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Abstract

Rational design of epitope-driven vaccines is a key goal of immunoinformatics. Typically, candidate
selection relies on the prediction of MHC–peptide binding only, as this is known to be the most
selective step in the MHC class I antigen processing pathway. However, proteasomal cleavage and
transport by the transporter associated with antigen processing (TAP) are essential steps in antigen
processing as well. While prediction methods exist for the individual steps, no method has yet offered
an integrated prediction of all three major processing events. Here we present WAPP, a method
combining prediction of proteasomal cleavage, TAP transport, and MHC binding into a single
prediction system. The proteasomal cleavage site prediction employs a new matrix-based method
that is based on experimentally verified proteasomal cleavage sites. Support vector regression is used
for predicting peptides transported by TAP. MHC binding is the last step in the antigen processing
pathway and was predicted using a support vector machine method, SVMHC. The individual
methods are combined in a filtering approach mimicking the natural processing pathway. WAPP
thus predicts peptides that are cleaved by the proteasome at the C terminus, transported by TAP,
and show significant affinity to MHC class I molecules. This results in a decrease in false positive
rates compared to MHC binding prediction alone. Compared to prediction of MHC binding only,
we report an increased overall accuracy and a lower rate of false positive predictions for the
HLA-A*0201, HLA-B*2705, HLA-A*01, and HLA-A*03 alleles using WAPP. The method is avail-
able online through our prediction server at http://www-bs.informatik.uni-tuebingen.de/WAPP.
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Activation of cytotoxic T-cells in the immune system
requires presentation of endogenous antigenic peptides by
MHCclass Imolecules (PamerandCresswell 1998;Kloetzel
2001; Lankat-Buttgereit and Tampe 2002). The process-
ing pathway of MHC class I restricted antigens involves
threemajor steps: cleavage, transport, andMHCbinding.

Cytosolic proteins are cleaved into smaller peptides by the
proteasome. A subset of these peptides can be transported
into the endoplasmatic reticulum (ER) by the transporters
associated with antigen processing (TAP), where they can
bind to MHC molecules. The MHC–peptide complex is
subsequently translocated to the cell surface, where it may
activate cytotoxic T-cells. Understanding and predicting
the whole antigen processing pathway leading to these
peptides is extremely valuable in epitope-driven vaccine
development. While prediction methods for these individ-
ual steps have been described for quite some time, the
performance is still low for some of the steps, and combin-
ing them into a single joint prediction is not trivial.Wewill
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now briefly describe the current state of the art for the
individual processing steps.

The proteasome is a barrel-shaped protease complex
described to have trypsin-like, chymotrypsin-like, and
peptidylglutamyl-peptide hydrolytic activity (Uebel and
Tampe 1999). The 20S proteasome can be found in two
different forms, the constitutive form and the immuno-
proteasome induced by IFN-g (Gaczynska et al. 1993).
The proteasome cleaves ubiquitin-protein conjugates
into smaller peptides and is responsible for generating
the correct C terminus of MHC class I binding peptides
(Niedermann et al. 1996; Craiu et al. 1997).

Several computational approaches for elucidating the
cleavage specificity of the proteasome have been pre-
sented. They are all based on experimentally verified cleav-
age sites within protein substrates and analysis of the
flanking region of such sites. Holzhütter et al. (1999)
used a statistical method to analyze the cleavage sites
found in a set of peptide substrates with lengths ranging
from 22 to 30 amino acids. The method is a part of the
MAPPP prediction server. PAProC (Kuttler et al. 2000;
Nussbaum et al. 2001) is a method based on proteasomal
degradation of the enolase protein. Up to 10 flanking
amino acids around verified cleavage sites are used by an
evolutionary algorithm to create the network-based
model used for prediction. A third method for protea-
somal cleavage prediction, NetChop, uses a neural net-
work for prediction (Kesmir et al. 2002). There are two
different sets of training data used by NetChop: verified
cleavage sites within proteins on one hand and naturally
processedMHC ligands on the other.MHC class I ligands
for studying proteasomal cleavage were previously intro-
duced by Altuvia and Margalit (2000).

