953 1.58537 17.507 ¡1
Trichlormethiazide 380.648 186.84 24.75 99.1272 ¡0.7306 19.947 1.417 1.19716 16.4578 ¡1
valinomycin 1111.33 705.075 97.18 49.8064 0.4756 14.155 4.9882 1.50676 8.46004 ¡1
verapamil 454.608 284.776 37.21 27.0892 4.186 8.8036 0.6603 0.03466 8.34602 ¡1
warfarin 308.333 167.236 19.9 31.5172 3.14 8.112 0.7801 0.32007 9.33301 ¡1
yohimbine 354.448 198.626 23.76 32.0197 1.494 7.962 1.0433 0.50342 11.5456 ¡1
zidovudine 267.244 151.885 20.12 89.3704 ¡2.0662 18.875 2.0797 0.50174 13.8477 ¡1

Average 335.2577 199.936 25.88 55.6157 0.7874 12.561 1.3545 0.71137 12.5491
Std. deviation 140.8895 90.0684 12.04 26.4116 3.343 5.2466 0.9145 0.53178 4.68233

CNS active molecules

acepromazine 442.529 62.8703 9.176 100 ¡0.886 20 1.0444 0.56601 15.7038 1
acetophenazine 527.634 62.5695 9.128 100 ¡0.886 20 1.0444 0.56601 15.7038 1
acetozalmide 222.2364 123.695 17.51 92.0981 ¡2.9723 19.728 1.186 0.88182 22.0383 1
allobarbitol 208.2164 156.977 23.02 50.2567 0.575 12.11 1.3253 0.56084 11.7318 1
amantadine 151.251 87.9156 10.78 15.3762 2.395 2.1187 0.5076 0.3592 6.2357 1
amitriptyline 277.408 172.19 20.88 10.9933 4.961 3.6076 0.1192 0.04253 5.49208 1
amobarbital 226.275 129.632 17.71 37.9871 2.062 11.143 1.1388 0.53447 9.92661 1
amphetamine 135.208 85.8723 11.1 17.0003 1.742 4.1467 0.5044 0.38695 6.99345 1
antipyrine 188.229 127.759 16.25 39.9931 0.944 11.165 0.222 0.03302 6.78571 1
apomorphine 267.327 152.206 17.75 26.4463 2.39 6.2885 0.8159 0.56729 14.3518 1
arecoline 155.196 88.0503 11.89 65.8173 0.626 17.413 0.4373 0 7.22493 1
azaperone 327.401 182.338 22.46 35.4779 3.144 9.6603 0.5714 0.06082 7.9691 1
benactyzine 327.422 234.675 30.97 32.677 3.4146 8.4973 0.7819 0.31679 6.66431 1
benperidol 381.449 207.12 25.01 31.3755 2.741 10.284 0.7986 0.30646 7.65247 1
benzocaine 165.191 92.7985 12.03 45.8409 1.413 10.421 0.8708 0.53142 8.77164 1
benzquinamide 404.505 243.045 31.42 50.58 0.824 14.053 0.9647 0.01019 9.80881 1
benztropine 307.435 187.625 22.49 12.9725 3.22 5.1431 0.2649 0.05349 6.37245 1
biperiden 311.466 197.261 24.4 9.11787 4.341 2.7627 0.587 0.28648 9.91851 1
bromazepam 316.156 144.404 17.06 44.0701 1.8737 8.4205 0.8256 0.31946 11.0138 1
buclizine 433.0351 258.07 31.57 28.1918 9.1943 7.1868 0.2539 0.07246 5.46825 1
bufotenine 204.271 136.623 17.51 31.0225 1.008 9.1118 0.6911 0.55042 12.7753 1
bupropion 239.744 137.071 18.01 35.1429 2.619 10.639 0.6036 0.25361 3.12285 1
buramate 195.218 109.716 14.39 62.0912 0.3784 12.101 0.8788 0.50847 12.6189 1
butabarbitral 212.248 153.978 22.32 49.7435 1.533 11.88 1.1388 0.53444 10.294 1
