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ABSTRACT
Motivation: Alternative splicing is a major component of the
regulation acting on mammalian transcriptomes. It is esti-
mated that over half of all human genes have more than
one splice variant. Previous studies have shown that alterna-
tively spliced exons possess several features that distinguish
them from constitutively spliced ones. Recently, we have
demonstrated that such features can be used to distinguish
alternative from constitutive exons. In the current study we
use advanced machine learning methods to generate robust
alternative exons classifier.
Results: We extracted several hundred local sequence featu-
res of constitutive as well as alternative exons. Using feature
selection methods we find seven attributes that are dominant
for the task of classification. Several less informative featu-
res help to slightly increase the performance of the classifier.
The classifier achieves a true positive rate of 50% for a false
positive rate of 0.5%. This result enables one to reliably iden-
tify alternatively spliced exons in exon databases that are
believed to be dominated by constitutive exons.
Availability: Upon request from the authors.
Contact: gideon@mta.ac.il

1 INTRODUCTION
Alternative splicing is a process through which one gene can
generate several distinct proteins. It occurs by the alternative
usage of exons or parts of exons within pre-mRNA trans-
cripts, and can be specific to a tissue, developmental stage,
or a condition such as stress (Maniatis and Tasic, 2002).

Computational prediction of alternative splicing usually
involves the usage of expressed sequences, i.e., ESTs or
cDNAs (reviewed in (Graveley, 2001) and (Modrek and Lee,
2002)). Through such predictions, in addition to microarray
analyses, several studies have estimated that alternative spli-
cing occurs in 35-74% of all human genes (Brettet al., 2000;
Kan et al., 2001, 2002; Landeret al., 2001; Mironovet al.,
1999; Modreket al., 2001; Johnsonet al., 2003). However,
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ESTs and microarrays produce only a snapshot of the tissue
they sample, in the specific time and condition it was sam-
pled. Exons that are alternatively spliced in conditions other
than the ones sampled will evade detection.

Recently, we have described several features in which alter-
native exons differ from constitutive ones. These features
include the size of the exon, its divisibility by 3, the iden-
tity level when aligned to its mouse ortholog exon, and the
human/mouse conservation in the intronic sequences flan-
king the exon (Sorek and Ast, 2003; Soreket al., 2004b).
Using brute-force enumeration we demonstrated that a com-
bination of these features could be used to classify alternative
exons with a true positive rate of approximately30% for
a false positive rate of less than1%, regardless of their
representation in ESTs (Soreket al., 2004).

In the current study we use state of the art machine learning
methods, along with additional sequence features, to generate
a robust classifier of alternative exons. We get better sensiti-
vity for similar specificity performance - a true positive rate
of 50% for a false positive rate of0.5%. However, not only is
our performance measure more robust, but we also get much
higher area under the ROC curve (not reported in Soreket al.
(2004)), which provides a proper measure for the quality of
ranking of a classifier (Linget al., 2003). Furthermore, our
results in Soreket al. (2004) are based on cross validation
only, whereas in this paper we report the results of a true
train-test setting. Here we also report on the merit of many
additional sequence features extracted from the vicinity of
the exon.

2 METHODS
Dataset
The dataset was composed from243 alternative and1753
constitutive exons that are conserved between human and
mouse. The data are described in detail in our previous
studies (Sorek and Ast, 2003; Soreket al., 2004). Briefly,
alternative exons in this set are exons that were found to be
skipped both in the human and in the mouse transcriptome;
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and constitutive exons are exons that are supported by at least
4 expressed sequences, with no evidence for ESTs skipping
them, both in human and in mouse.

Data representation
For the current study, we used the seven features described in
our previous study, as well as221 additional new sequence
features. The original features were:

(a) exon length, (b) exon divisibility by 3 (a Boolean
feature), (c) percent identity when aligned to the mouse coun-
terpart, and (d) conservation in the upstream and downstream
intronic sequences. Each of the two ”intronic conservation”
features (upstream and downstream) were divided into two
sub-features: (1) length of best human/mouse local alignment
in the 100 intronic nucleotides nearest to the exon (where
only local alignments with at least 12 consecutive perfectly
matching nucleotides were considered) and (2) identity level
in this local alignment. Local alignments were performed
using sim4 (Floreaet al., 1998) as described in (Soreket al.,
2004).