After cleavage, peptides are transported into the ER by
TAP, the transporter associated with antigen processing.
TAP belongs to the large family of ATP-binding cassette
(ABC) transporters and actively transports peptides from
the cytosol into the ER. The transport is most efficient for
peptides of 8–12 amino acids (Koopmann et al. 1996), and
a correlation between TAP affinity and transport rates of
peptides has been observed (Gubler et al. 1998). Several
studies point out the importance of the three N-terminal
and the C-terminal amino acids of a peptide for TAP
binding (Uebel et al. 1997). Methods to predict TAP affin-
ity include simple scoring matrices (Peters et al. 2003) and
more complex machine learning methods (Brusic et al.
1999; Bhasin and Raghava 2004). Peters et al. (2003)
recently presented a stabilized matrix method (SMM) for
prediction of TAP affinity. The method is based on a set of
9-mer peptides with known binding affinity. They also
applied their prediction to peptides longer than nine
amino acids by using the parts of the 93 20 scoring
matrix that corresponds to the three N-terminal and the
C-terminal amino acids. In an attempt to combine TAP

prediction and MHC binding predictions for HLA-
A*0201, they found only a marginal increase in prediction
accuracy.

A number of different prediction methods for MHC
binding peptides have been developed. The first methods
were based on the identification of allele-specific
anchor residues (Falk et al. 1991; Rotzschke et al. 1992;
Rammensee et al. 1995). These simple motif-based meth-
ods were later replaced by different weight matrix-based
methods (Parker et al. 1994; Rammensee et al. 1997).
Different types of machine learning algorithms have also
been applied for prediction, including hidden Markov
models (Mamitsuka 1998), support vector machines
(SVMs) (Dönnes and Elofsson 2002), and artificial neural
networks (Gulukota et al. 1997; Honeyman et al. 1998).
There are also methods using structural information for
prediction of MHC binding peptides, e.g., MHC-peptide
threading (Schueler-Furman et al. 2000) and molecular
dynamics-based approaches (Rognan et al. 1994).

While there is a large number of prediction methods for
the individual steps of the MHC class I antigen processing
pathway, there has been little success in combining these
into an integrated class I prediction system. The majority
of presented epitopes have to pass all three steps of antigen
processing in order to be immunogenic, so there is little
doubt that an accurate prediction of the overall process is
immensely valuable. We have developed WAPP (whole
antigen processing prediction), which combines newmeth-
ods for proteasomal cleavage prediction and TAP trans-
port with our well-established method for MHC binding
prediction, SVMHC (Dönnes and Elofsson 2002).

Our proteasomal cleavage prediction method is based
on experimentally verified cleavage sites in whole protein
sequences. Using the verified cleavage sites and their
flanking amino acids, we have constructed proteasomal
cleavage matrices (PCMs). In a comparison to existing
proteasomal cleavage prediction methods, we show that
PCM is more accurate and more robust than comparable
methods. The method for TAP prediction (SVMTAP) is
based on support vector regression (SVR) and was trained
on a set of more than 400 peptides with measured binding
affinity to TAP. The correlation between experimental and
predicted binding affinities for SVMTAP is improved in
comparison to the prediction method presented by Peters
et al. (2003). We combine all three methods using a filter-
ing approach mimicking natural MHC class I processing.

Peptides predicted by WAPP are likely to have a
C terminus generated by the proteasome, a high affinity
for TAP, and finally a high affinity for a specific MHC
allele. This increases the specificity of our method by
reducing the rate of false positives. In a benchmark for
the MHC alleles HLA-A*0201, HLA-B*2705, HLA-
A*01, and HLA-A*03, we show an increase in prediction
accuracy using WAPP over MHC binding prediction
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alone. We used naturally processed and T-cell epitopes
extracted from the SYFPEITHI database for this evalua-
tion (Rammensee et al. 1997). For example, the Matthews
correlation coefficient (MCC) (Matthews 1975) for HLA-
A*0201 reaches 0.74 using WAPP, which can be com-
pared to 0.68 using MHC binding prediction alone. The
improvement in MCC is due to the increase in specificity,
0.86 forWAPP compared to 0.78 for SVMHC. For HLA-
B*2705, MCC increases from 0.85 to 0.88 and the speci-
ficity increase from 0.76 to 0.82. We also show how
WAPP can be used to identify three experimentally ver-
ified HLA-A*0201 epitopes (Kim et al. 1999) from a
Chlamydia trachomatis protein.