caffeine 194.193 100.998 12.87 89.2472 1.0932 19.689 0.5951 0.01695 9.59149 1
cannabidiol 310.435 185.973 22.93 12.0194 7.085 3.6741 0.445 0.29416 9.43387 1
capuride 186.253 113.722 16.06 37.3288 0.15 10.638 1.2563 0.78814 10.6441 1
carbamazepine 236.273 145.506 17.28 28.5421 2.28 6.9463 0.7875 0.57573 8.31511 1
carphenazine 541.661 62.5695 9.128 100 ¡0.886 20 1.0444 0.56601 15.7038 1
cartazolate 290.364 174.615 22.71 51.7355 2.8003 13.925 0.9468 0.27178 6.9458 1
centazolone 211.223 109.69 12.52 47.4486 0.0623 10.329 0.9411 0.5772 10.3247 1
chloralhydrate 165.404 63.5401 9.166 100 0.1774 20 0.7495 0.53197 19.1305 1
chlordiazepoxide 299.759 165.204 20.01 63.5277 2.9099 13.852 0.673 0.29221 8.4304 1
chlorpromazine 318.863 233.39 31.04 28.7324 3.7413 7.7474 0.1064 0.04399 5.88878 1
chlorprothixene 315.86 181.486 21.98 21.6906 4.986 6.1737 0.1191 0.04368 5.42903 1
chlorzoxazone 169.567 75.7854 8.911 92.7263 2.541 19.643 0.4694 0.28394 9.99517 1
choline 104.172 69.9078 10.81 100 0.0484 20 0.3311 0.22657 13.3705 1
clobazam 300.744 172.585 21.12 56.1686 0.191 13.671 0.4582 0.04924 9.15862 1
clomipramine 314.857 222.957 28.71 22.6303 4.566 7.0832 0.1079 0.04214 6.44147 1
clonazepam 315.715 167.385 20.34 61.8423 2.6133 14.227 0.9891 0.30584 9.86385 1
clopenthixol 400.965 216.106 26.02 49.4443 5.1296 9.4099 0.546 0.27016 10.2821 1
clopimozide 495.998 263.959 31.43 33.7902 6.904 9.6621 0.5597 0.32741 7.06992 1
cocaine 303.357 172.319 21.59 50.5463 1.462 13.46 0.691 0.02712 6.69125 1
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codeine 299.369 172.856 20.66 32.4268 0.3822 9.0915 0.7372 0.2736 10.7167 1
cyclabarbamate 245.662 123.019 16.11 84.8018 0.8238 17.716 1.2767 0.77782 14.1432 1
cyclazocine 271.402 177.395 21.86 10.6642 4.368 3.1706 0.427 0.28611 10.4234 1
cyclophenazine 433.534 246.051 30.03 25.1293 5.6887 5.635 0.3997 0.03814 7.47793 1
deanol 89.137 66.9868 10.18 72.8187 ¡0.6276 18.643 0.4197 0.22648 15.4077 1
demerol 247.336 179.864 24.09 33.7433 2.767 9.7104 0.3955 0.02541 6.86405 1
deserpidine 578.661 336.773 41.72 51.255 2.5282 13.178 1.4132 0.2886 10.526 1
desipramine 266.385 196.539 24.96 18.3695 3.207 4.2095 0.3093 0.21406 5.95757 1
dextroamphetamine 233.282 85.8723 11.1 17.0003 1.742 4.1467 0.5044 0.38711 6.99345 1
diazepam 284.745 168.154 20.49 47.7964 2.9339 11.629 0.4247 0.04941 8.03532 1
dihydrocodeine 301.385 170.524 20.38 28.9662 0.9262 8.9639 0.6338 0.23673 10.3096 1
dihydromorphine 287.358 160.161 18.96 30.9431 0.5352 8.6356 0.8768 0.50724 12.6188 1