Additional features tested here include 3-tuple counts,
computed separately for the sequence of the exon, the 100
bases of the intron upstream of the exon (called here ”pre”),
and the 100 bases of the intron downstream of the exon
(called here ”post”), adding up to64× 3 = 192 features.

We also used information from the 5’ splice site (5’ss, also
called donor site) sequence. The nucleotide composition of
the 5’ss reflects its base-pairing with small nuclear RNAs
such as U1 (Zhuang and Weiner, 1986). It was previously
shown that the composition of the 5’ss differs between alter-
native and constitutive exons (Clark and Thanaraj, 2002). It
was also demonstrated that alteration of 5’ss sequences can
result in transition from alternative to constitutive splicing, or
vice versa (Soreket al., 2004c). We therefore used position
dependent single base counts at the 5’ splice site sequence,
ranging from the -3 to the +6 position relative to the splice
site. This totaled in4× 7 = 28 features.

The last tested feature was the intensity of the poly-
pyrimidine tract (PPT), which was defined as the number of
pyrimidines (C’s and T’s) in a window of 15 bases in the last
19 nucleotides of the upstream intron (not including the last
4 nucleotides of the intron).

We examined also position dependant base combinations
of three bases at the splice site, that were shown to be
highly discriminating features for a similar task (Zhanget al.,
2003). We also examined 1 and 2-tuple counts, collected
from the exon sequence and the ’pre’ and ’post’ regions.
However, preliminary analysis has indicated that the 1 and
2-tuple counts, as well as the 3-base 5’ss combinations, are
not as informative for the present task and were therefore not
included in subsequent work.

We concatenated all features into one vector representation
in RN whereN = 7 + 192 + 28 + 1 = 228. Since the featu-
res have very different distributions (binary, integer, and real

numbers), we standardized them such that each feature has
a zero mean and variance one. We denote the i’th standardi-
zed vector byxi = (xi

1, . . . x
i
N ). Each example is labelled by

yi = −1 or yi = +1, depending on whether it represents a
constitutive or alternative exon, respectively.

Data partitioning
In the experiments reported here we randomly split the data-
set entries into a training and testing set at approximately
2:1 ratio. Feature vectors as described above were used as
examples for training various classifiers, while the testing
examples were not exposed to the system during learning,
feature selection and hyper-parameter selection phases.

Support vector machines
Support vector machine (SVM) learning is an area of stati-
stical learning subject to extensive research (Vapnik, 1998;
Scḧolkopf et al., 1999; Smolaet al., 2000). SVM has been
used extensively for a wide range of applications in science,
medicine and engineering and has shown excellent empirical
performance. Recent bioinformatic investigations utilizing
SVM include Brownet al. (1999), Zienet al. (1999), Jaak-
kola et al. (2000) and Leslieet al. (2002). More recently,
SVM was used for the detection of splicing sites (Yamamura
and Gotoh, 2003; Sunet al., 2003; Zhanget al., 2003). SVM
has several advantages for the present task:

1. SVM is based on the principle of risk minimization and
thus provides good generalization control. This allows
one to work with datasets that contains many irrelevant
and noisy features.

2. Using non-linear kernels, SVM can model non-linear
dependencies among features and the target, which may
prove advantageous for the problem at hand.

3. SVM allows natural control on the relative cost of false
positives and false negatives.

In the present research we used soft-margin SVM imple-
mented inSV M light (Joachims, 1999). The latest version of
this software is available at http://svmlight.joachims.org/.

Hyper-parameter selection
SVM training involvs fixing several hyper-parameters. The
values of these hyper-parameters determine the function that
SVM optimizes and therefore have a crucial effect on the
performance of the trained classifier. To identify an opti-
mal hyper-parameter set we used ten-fold cross validation on
the training set, which is robust method for hyper-parameter
tuning (Duanet al., 2003). The cross validation was used
also to tune the number of features used by the classifier, as
discussed in the next subsection.

We used several kernels: linear, polynomial of degree 2
and 3 and Gaussian kernel. For each kernel we performed
a grid search over the values of the slack parameterc, the
cost-factorj, by which training errors on positive examples
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outweigh errors on negative examples, and for the Gaussian
kernel, also theγ parameter.