Results

Proteasomal cleavage prediction

Prediction of proteasomal cleavage sites is challeng-
ing, as the amount of data available is very limited.
Currently, there are data from three different cleavage
experiments of single proteins available: enolase (E)
(Nussbaum 2001), b-casein (C) (Emmerich et al. 2000),
and the prion protein (P) (Tenzer et al. 2004). A number
of machine-learning techniques have been employed for
predicting proteasomal cleavage. Unfortunately, the
lack of data makes the true assessment of a method’s
prediction performance very difficult. One critical aspect
of prediction performance is the robustness of the
method. With most machine-learning methods, it is
quite simple to overfit the model to reproduce the
exact cleavage sites of the training set. If these models
are then applied to proteins not contained in the train-
ing set, their prediction performance is hardly better
than random. Typically, this problem is assessed by
evaluating prediction performance in a cross-validation
experiment, where a significant portion—say a third—of
the data set is set aside for independent validation. The
algorithm is then trained on the remaining data set only
and the performance is evaluated on the validation set.

We have developed a new method for proteasomal
cleavage site prediction using a probability-based model

encoded by proteasomal cleavage matrices. These PCMs
were derived from observed cleavage probabilities (see
Materials and Methods). The method is less prone to
overfitting in general and thus well suited for this type of
problem. When assessing the performance of these
PCMs, we put special emphasis on the validation of
the method’s robustness. As a measure of prediction
performance, we used MCC. Large values for MCC
indicate good prediction performance, while values of
zero indicate random results and values below zero anti-
correlated results (most cleavage sites are predicated as
noncleavage sites and vice versa). We trained our
method on all combinations of two proteins and then
assessed its performance on the third protein. The
results of these predictions are given in Table 1, where
MCC, specificity (SP), and sensitivity (SE) are presented
along with the total accuracy (ACC) of predicting both
cleavage and noncleavage sites. The average total accu-
racy for the three proteins of the PCM method, when no
training data were used for evaluation, reaches 65%.
While the overall MCCs are not all that impressive
(ranging from 0.18 to 0.32), our method is fairly robust.

We have also compared the robustness of our method
to that of other methods for cleavage site prediction. We
compared our method to PAProC N1, PAProC N2,
PAProC N3 (Kuttler et al. 2000; Nussbaum et al. 2001),
NetChop 20S, NetChop C-term 2.0 (Kesmir et al. 2002),
and MAPPP (Holzhütter et al. 1999). In each case, we
used all proteins that were not included in the
respective method’s training set in order to assess their
prediction performance. It turns out that all methods
are considerably less robust than the PCM method.
While PAProC and NetChop 20S achieve very high
MCC values (0.88–0.95) on the proteins they were
trained on (enolase for PAProC; enolase and casein for
NetChop 20S), their performance drops to values
between �0.03 and 0.07 when validated with other pro-
teins. This is a clear indication of overfitting on the
training data. MAPPP and NetChop C-term 2.0 are
clearly more robust, but their prediction performance
is well below the performance of our method (see
Table 2). The average total accuracies of all external

Table 1. Proteasomal cleavage site prediction

Enolase (E) Casein (C) Prion (P)

Method MCC SP SE ACC MCC SP SE ACC MCC SP SE ACC

PCM(ALL) 0.54 0.74 0.57 0.81 0.51 0.58 0.67 0.83 0.40 0.58 0.77 0.69

PCM(E+C) 0.59 0.64 0.80 0.82 0.50 0.69 0.51 0.85 0.18 0.51 0.44 0.61

PCM(E+P) 0.48 0.70 0.56 0.79 0.38 0.43 0.67 0.74 0.41 0.63 0.54 0.72

PCM(C+P) 0.19 0.35 0.69 0.57 0.51 0.67 0.53 0.85 0.46 0.62 0.78 0.73

Results of proteasomal cleavage site prediction for the PCM method. Several different PCMs were constructed in order to compare methods.
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methods, when no training data were used for evalua-
tion, were also calculated. The MAPPP method has an
average accuracy of 47%; PAProC, 60%; and NetChop,
61% (PCM 65%). We therefore conclude that PCM
combines comparable or slightly better prediction accu-
racy with improved robustness.