diphenhydramine 255.359 192.981 25.18 18.9023 2.395 5.2512 0.4993 0.31519 10.4002 1
diphenhylhydantoin 252.272 151.169 18.25 37.4159 1.975 9.6787 0.9416 0.57122 10.4501 1
dixyrazine 427.604 257.195 32.15 46.6422 3.9554 9.3193 0.6556 0.27144 9.54018 1
DMT 188.272 131.072 16.73 20.0287 1.675 6.8036 0.349 0.28493 6.93268 1
doxepin 279.381 164.651 19.89 13.9193 3.507 4.7275 0.2354 0.04452 7.18404 1
doxylaminesuccinate 388.463 62.2583 9.077 100 ¡1.162 20 1.0968 0.54613 14.2901 1
droperidol 379.433 203.616 24.5 35.5821 2.197 10.392 0.8341 0.30807 8.15658 1
ectylurea 156.184 105.965 15.39 52.6818 ¡1.322 12.686 1.2711 0.79014 12.8509 1
emylcamate 145.201 95.4426 13.74 33.029 1.681 9.9232 0.8529 0.52306 9.3318 1
estazolam 294.743 159.59 18.44 48.2643 2.7737 11.303 0.2812 0.06794 7.95567 1
etaqualone 264.326 149.514 17.78 19.7002 2.8803 6.9654 0.3903 0.0446 6.24421 1
etazolate 289.336 170.358 22.16 61.6652 1.0123 15.843 0.9276 0.32207 7.71333 1
ethchlorvynol 144.601 103.093 15.13 49.6211 0.261 12.379 0.3765 0.50471 13.6983 1
ethinamate 260.333 156.239 22.09 49.5004 1.757 13.225 1.4394 0.76783 9.84144 1
ethosuximide 141.169 87.6587 11.99 52.4714 ¡0.025 13.753 0.7122 0.26296 10.9839 1
etymemazine 326.499 261.86 35.25 13.113 4.6053 3.9231 0.1071 0.0372 5.51404 1
� upentixol 434.519 227.108 27.62 38.8096 5.2996 6.4987 0.7018 0.26429 11.2269 1
� uphenazine 437.522 267.313 34.12 37.1967 4.375 7.0943 0.6896 0.26463 11.2734 1
� urazepam 387.884 250.781 32.33 46.6485 3.6849 11.324 0.5207 0.0451 8.20493 1
glaziovine 297.353 164.047 19.92 30.5935 1.296 8.2775 0.8087 0.29459 12.4982 1
glutethimide 217.267 163.989 22.19 34.0599 2.053 8.7503 0.7052 0.29167 9.22464 1
haloperidol 375.87 270.545 36.28 31.0324 3.494 8.2226 0.7581 0.3102 9.98504 1
harmalol 200.24 109.031 12.82 26.8718 1.6254 6.9967 0.8672 0.54452 14.3915 1
harman 182.224 99.3402 11.15 7.30304 2.252 3.0746 0.4269 0.30308 6.66988 1
heroin 369.416 205.587 25 42.5371 0.8096 11.647 0.8267 0.0118 13.9433 1
hexapropymate 181.234 140.304 20.08 32.9202 1.586 7.9503 0.9061 0.59818 10.0079 1
homophenazine 451.549 277.833 35.55 33.2463 4.5454 6.7847 0.692 0.26463 12.1826 1
hydrocodone 299.369 179.654 21.61 32.495 ¡0.0194 9.7593 0.5889 0.01048 9.93584 1
hydroxyphenamate 209.244 152.052 21 44.5235 1.1696 9.8523 1.2594 0.81031 13.0764 1
hydroxyzine 374.909 227.157 28.71 60.1868 4.305 12.414 0.6705 0.2799 9.4921 1
imiclozapine 486.074 291.413 36.42 59.6982 4.4926 12.211 0.5645 0.04399 8.82098 1
imipramine 280.412 227.275 30.04 14.1515 3.853 4.568 0.1084 0.04291 6.60928 1