For each hyper-parameter combination we measured the
ten-fold cross validation area under the ROC curve (AUC).
AUC (Agarwalet al., 2004) is a global performance measure
since it is integrated over all threshold values. However, for
the task of identifying alternative exons within a population
in which the vast majority of exons are constitutive, one spe-
cifically needs high discrimination power at low false positive
rate. To this end, we also measured the true positive rate for
small value0 < α ¿ 1 of the false positive rate. We denote
this performance measureTPα. For small values ofα, TPα

is very sensitive to the minute details in the distribution of
examples (e.g., the details of split between the training set
and test set). Therefore we did not directly try to maximize
it, so as to reduce the risk of severe overfitting. We selec-
ted the kernel and hyper-parameter set that gave the highest
value ofλAUC + (1 − λ)TPα, where0 < λ < 1 . It turns
out that for the whole range0.1 < λ < 0.9 we get very good
generalization, and the final results vary only insignificantly.

The best cross-validation performance, for a value ofλ =
0.5, was obtained by the Gaussian kernel, with intermediate
slack parameterc =

√
10 and cost factorj = 1/2.

In addition to SVM, we also used naive-Bayes and neural
network classifiers. For training the neural network we used
the Levenberg-Marquardt algorithm with Bayesian regulari-
zation. For both naive-Bayes and neural network we perfor-
med a search in hyper-parameter space and among several
architectures to optimize performance. Figure 1 shows the
ROC curves of the best SVM, naive-Bayes and neural net-
work classifiers. The values ofAUC are quite close to each
other.

Figure 2 depicts the ROCs of the three classifiers at the
region of low false positive rate. It is clear that for all the
range shown,0 < α < 1%, SVM achieves considera-
bly higherTPα and therefore better resolution in identifying
alternative exons.

Feature selection
The potential benefits of feature selection are three-fold:
improving the performance of the classifier, producing cost
effective classifier, and providing better understanding of
the problem at hand. In our case, we used feature selection
primarily for the purpose of enhancing the classifier’s per-
formance. Although state of the art classifiers such as SVM
and neural networks that incorporate regularization techni-
ques can accommodate situations where many of the features
are redundant or noisy, removing non-informative features
can considerably enhance their performance.

Preliminary analysis of the data has shown that the seven
features used in the original paper by Soreket al. (2004)
are much more informative for the classification task than
the vast majority of the remaining features. However, aχ2

test showed that for several features the distributions of the
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Fig. 1. The ROC curves of the three classifiers. TheAUC for
neural network (NNET), the naive-Bayes (NB) and the SVM are
0.92, 0.89 and 0.93, respectively. The optimal performance of the
first two classifiers was obtained with 11 features. SVM classifier
uses a linear kernel with hyper-parametersc =

√
10 andj = 0.5.

The SVM ROC with these hyper-parameters is quite insensitive to
the number of features, as is shown below.
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Fig. 2. The ROC curve of the three classifiers in the region of small
false positive rate,FP < 1%. It is evident that SVM considerably
outperforms the neural network and the naive-Bayes classifiers.
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positive and negative examples are significantly different.
Namely, they potentially convey useful information for the
task of classification.

Our feature selection criterion is that used in Golubet al.
(1999). For each featurexj , j = 1 . . . N , we calculate the
meanµ+

j (µ−j ) and standard deviationσ+
j (σ−j ) using only

positive (negative) examples. The score

F (xj) =

∣∣∣∣∣
µ+

j − µ−j
σ+

j + σ−j

∣∣∣∣∣ (1)

serves as a simple heuristic for ranking the features accor-
ding to how well they discriminate the positive and negative
examples.

To avoid overfitting, we used the feature selection within
the cross-validation loop. In other words, to estimate the per-
formance of a classifier which usesn features, wheren ≤ N ,
we used Eq. 1 on each split of the training set and simply
took then features with the highestF (xj) scores. Needless
to say that this procedure produces a unique feature set for
each split.

Figure 3 demonstrates the relative importance of the four
parts comprising the feature vectors. It is evident that the set
of seven features used in Soreket al. (2004) (Base) has a
much higher discriminative power than the other sets. TheF
values within this set fall between0.287 and0.834. It should
be noted that although the average values ofF of the remai-
ning three sets of features, intensity of the poly-pyrimidine
tract (PPT), triple counts (Triple) and position dependent sin-
gle base counts at the 5’ splice site (5’SS) are similar, the
latter two sets contain many features that are much more
informative than the single PPT feature.