Our PCM method also allows the easy extraction of
proteasomal cleavage motifs based on amino acid prefer-
ences in a specific position. The three proteolytic sites of
the proteasome have been described as having trypsin-
like, chymotrypsin-like, and peptidylglutamylpeptide
hydrolytic (PGPH) activity (Uebel and Tampe 1999).
Figure 1 shows the preferences for specific amino acids
at positions surrounding the cleavage site. This figure has
been prepared from the values of the PCM derived from
all three proteins and thus reflects the current knowledge
on the cleavage preference of the proteasome (see Supple-
mental Material for more details). Tryptic activity would

imply cleavage immediately after Lys and Arg; however,
we observe only Arg to be favorable, whereas Lys seems
to have a negative effect on cleavage probability. Chymo-
tryptic activity (cleavage after Phe, Tyr, and Trp) and
PGPH activity (cleavage after Asp and Glu) is quite
obvious from the very favorable values for these amino
acids. In addition, we observe very unfavorable effects
of Pro on the two positions immediately preceding the
cleavage site; and Val, Ile, and Phe, immediately follow-
ing the cleavage site. Due to the low abundance of Met,
Cys, and Trp in the source proteins, we do not want to
interpret the effects seen for these three amino acids; they
might be artifacts of the analysis.

TAP affinity prediction

For TAP affinity prediction, we propose a new
approach (SVMTAP) based on support vector regres-
sion (see Materials and Methods for details). SVMTAP
was trained to predict peptide binding affinity to TAP.
The performance of SVMTAP was evaluated and com-
pared to the matrix approach (MATRIX) presented by
Peters et al. (2003). Leave-one-out cross-validation was
applied for SVMTAP, using a linear SVM kernel. The
correlation between predicted and experimentally veri-
fied ln IC50 values was used to evaluate prediction accu-
racy. A plot of predicted values versus experimentally
verified values for the SVMTAP method can be seen in
Figure 2. The correlation coefficient for predicted versus
experimental values reaches 0.82 for SVMTAP, which
can be compared to 0.79 for the MATRIX method.
A further method, TAPPred, based on cascading SVMs,
has also been presented (Bhasin and Raghava 2004). The
reported performance of TAPPred reaches 0.88, but the
method uses a pregrouping of data and two layers of
SVMs. Hence, a direct comparison of the methods is not
possible.

In addition we predicted TAP affinity for known
epitopes of HLA-A*0201 and HLA-B*2705, as well as

Figure 1. The effect of specific amino acids on proteasomal cleavage.

High values (black) contribute to proteasomal cleavage, whereas white

inhibits cleavage. The cleavage occurs between the P1 and P01 positions

(Met, Cys, and Trp have been omitted due to insufficient statistical

basis). Numerical values can be found in the supplemental material.

Table 2. Proteasomal cleavage site prediction

Enolase (E) Casein (C) Prion (P)

Method MCC SP SE ACC MCC SP SE ACC MCC SP SE ACC

MAPPP 0.09 0.30 0.75 0.45 0.12 0.24 0.77 0.45 0.03 0.40 0.56 0.50

PAProC N1 (0.95) (0.98) (0.95) (0.98) 0.17 0.29 0.53 0.64 �0.03 0.36 0.33 0.52

PAProC N2 (0.95) (0.97) (0.97) (0.98) 0.27 0.35 0.63 0.68 0.07 0.44 0.34 0.58

PAProC N3 (0.94) (0.96) (0.96) (0.98) 0.15 0.27 0.56 0.61 0.08 0.44 0.39 0.57

NetChop 20S (0.88) (0.85) (0.99) (0.95) (0.76) (0.71) (0.93) (0.91) 0.12 0.47 0.41 0.59

NetChop C 0.18 0.37 0.49 0.64 0.18 0.29 0.58 0.63 0.07 0.44 0.33 0.58

Results from the proteasomal cleavage site prediction using already existing methods; values in parentheses are prediction performances for data
used in method development and should not be used to compare methods. A large difference in performance can be seen for data contained in the
training set vs. data not in the training set for the PAProC and NetChop methods.
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for nonbinding peptides (see Figure 3). We observe a
very distinct difference between the three classes, where
the known HLA binders show a higher affinity for TAP
than the nonbinders.

Both experimental and computational studies have
previously shown that HLA-B*2705 peptides have a
high TAP affinity, whereas HLA-A*0201 has relatively
low TAP affinity (van Endert et al. 1995; Brusic et al.
1999). This difference is to be expected, as HLA-A*0201
is a TAP-inefficient allele, whereas HLA-B*2705 is TAP
efficient.