isopromethazine 284.418 230.497 31.09 23.0597 3.3967 5.5608 0.1066 0.04485 7.24286 1
ketamine 237.729 156.113 20.39 46.4298 2.4678 10.899 0.6322 0.25462 4.2637 1
kynurenicacid 189.17 95.6217 11.46 62.6617 0.939 13.224 1.0214 0.5761 16.1781 1
lenperone 371.426 202.214 24.89 18.4245 3.371 5.711 0.5788 0.0465 6.53951 1
levorphanol 257.375 205.009 27.42 16.8759 3.769 4.2767 0.4376 0.28613 11.077 1
lidocaine 234.341 158.423 21.16 27.3174 2.9087 8.1147 0.6069 0.27629 8.56035 1
lorazepam 321.162 160.445 19.2 65.7033 2.9545 15.073 1.0313 0.57608 13.3371 1
lorcainide 370.921 210.522 26.06 19.6138 4.084 7.5229 0.3316 0.05474 6.88609 1
meclofenoxate 257.716 138.598 18.22 71.3573 1.8912 17.354 0.494 0.02832 5.94603 1
mecloqualone 270.718 138.826 16.24 37.4893 2.4953 11.195 0.3902 0.04858 6.54733 1
medazepam 270.761 167.524 20.49 27.7755 4.3124 8.2368 0.3425 0.04925 8.03051 1
meprobamate 218.252 125.619 17.92 61.4513 0.283 14.674 1.6926 1.04613 12.3139 1
mepyramine 285.388 179.772 22.99 35.9972 2.6689 10.941 0.3829 0.05861 9.77709 1
mescaline 181.234 107.217 14.08 41.0439 0.881 11.927 0.6999 0.37737 10.2346 1
mesoridazine 386.569 279.941 36.97 14.6678 3.0103 4.5574 0.5847 0.08202 7.56684 1
methamphetamine 149.235 96.1664 12.51 24.7682 1.888 4.0271 0.2926 0.19734 4.13086 1
methaqualone 250.299 139.651 16.45 21.2949 2.3513 7.3557 0.3903 0.04464 6.48041 1
methocarbamol 241.243 129.589 17.15 68.4088 ¡0.3602 15.432 1.375 0.77272 14.8402 1
methopromazine 430.518 65.8211 9.659 100 ¡0.886 20 1.0444 0.56601 15.7038 1
methotrimeprazine 328.471 272.477 37.89 22.7892 3.3463 6.3364 0.2057 0.03949 7.05142 1
methylpentynol 98.1444 65.146 9.561 14.705 0.123 3.4658 0.4475 0.45425 14.053 1
methylphenidate 233.31 156.825 20.46 42.3279 1.581 9.6102 0.5884 0.19723 6.86468 1
methyprylon 183.25 119.109 16.28 40.6042 ¡0.718 11.905 0.8218 0.24308 5.38228 1
midazolammaleate 441.845 58.6805 8.522 100 ¡0.886 20 1.0444 0.56601 15.7038 1
moperone 355.451 275.474 37.27 22.3986 3.43 6.0243 0.7581 0.30299 9.91125 1
morphine 287.358 160.161 18.96 30.9431 0.5352 8.6356 0.8768 0.50724 12.6188 1
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MPTP 173.257 107.589 13.37 14.7393 2.785 5.7763 0.1341 0.02881 6.56756 1
naloxone 327.379 201.168 24.79 46.9643 ¡1.6421 13.755 1.2768 0.52363 15.431 1
nicotine 162.234 101.521 12.77 26.2634 1.473 9.3762 0.2873 0.04545 7.28322 1
nitrazepam 281.27 157.342 19.06 48.4895 1.9003 10.886 0.9893 0.30819 10.2049 1
nordazepam 270.718 145.246 17.19 50.7234 2.8703 11.418 0.6704 0.31137 9.86222 1