In addition to the seven features reported by Soreket al.
(2004), we discovered many features that convey useful
information for the task of identifying alternative exons.
Table 1 lists the ten most informative features (all of them
triples), together with their mean frequencies among alterna-
tive and constitutive exons, theirF score, and their signifi-
cance level, as measured byχ2 test. Interestingly, only one
of these ten features is a tuple within the exon body, possi-
bly indicating the significance of flanking intronic sequences
in the regulation of alternative splicing. This tendency pre-
vails also when inspecting a considerably larger number of
top ranking triples, and is therefore a real characteristic of
the data.

Importantly, the classification procedure has revealed bio-
logically significant details. As seen in Table 1, 9 out of
10 informative triples were stretches of purines or pyrimidi-
nes in the upstream (’pre’) or downstream (’post’) introns.
From this data it is clear that there appears to be an
under-representation of poly-purine stretches in the intro-
nic sequence proximal to alternatively spliced exons, both
upstream and downstream the exon, and over-representation
of poly-pyrimidine stretches in these same regions. Indeed,

Fig. 3. The discriminative power of different feature types. For each
set of features we plot the average values ofF . Feature sets are: the
original features of Soreket al. (2004) (Base - 7 features), intensity
of poly-pyrimidine tract (PPT - 1 feature), triple counts (Triple - 192
features) and position dependent single base counts at the 5’ splice
site (5’SS - 24 features). The standard deviation ofF within each
set is expressed by the error bars.

Table 1. Most informative triples

triple location µ+ (σ+) µ− (σ−) F P-value

TTC pre 0.033 (0.021) 0.026 (0.016) 0.215 5.77e-7
AGG post 0.014 (0.017) 0.022 (0.020) 0.212 1.13e-9
GAG pre 0.008 (0.012) 0.014 (0.015) 0.210 5.94e-9
AGG pre 0.010 (0.014) 0.015 (0.016) 0.186 3.30e-7
GGA post 0.012 (0.015) 0.018 (0.017) 0.185 1.21e-7
GAG post 0.013 (0.016) 0.020 (0.019) 0.181 3.31e-7
TTT post 0.056 (0.055) 0.039 (0.042) 0.178 2.38e-6
TTT pre 0.070 (0.053) 0.052 (0.047) 0.178 1.99e-6
GTG exon 0.014 (0.016) 0.019 (0.015) 0.168 7.29e-7
AAG post 0.015 (0.014) 0.019 (0.014) 0.168 4.54e-6

The ten most informative triples ranked by theirF value. For each triple we spe-
cify its location relative to the exon (pre, exon, post) and its mean frequency
among alternative and among constitutive exons,µ+ andµ−, respectively. The
standard deviations of the latter quantities are listed in parentheses. For each fea-
ture we also list itsF value and theχ2 P-value, which represents the probability
that the distributions of the positive and negative class are sampled from a single
distribution.

poly-purine stretches within exons are known to compose
sequences that regulate splicing (both alternative and consti-
tutive) (Cartegniet al., 2002). Therefore, it is possible that
some of these discriminative features are parts of splicing
regulatory motifs.

We were also able to identify informative features within
the 5’ splice site sequence. Table 2 lists the most informative
5’ splice site features, ranked by theirF values. As shown in
Figure 4, the most informative features lie in positions 3, 4
and 5 of the 5’ss. Such differences in the 5’ss composition of
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Table 2. Most informative single base features within the 5’
splice site region

base position µ+ (σ+) µ− (σ−) F P-value

A 4 0.56(0.50) 0.71(0.45) 0.163 8.41e-7
G 5 0.65(0.48) 0.79(0.41) 0.157 1.37e-6
T 4 0.21(0.41) 0.12(0.32) 0.129 3.73e-5
G 3 0.24(0.42) 0.33(0.47) 0.101 4.35e-3
T 5 0.13(0.33) 0.07(0.25) 0.098 1.45e-3
G 4 0.16(0.37) 0.10(0.30) 0.095 2.82e-3
T 3 0.05(0.23) 0.02(0.15) 0.078 8.38e-3
C 5 0.09(0.28) 0.05(0.21) 0.078 1.18e-2
A -2 0.70(0.46) 0.63(0.48) 0.074 3.45e-2

Informative positions at the 5’ss, ranked by theirF value. For each feature
we specify the base, its position relative to the actual splice site and its
mean frequency among alternative and among constitutive exons,µ+ and
µ− respectively. The standard deviations of the latter quantities are listed
in parentheses. For each feature we also list itsF andχ2 P-value.