However, a threshold for TAP affinity can be defined
that reduces the number of false positives while keeping
all true positives. This threshold can be chosen in an
allele-specific manner or by the allele showing weakest
TAP affinity. In this example a cutoff of �30, corre-
sponding to an IC50 value of approximately 5500 nM,
can be chosen for both alleles. For the HLA-B*2705
allele this cutoff could even be set lower.

Whole pathway prediction

Prediction of the individual steps of class I antigen proces-
sing alone is of limited use, in particular for proteasomal
cleavage and TAP transport, as these steps are known to
be less specific than the final MHC binding. Nevertheless,
by combining these predictions into a three-step predic-
tion, we could improve performance for the prediction of
naturalMHC epitopes. In order to be presented byMHC,
each epitope ought to possess a C terminus created by
the proteasome, possess at least moderate TAP affinity,
and show some affinity to MHC. After exploring several
probability-based approaches, we have settled for a simple
filtering approach combining the three processing steps
(see Materials and Methods). We have named this joint

approach WAPP and made the method available as a
WWW-based prediction service on our Web site, http://
www-bs.informatik.uni-tuebingen.de/WAPP/.

In order to assess the performance of the joint method,
we use four alleles (HLA-A*0201, HLA-B*2705, HLA-
A*01, and HLA-A*03) where a sufficient number of
naturally processed ligands have been known to allow a
statistically valid analysis. We extracted the protein
sequences containing these alleles from the SYFPEITHI
database and predicted the epitopes using WAPP. We
compared the performance of WAPP to that of its con-
stituent method, SVMHC, a highly accurate method for
MHC class I prediction. We found a significantly
improved performance of WAPP over SVMHC alone
(MCC increases from 0.68 to 0.74 for HLA-A*0201,
from 0.85 to 0.88 for HLA-B*2705, and from 0.80 to
0.82 for HLA-A*03) (see Table 3). This improvement is
mostly due to a smaller number of false positives, i.e.,
peptides that could bind to MHC but are either not
cleaved by the proteasome or not transported by TAP.
The improvement for HLA-A*01 is somewhat smaller;
however, the overall prediction accuracy for this allele is
very high.

The best performance is achieved when both protea-
somal cleavage and TAP filtering is used. The largest
increase in prediction performance is achieved for the
HLA-A*0201 allele where the MCC increases from 0.68
to 0.74. Using either proteasomal cleavage or TAP as
a filter shows worse results for the HLA-A*0201,
HLA-B*2705, and HLA-A*03 alleles. The main feature
of the combined approach is a reduction in false posi-
tives in the prediction, i.e., removal of peptides that

Figure 2. Predicted binding affinities plotted against experimentally

verified affinities for the SVMTAP method. The correlation of predicted

and experimental values is 0.82.

Figure 3. Predicted TAP affinity for the HLA-A*0201 and HLA-

B*2705 data sets, represented as cumulative distribution functions

(CDFs) going from high to low affinity binders. The value of the

CDF corresponds to the fraction of data with values below a given

TAP affinity. A clear difference in the distribution of TAP affinity can

be seen between known epitopes and nonepitopes. Only a small frac-

tion of the known epitopes has a TAP affinity higher than �30

(corresponding to an IC50 of 5000 nM).
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actually could bind to MHC but are unlikely to be
generated by the proteasome or transported by TAP.
The specificity increases from 0.78 to 0.86 for the HLA-
A*0201 allele and from 0.76 to 0.82 for HLA-B*2705.
The only allele that shows slightly different results is
HLA-A*01. The peptides binding to these alleles almost
exclusively have a Tyr in position 9. This means that a
high specificity can be obtained by MHC prediction
alone; however, it should be pointed out that the pre-
diction accuracy is not negatively affected by taking
proteasomal cleavage and TAP transport into account.

A well-characterized Chlamydia trachomatis protein,
containing three experimentally verified HLA-A*0201
epitopes, further shows the usefulness of WAPP. The
three epitopes are identified as potential binders by the
SVMHC method along with seven other peptides. These
10 candidates are reduced to six by applying SVMTAP,
and, after final filtering for peptides with C termini
likely to be generated by the proteasome, only the
three known epitopes remain. This exemplifies the use
of WAPP to identify peptides likely to pass all major
processing steps and thereby increase the specificity of
the prediction.