nortriptyline 263.382 161.454 19.41 18.7092 4.475 3.1939 0.3202 0.21399 4.58309 1
orphenadrine 269.386 199.61 25.97 24.5862 3.7506 6.094 0.2514 0.04726 5.8184 1
oxa� umazine 625.702 60.3941 8.791 100 ¡1.162 20 1.0968 0.54613 14.2901 1
oxazepam 286.717 150.951 18 55.2121 2.2415 12.735 1.0313 0.57813 13.7901 1
oxiperomide 337.421 187.493 22.46 43.1283 3.0476 12.577 0.6579 0.31122 7.89392 1
oxycodone 315.368 195.3 24.12 50.8671 ¡1.5701 14.977 0.9242 0.2365 13.7278 1
oxymorphone 301.341 184.139 22.56 53.6107 ¡2.1561 14.944 1.1672 0.50703 16.1407 1
paracetamol 151.165 83.0793 10.72 49.5386 0.494 12.71 0.8284 0.55476 15.379 1
pecazine 310.456 254.964 34.54 11.5856 4.1623 3.3521 0.11 0.0448 5.93168 1
pemoline 176.174 92.6105 11.38 54.6107 ¡1.0854 12.61 1.1665 0.80916 12.4517 1
pentazocine 285.428 193.357 24.64 9.64329 4.837 3.0148 0.4924 0.2867 10.0761 1
pentobarbital 226.275 163.529 23.58 46.8634 2.062 11.143 1.1388 0.53444 9.90168 1
pergolide 410.589 51.948 8.152 100 ¡1.234 20 0.5652 0.49024 12.2374 1
perlapine 291.395 185.583 22.41 41.0578 3.759 9.2081 0.3338 0.0453 8.04815 1
perphenazine-HCl 403.969 253.486 32.04 51.0623 4.205 10.628 0.5335 0.27047 10.3598 1
pethidine 247.336 179.864 24.09 33.7433 2.767 9.7104 0.3955 0.02541 6.86405 1
phencyclidine 243.391 153.121 19.07 0.67309 5.68 1.151 0.1437 0.02702 4.81765 1
phenelzinesulfate 234.27 36.1536 5.508 100 ¡1.23 20 0.4003 0.7762 14.7768 1
phenobarbital 232.238 123.282 15.47 44.5549 ¡0.158 11.891 0.9056 0.295 9.24007 1
phenprobamate 179.218 134.638 18.58 38.3615 1.922 8.2647 0.8461 0.54947 9.38845 1
phenytoin 252.272 151.169 18.25 37.4159 1.975 9.6787 0.9416 0.57122 10.4501 1
physostigmine 275.35 188.546 24.69 55.9847 2.2267 12.868 0.7265 0.26351 10.0907 1
pi� utixol 451.521 232.483 28.25 5.4911 5.843 1.3737 0.6146 0.25976 10.7778 1
pimozide 461.553 251.433 29.84 19.624 6.191 6.7651 0.5599 0.32795 7.19875 1
pinoxepin 398.932 243.458 30.29 53.7794 4.3636 11.464 0.639 0.26992 10.7227 1
pipamperone 375.485 274.46 37.71 49.4381 2.0657 10.877 1.2832 0.54071 10.1961 1
prazepam 324.809 212.776 26.39 39.1636 3.6669 9.4546 0.4248 0.04983 7.6124 1
pregnanolone 318.498 209.197 26.6 9.95329 4.721 2.0726 0.5329 0.22565 8.93537 1
primidone 218.255 119.763 15.28 42.3905 ¡0.616 10.271 1.0721 0.51986 10.6684 1
procaine 236.313 139.987 18.5 43.4299 1.492 11.69 0.9641 0.53142 8.12057 1
procyclidine 287.444 187.197 23.71 14.4465 4.351 4.665 0.5176 0.28635 9.75009 1
promazine 284.418 216.969 28.5 14.8042 3.0283 4.5036 0.1068 0.0448 6.05603 1
promethazine-HCl 284.418 230.497 31.09 23.0597 3.3967 5.5608 0.1066 0.04485 7.24286 1