Fig. 4. Different composition of 5’ss in alternative and constitutive
exons. Shown are positions -3 to +6 relative to the 5’ss. Positions -3
to -1 depict the end of the exon, and positions 1-6 are the beginning
of the intron. Also shown is the consensus of the 5’ss. Each colored
frame indicates an informative nucleotide in the specific position,
that is either over-represented in alternative exons (Alt) or consti-
tutive exons (Con). Dark gray, alternative/constitutive difference is
significant toα ≤ 0.01; Light gray, α ≤ 0.05. For example, in
position 4, A is over-represented in constitutive exons, while G and
T are more pronounced in alternative ones.

alternative versus constitutive exons were noted before (Clark
and Thanaraj, 2002).

To improve the results we also tried Recursive Feature
Elimination (RFE), suggested by Guyonet al. (2002). In con-
trast to the ranking based onF , that considers each feature
in isolation, RFE is capable of taking into account depen-
dencies between features, and is therefore considered more
sophisticated. However no significant improvement has been
observed in eitherAUC or the value ofTPα. One possi-
ble explanation for this is the fact that each input vectorx
is actually a concatenation of several parts with significantly
different distributions. This non-homogeneity introduces a
bias which reduces the effectiveness of RFE.
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Fig. 5. The behavior of the true-positive rate (TP) at a fixed false
positive rateα = 0.5% as a function of the logarithm of the number
of features selected. The classifier uses a Gaussian kernel withc =√

10 andj = 0.5.

Performance versus the number of features
To see the effect of the number of features, we used the opti-
mal SVM hyper-parameters obtained by cross validation and
constructed eight classifiers. Each classifier was trained on
a different feature subset, where the number of features was
one of8, 9, 12, 17, 29, 54, 109, 228. The features were selec-
ted by theirF value. The performance (AUC, TPα) of each
classifier was measured on the test set, to get an estimate of
the performance of the SVM classifier as a function of the
number of features selected. Figure 5 shows the dependency
of TPα on the number of features selected forα = 0.5%.
Similar analysis of theAUC shows that it varies irregularly
between0.92 and0.94, with no clear tendency, a behavior
that probably originates from finite sample effects.

3 DISCUSSION AND CONCLUSION
Our aim in this paper was to build classifier which robustly
discriminates between constitutively and alternatively spliced
conserved exons. To this end we used a dataset comprising of
constitutive and alternative exons in a 7:1 ratio, to train an
SVM classifier.

Our feature selection procedure identified several new fea-
tures whose alternative and constitutive distributions are
significantly different. Those features might be involved in
splicing regulation.

Using hyper-parameter selection and feature selection
combined with cross validation, a classifier withAUC score
of 0.93 was obtained. More importantly, this classifier is
capable of rejecting constitutive exons very effectively at
reasonable acceptance rates for true alternative exons. For
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example, with false positive rate of0.5% our classifier empi-
rically achieved approximately50% true positives rate on an
untouched test set.

It is important to note that our method is only able of detec-
ting exon-skipping in exons conserved between human and
mouse, because of its heavy reliance on conservation-based
features. It is believed that a large proportion of functional
alternative splicing is of the conserved type, but functio-
nal species-specific splice variants were also documented
(Soreket al., 2004b; Modrek and Lee, 2003). In our method,
species-specific alternative splicing event will skip detection,
as no conservation-based features can be calculated for them.
Therefore, this set of exon-skipping events deserves specific
solution other than ours.

The results of this study are an improvement over our
previous study, in which we used only seven features (five
of them being conservation-based) to achieve sensitivity of
30% at false positive rates similar to the ones in this study.
The performance of the current study would enable effective
scan of exon database in search for novel alternatively spliced
exons, in the human or other genomes.

REFERENCES
Agarwal, S., Graepel, T., Herbrich, R., Har-Peled, S. and Roth. D.

(2004) Generalization bounds for the area under an ROC curve.
Technical Report UIUCDCS-R-2004-2433, Dept. of Computer
Science, UIUC, May 2004.

Brett, D., Hanke, J., Lehmann, G., Haase, S., Delbruck, S., Krue-
ger, S., Reich, J., and Bork, P. (2000) EST comparison indicates
38% of human mRNAs contain possible alternative splice forms.
FEBS Lett.474, 83-86.

Brown, M., Grundy, W., Lin, D., Christianini, N., Sugnet, C., Ares
M. and Haussler. D. (1999) Support vector machine classification
of microarray gene expression data. Technical Report UCSC-
CRL 99-09, University of California, Santa Cruz, Santa Cruz,
CA, June 1999.