Discussion

We have presented an integrated prediction method,
WAPP, for the major events in the processing pathway
of MHC class I antigens. WAPP mimics the series of
biological events by predicting peptides with a protea-
somal cleavage site at the C terminus, moderate to high
affinity to TAP, and an affinity to MHC.

The three steps modeled here are generally thought to
be the major determinants in class I antigen processing,
although several alternative processing events have been
described in literature. Luckey et al. (2001) showed that
for some MHC alleles, a significant amount of peptides
were generated even in the presences of proteasome
inhibitors. These results clearly indicate an important
effect of other cytosolic proteases (Beninga et al. 1998;
Geier et al. 1999). TPPII is one such protease that has
important effects in the trimming of proteasomal

degradation products (Reits et al. 2004). A further
example points out the importance of TPPII in the
generation of a known HIV-Nef(73–82) epitope (Seifert
et al. 2003). Some alternative ways of peptide transport
into the ER have also been suggested. Lautscham et al.
(2003) described TAP-independent transport of hydro-
phobic peptides and suggested that these might enter the
ER by passive diffusion or by an unknown transport
protein within the ER membrane. Furthermore, they
pointed out that many known MHC binding peptides
are derived from protein signal sequences and suggested
Sec61 as a potential transporter. A recent study showed
that peptides for some MHC alleles have a low TAP
affinity (Petrovsky and Brusic 2004). We also observe
this for the HLA-A*0201 and HLA-B*2705 alleles,
described as TAP inefficient and TAP efficient, respec-
tively. It is likely that some of the TAP-inefficient alleles
utilizes the routes described by Lautcham et al. (2003),
but it is still possible to combine TAP and MHC pre-
diction to reduce the number of false positives.

The overall increase in performance obtained by add-
ing TAP affinity prediction and proteasomal cleavage
site prediction to MHC binding prediction is significant,
although these steps are clearly less specific than MHC
binding itself. Thus, improved overall performance for a
combined model can only be achieved through high-
quality models for proteasomal cleavage and TAP affin-
ity. Previous attempts to combine the different steps
yielded only a small increase in performance combining
TAP prediction with MHC binding predictions and
even a decrease in performance if proteasomal cleavage
was predicted together with MHC binding (Peters et al.
2003). At least for the case of proteasomal cleavage, we
argue that this might be largely due to an overfitting of
the cleavage models, as insufficient data were available.

The existing methods for proteasomal cleavage pre-
diction, NetChop and PAProC, can reproduce their
training data with high accuracy, while their perfor-
mance on external validation data is much lower. This
implies an overfitting of the model, which typically
results in lower generality of the models. Our PCM
method presented has thus been carefully designed to

Table 3. Prediction accuracies of WAPP

SVMHC WAPP PC+MHC TAP+MHC

Allele MCC SP SE MCC SP SE MCC MCC

HLA-A*0201 0.68 0.78 0.78 0.74 0.86 0.79 0.71 0.71

HLA-B*2705 0.85 0.76 1.00 0.88 0.82 1.00 0.86 0.86

HLA-A*01 0.92 0.94 0.96 0.93 0.95 0.98 0.93 0.93

HLA-A*03 0.80 0.84 0.90 0.82 0.92 0.89 0.81 0.81

Prediction accuracies for the two alleles using different approaches. An increase in all three cases can be seen for WAPP compared to SVMHC.
Furthermore, the results from combining the MHC prediction with either proteasomal cleavage (PC) or TAP are shown.
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be more robust at the cost of slightly reduced accuracy
on the training set. The robustness, however, turns out
to be key to a successful combination with the other
prediction steps.

Future challenges in the prediction of proteasomal
cleavage are likely to include splicing events (Hanada
et al. 2004; Vigneron et al. 2004). Splicing within the
proteasome can generate a peptide from two noncontig-
uous parts of its source protein. The mechanisms under-
lying proteasomal splicing are not fully understood and
currently there are not enough data available to model
this in the predictions.