propiomazine 340.482 247.903 32.4 23.7624 3.5847 6.2312 0.3474 0.03941 6.93135 1
propofol 178.274 116.336 15.21 9.03332 4.889 1.908 0.3458 0.28513 10.2098 1
protriptyline 263.382 158.974 19.07 18.8672 4.475 3.1939 0.2918 0.22597 4.54289 1
pyridazinone 96.0884 50.4336 6.528 96.6904 ¡1.0223 19.79 0.3505 0.30636 18.5579 1
quazepam 386.794 228.69 29.49 39.3772 3.8889 8.7701 0.5309 0.0451 10.2628 1
rescinnamine 634.725 371.09 46.39 50.1884 2.6512 13.211 1.5113 0.29714 10.5466 1
reserpine 608.687 353.556 44.07 53.1579 2.4472 13.843 1.5121 0.28373 10.7812 1
secobarbital 238.286 176.646 25.53 43.4828 2.047 10.581 1.2319 0.54742 10.1464 1
spiclomazine 446.024 274.397 34.35 48.0574 2.7829 11.331 0.7356 0.29261 8.12072 1
tacrine 198.267 112.643 13.13 15.9304 2.194 3.0292 0.7586 0.53184 8.97614 1
temazepam 300.744 174.32 21.39 52.4673 2.3051 12.873 0.7862 0.31592 12.2162 1
tetrabenzine 317.427 190.534 24.08 29.121 2.309 10.718 0.5279 0.01022 8.51075 1
thc 314.467 192.345 24.23 9.59071 7.363 2.8631 0.4991 0.28011 9.37395 1
thebaine 311.38 184.428 22.22 34.534 1.2244 10.926 0.4588 0.02081 13.6424 1
thiethylperazine 515.684 58.3352 8.47 100 ¡0.886 20 1.0444 0.56601 15.7038 1
thioridazine 370.57 271.972 35.73 7.03598 5.1603 2.1601 0.1325 0.03904 5.64073 1
thiothixene 443.621 248.61 30.59 52.6173 4.9813 10.833 0.6549 0.04203 9.64377 1
tranylcypromine 133.193 86.6879 10.64 19.5667 1.468 4.2095 0.5816 0.4595 6.73272 1
trazodone 371.869 201.11 24.49 57.8872 4.7223 15.257 0.5787 0.05406 8.53395 1
tri� uperidol 409.423 292.255 39.93 20.9061 3.664 5.2302 0.9138 0.30407 10.8759 1
tri� upromazine 352.417 246.146 32.88 12.8346 3.9113 3.6346 0.2625 0.03814 6.53479 1
tri� uroperazine 407.496 250.872 31.82 28.3067 5.2447 5.995 0.3576 0.03814 7.59384 1
trihexyphenidyl 301.471 198.789 25.31 9.24874 4.91 2.8543 0.5184 0.28635 9.43299 1
trimetozine 281.308 161.476 20.96 80.2022 ¡1.2456 19.355 0.7119 0.01126 10.8836 1
trimipramine 294.439 227.348 29.51 12.8434 4.252 4.3504 0.1087 0.04291 6.44024 1
tybamate 274.359 164.732 23.23 49.7897 2.416 12.622 1.4372 0.76845 9.49963 1
uridine 244.204 134.605 17.77 100 ¡1.5786 20 1.8322 0.96965 17.3567 1
valproicacid 144.213 89.6601 12.76 22.3394 2.81 6.2432 0.5501 0.27299 8.70361 1
zimelidine 317.228 156.492 19.31 14.0994 3.084 4.0379 0.2772 0.07459 6.9381 1

Average 293.4856 168.639 21.58 41.358 2.2865 10.017 0.6748 0.30354 9.77175
Std. deviation 103.8409 65.049 8.222 24.747 2.0674 4.9788 0.3587 0.23549 3.27175
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