Cartegni, L., Chew, S.L., and Krainer, A.R. (2002) Listening to
silence and understanding nonsense: exonic mutations that affect
splicing.Nat. Rev. Genet.3, 285-298.

Clark, F. and Thanaraj T.A. (2002) Categorization and characte-
rization of transcript-confirmed constitutively and alternatively
spliced introns and exons from human.Hum Mol Genet.11,
451-64.

Duan, K., Keerthi, S. and Poo, A. (2003) Evaluation of sim-
ple performance measures for tuning SVM hyperparameters.
Neurocomputing51, 41-59.

Florea, L., Hartzell, G., Zhang, Z., Rubin, G.M., and Miller, W.
(1998) A computer program for aligning a cDNA sequence with
a genomic DNA sequence.Genome Res.8, 967-974.

Golub, T., Slomin,D, Tamayo, P. Huard, C., Gaasenbeek, M.,
Mesirov, J., Coller, H., Loh, M., Downing, J., Caligiuri, M.,
Bloomfield, C. and Lander, E. (1999) Molecular classification of
cancer: Class discovery and class prediction by gene expression
monitoring.Science286, 531-537.

Graveley, B.R. 2001. Alternative splicing: increasing diversity in the
proteomic world.Trends Genet17, 100-107.

Guyon, I., Weston, J., Barnhill, S. and Vapnik, V. (2002) Gene
selection for cancer classification using support vector machines.
Machine Learning46, 389-422.

Guyon, I. and Elisseeff A. (2003) An introduction to variable and
feature selection.Journal of Machine Learning Research3, 1157-
1182.

Jaakkola, T., Diekhans, M. and Haussler, D. (1998) A discriminative
framework for detecting remote protein homologies.J. Comput.
Biol. 7, 95-114.

Joachims, T. (1999) Making large-scale SVM learning practical, in
Advances Kernel Methods - Support Vector Learning, Chapter
11, MIT-Press, 169-184.

Johnson, J.M., Castle, J., Garrett-Engele, P., Kan, Z., Loerch, P.M.,
Armour, C.D., Santos, R., Schadt, E.E., Stoughton, R., and
Shoemaker, D.D. (2003) Genome-wide survey of human alterna-
tive pre-mRNA splicing with exon junction microarrays.Science
302, 2141-2144.

Kan, Z., Rouchka, E.C., Gish, W.R., and States, D.J. (2001)
Gene structure prediction and alternative splicing analysis using
genomically aligned ESTs.Genome Res.11, 889-900.

Kan, Z., States, D., and Gish, W. (2002) Selecting for functional
alternative splices in ESTs.Genome Res.12, 1837-1845.

Lander, E.S. Linton, L.M. Birren, B. Nusbaum, C. Zody, M.C. Bald-
win, J. Devon, K. Dewar, K. Doyle, M. FitzHugh, W.et al. (2001)
Initial sequencing and analysis of the human genome.Nature
409, 860-921.

Leslie, C., Eskin, E., Cohen, A., Weston, J. and Noble, W. (2004)
Mismatch string kernels for discriminative protein classification.
Bioinformatics20, 467-476.

Ling, X., Huang, J. and Zhang, H. (2003) AUC: a better measure
than accuracy in comparing learning algorithms. Proceedings of
2003 Canadian Artificial Intelligence Conference.

Maniatis, T. and Tasic, B. (2002) Alternative pre-mRNA splicing
and proteome expansion in metazoans.Nature418, 236-243.

Mironov, A.A., Fickett, J.W., and Gelfand, M.S. (1999) Frequent
alternative splicing of human genes.Genome Res.9, 1288-1293.

Modrek, B., Resch, A., Grasso, C., and Lee, C. (2001) Genome-
wide detection of alternative splicing in expressed sequences of
human genes.Nucleic Acids Res.29, 2850-2859.

Modrek, B. and Lee, C. (2002) A genomic view of alternative
splicing.Nat. Genet.30, 13-19.

Modrek, B. and Lee, C. (2003) Alternative splicing in the human,
mouse and rat genomes is associated with an increased frequency
of exon creation and/or loss.Nat. Genet.34, 177-80

Smola, A., Bartlett, P., Scholkopf, B. and Schuurmans, D. (eds)
(2000)Advances in Large Margin Classifiers.MIT Press, Cam-
bridge, MA.
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