Prediction of TAP transport by SVMTAP shows an
increase in performance compared to the MATRIX
method. It is also likely that some of the peptides trans-
ported into the ER have extended N terminals that can
be trimmed by ER aminopeptidases (Serwold et al.
2001). Peters et al. (2003) used parts of the matrix for
predicting peptides longer than nine amino acids. They
explored a weighting of the N-terminal scores in order
to improve prediction. For some alleles the weighting
improved accuracy, whereas the effect was negative in
other cases. It should also be pointed out that the study
of the relationship of TAP affinity and TAP transport
was done using a library of 9-amino-acid-long peptides
(Gubler et al. 1998). Further considerations of this rela-
tionship might need to be taken into account for longer
peptides. The problem of predicting TAP affinity for
peptides longer than 9 amino acids is still unsolved
and more data are needed for a thorough investigation.

In summary, we are able to show improved prediction
performance for two MHC alleles using an integrated
approach including the three major processing steps. We
intend to extend our method to other alleles in the future.

We hope that whole-pathway predictions, as pre-
sented here with WAPP, will improve the rational
design of epitope-driven vaccines in the future. WAPP
increases the prediction specificity and hence reduces the
number of peptides that have to be tested experimen-
tally. Future improvements on the prediction will large-
ly be data driven, as the lack of data for TAP transport
and for proteasomal cleavage are currently the issues
limiting predictive power.

Materials and methods

Prediction of proteasomal cleavage

The proteasomal cleavage prediction method is based on pro-
teasomal degradation experiments of the b-casein (Emmerich
et al. 2000), enolase (Nussbaum 2001), and prion proteins
(Tenzer et al. 2004). Peptides generated by the proteasome
are analyzed by mass spectrometry and the cleavage sites
determined. Verified cleavage sites were used to create protea-
somal cleavage matrices. Four N-terminal and two C-terminal

amino acids flanking each cleavage site were extracted from
the source protein. These small peptides, all containing a
cleavage site between the fourth and fifth positions, were
used to create a position-specific scoring matrix (PSSM). The
score si,j of amino acid i at position j is defined as

Si;j ¼ ln
ni;j þ pi
� �

= N þ 1ð Þ
pi

� ln fi;j=pi;j
� �

ð1Þ

where fi,j is the frequency of amino acids i at position j and pi,j is
the prior probability of amino acid i in position j (Hertz and
Stormo 1999). The priors used are based on the amino acid
composition of the source proteins. The score for a new
sequence is calculated as the sum of individual position-specific
scores for the amino acid in the sequence.
Different types of PCMs were created in order to fairly

compare the performance of the different methods. Matrices
based on all three proteins as well as a combination of two sets
were used for performance evaluation. A comparison of the
PCM based on the enolase and casein proteins, PCM(E+C)
can be used to compare the performance of all methods for the
prion protein. The cutoff for distinguishing between cleavage
and noncleavage sites was chosen at maximum MCC.
In order to compare the PCM method to other available

prediction methods, all proteins were submitted to the predic-
tion servers MAPPP, PAProC, and NetChop. The predicted
scores were compared to the experimentally verified cleavage
sites to estimate the performance of each method. The MAPPP
prediction server offers only one type of proteasomal cleavage
prediction, but both PAProC and NetChop provide several
options for prediction. Three different models from the
PAProC server were used for prediction: N1–N3. The N1
model is based on cleavages in enolase, the N2 model is
based on cleavages in enolase and ovalbumin, and the N3
model is based on cleavages of enolase and a different set of
ovalbumin cleavages. Two different types of networks were
used from the NetChop server: 20S and C-term 2.0. The 20S
network was trained on in vitro degradation of the enolase and
casein proteins, whereas the C-term 2.0 network was trained
on MHC ligands. For MAPPP and NetChop a cutoff of 0.5
was used. This is the default cutoff used by the MAPPP server
and a recent study by the developers of NetChop used 0.5 to
discriminate between cleavage and noncleavage sites (Saxova
et al. 2003).

Prediction of TAP affinity: SVMTAP

A method based on support vector regression (SVR) (Vapnik
1999; Cristianini and Shawe-Taylor 2000), SVMTAP, was
developed in order to predict TAP affinity. The data used for
training and evaluation consist of 446 peptides (9 amino acids
long) with experimentally verified IC50 values (Daniel et al.
1998). Peptides were represented using sparse binary encoding
(Dönnes and Elofsson 2002). As has been shown elsewhere
(Rognan et al. 1999), there is a correlation between the binding
energy and ln IC50 values (Gubler et al. 1998). For this reason,
ln IC50 was used to train SVMTAP and for comparison to the
matrix method (MATRIX) presented by Peters et al. (2003).
Performance was evaluated as the correlation coefficient R
between predicted and experimental values. Several different
kernels were optimized in the SVR procedure, and the simple
linear kernel turned out to reproduce the data best. The SVM
implementation used was SVMLIGHT (Joachims 1998).
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Prediction of MHC binding

The SVMHC method was used for predicting MHC binding
(Dönnes and Elofsson 2002). SVMHC is a SVM-based method
trained on verified MHC binding peptides from the SYFPEITHI
(Rammensee et al. 1997) and the MHCPEP (Brusic et al. 1998)
databases. The version of SVMHC used in this study was trained
ondata fromtheSYFPEITHIdatabase, containingonlynaturally
processed andT-cell epitopes. Formore details of SVMHC imple-
mentation and performance, see Dönnes and Elofsson (2002).

Combination of the prediction methods

The separate prediction methods were combined in order to
model the whole processing pathway of MHC class I antigens.
Predicted peptides should have a C terminus generated by the
proteasome, a relatively high TAP affinity, and some affinity to
MHC molecules. The final step of MHC binding prediction can
be done with high accuracy, and, hence, the other methods were
used as a filter removing candidate peptides unlikely to
be generated by the proteasome and/or transported by TAP.
Peptides with a length of 9 amino acids were extracted from the
SYFPEITHI database. The peptides were mapped back to their
source protein in order to extract extended C termini needed for
proteasomal cleavage prediction. A set of nonbinders was con-
structed by randomly extracting peptides from real protein
sequences. This is a reasonable approach since it has been
estimated that only 1 in 100–200 potential peptides actually
bind to a MHCmolecule (Mamitsuka 1998). We used the alleles
HLA-A*0201, HLA-B*2705, HLA-A*01, and HLA-A*03 to
evaluate our method, and the number of binders were 96, 36,
47, and 71, respectively. All peptides were predicted with the
PCM, SVMTAP, and SVMHC methods. In order to reduce the
number of false positives, we used the values predicted by PCM
and SVMTAP for filtering: Any peptide with a score below the
threshold of either method was removed. These thresholds were
chosen (as described above for TAP affinity) very conserva-
tively in order to remove false positives only. The final cutoffs
chosen for HLA-A*0201 were �4.8 for proteasomal cleavage
and �27 for TAP affinity. The corresponding values for HLA-
B*2705, HLA-A*01, and HLA-A*03 were �2.0 and �35.
Furthermore a membrane protein from C. trachomatis

(SWISSPROT ID P17451) was used to exemplify the useful-
ness of WAPP. This protein contains three experimentally
verified HLA-A*0201 epitopes (Kim et al. 1999).

Prediction accuracy measures

The aim of most prediction methods is to discriminate between
two classes, e.g., cleavage and noncleavage sites in the case of
proteasomal cleavage. A good prediction method will have a
high number of correctly predicted cleavage sites and at the
same time a low number of noncleavage sites predicted as clea-
vage sites (false positives). A measure that captures these char-
acteristics is the Matthews correlation coefficient (Matthews
1975). It is defined as

MCC ¼ TP3TNð Þ � FP3FNð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TN þ FNð Þ TN þ FPð Þ TPþ FNð Þ TPþ FPð Þ

p ð2Þ

where TP is the number of cleavage sites correctly predicted, FP
is the number of noncleavage sites predicted as cleavage sites,

TN is the noncleavage sites predicted as such, and FN is the
number of cleavage sites predicted as noncleavage sites. Two
other measures, specificity (SP) and sensitivity (SE) can also be
defined:

SP ¼ TP

TPþ FP
ð3Þ

SE ¼ TP

TPþ FN
ð4Þ

SE is the fraction of known binding sites that are actually
predicted as such. SP is the fraction of correctly predicted
binding sites among all predicted binding sites.

The correlation between predicted binding affinity and
experimentally verified was used to evaluate the performance
of SVMTAP.

Electronic supplemental material

The supplement consists of the PCM created for proteasomal
cleavage prediction using data from all three proteins. Figure 1
in the manuscript is created using this position-specific scoring
matrix.
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