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Cancer is recognized to be a family of gene-based diseases whose causes are to be found in disruptions of basic biologic
processes. An increasingly deep catalogue of canonical networks details the specific molecular interaction of genes and their
products. However, mapping of disease phenotypes to alterations of these networks of interactions is accomplished indirectly
and non-systematically. Here we objectively identify pathways associated with malignancy, staging, and outcome in cancer
through application of an analytic approach that systematically evaluates differences in the activity and consistency of
interactions within canonical biologic processes. Using large collections of publicly accessible genome-wide gene expression,
we identify small, common sets of pathways – Trka Receptor, Apoptosis response to DNA Damage, Ceramide, Telomerase,
CD40L and Calcineurin – whose differences robustly distinguish diverse tumor types from corresponding normal samples,
predict tumor grade, and distinguish phenotypes such as estrogen receptor status and p53 mutation state. Pathways identified
through this analysis perform as well or better than phenotypes used in the original studies in predicting cancer outcome. This
approach provides a means to use genome-wide characterizations to map key biological processes to important clinical
features in disease.
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INTRODUCTION
Biologic phenomena emerge as consequence of the action of genes

and their products in pathways. Diseases arise through alteration

of these complex networks [1–5]. In order to make mechanistic

assertions that supplement current approaches to genome-wide

analysis [6–9], we map canonical biologic pathways to cancer

phenotypes. A total of 2011 Affymetrix GeneChip array hybridi-

zations obtained from 9 different publicly accessible data sources

[10–17] were analyzed. The hybridizations represented 70 differ-

ent tumor types (1348 samples). Additionally 83 different types

of samples of normal histology were included (663 samples).

Expression levels were adjusted using RMA[18]. The definition of

normal used here excludes uninvolved and/or tumor adjacent

samples obtained from individuals with cancer.

The use of pathways as a framework for analysis is not in itself

novel. These include the projection of known cancer genes and

gene expression data onto pathways [19,20]. What distinguishes

the work presented here is the systematic evaluation of the

interaction structure across predefined canonical networks. In

measuring the state of the interaction it combines information

from gene state and network structure. Multiple gene states may

result in a common pathway score. Conversely, pathway scores

may show greater differences than gene signatures.

Approaches to Pathway Analysis
This investigation complements other work utilizing pathway

information.

More specifically, Segal et. al. [6] defined biological modules

and refined them to a set of statistically significant modules. They

were able to use these modules to gain a better perspective on the

different biological processes that are activated and de-activated in

various clinical conditions. We note two main differences between

what we present here and the work in Segal et. al. [6]: first, the

biological modules used in the paper, although highly informative

and useful, are internally defined within the paper. The de-

termination of genes in these modules was derived from the same

data to which they are later applied. The canonical pathways we

use are externally defined independent from the data we analyze,

represent current understanding in the field, and were not derived

ad-hoc. Second, Segal et. al. do not make explicit use of the

interconnections, or the network structure, that exists between

genes that comprise biological modules. The scores for activity and

consistency we present here depend on network structure and

specific relations (such as inhibition and promotion) that are

features of the network information.

Another important approach is that of Rhodes et. al. [21], in

which the human interactome network is used to identify

subnetworks activated in cancer. The approach Rhodes el. al.

use, in contrast to the one presented here, does not attempt to

computationally and algorithmically highlight differences in

phenotypes by building a classifier around measurable network

features. Instead, it generates subnetworks by their association with

sets of genes identified through the over (or under) expression in

each biological phenotype. Rhodes et. al. approach does make use

of the network structure to build the subnetwork, but does not

make further use in observing the co-expression or co-silencing of

sets of genes, as is the case in the work presented here.

Bild et. al. [14] and Glinski et. al. [22] demonstrate that gene

signatures determined by small set of pre-selected canonical
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pathways can distinguish tumor characteristics. In their work, they

start with a limited set of pathways, (e.g. Bild et. al. use 5 pathways)

and show that they differ in different phenotypes. As this approach

starts with a small set of pathways the authors chose to examine, it

does not have the capacity to discover new pathway associations

with phenotypes. Unlike the current work, it does not employ an

objective method to identify set of pathways that can discriminate

phenotypes.

Gene set Enrichment Analyses [23] allows the authors to choose

a set of genes and to determine their relative statistical significance

in a list of genes that separate phenotypes. Gene set enrichment

starts with the premise of individual genes as classifiers. Pathway

membership is measured to assess combined contributions. Again,

the method does not make use of the structure of the network, nor

does it provide a systemic account for the combined knowledge of

pathways to reduce to an optimal set of classifying processes. Since

the method starts with the discrimination of single genes, it can

only build on this statistical inference, and does not account for

any differences that come from the inter-dependency of multiple

gene interactions. For example, if gene A seems to permutate

randomly in the two phenotypes and gene B seems to permutate

randomly in the two phenotypes then each of the genes will score

poorly in a statistical significance test. However, the score defined

by their combined dependence (e.g. (if A then B)) might provide

much greater discrimination.

The method by Tomfohr, et. al. [24] is perhaps the closest to

the one presented here in that it looks at combined groups of genes

and ranks them accordingly. However, Tomfohr, et. al. do not use

the network structure knowledge to obtain scores, but instead

perform Singular Value Decomposition (SVD) to choose a specific

metagene, and define a pathway activity as the expression of that

gene. As such, the result does not utilize the interdependence of

the network as does the work presented above.

METHODS

Evaluating a gene status:
Gene status in evaluating the network interaction is calculated

from the observed data as one of two alternative states: down and

up. To be able to identify whether a gene is in a ‘‘down’’ state or

an ‘‘up’’ state, we look at its (RMA adjusted [18]) expression value

in a sample, compared to the expression values of the same gene in

all other samples. To be able to accommodate a multitude of

probability distributions, we use a gamma distribution as the

template to both the ‘‘down’’ distribution form as well as the ‘‘up’’

distribution, and redefine the problem as a mixture of two gamma

distribution. The suppressed form often follows an exponential

distribution, which is one particular case of a gamma distribution.

The promoted state often follows a form similar to a normal

distribution, which may be approximated by a gamma distribution

of a large mean. Per every probe set measured by the microarray,

we look at the expression distribution and try to fit this distribution

into a mixture of two gamma distributions. We do this by using an

Expectation-Maximization (EM) algorithm, iterating over the data

in a manner that guarantees the increase of likelihood of fitting the

data by the modeled distributions. In the case of two gamma

distributions, we first divide the data into two groups: ‘‘down’’

values and ‘‘up’’ values. The number of genes in the ‘‘up’’ group is

NU and the number of genes in the suppressed group is ND. The

prior probabilities are therefore:

P(Up state)~
Nu

NuzNd

; P(Down state)~
Nd

NuzNd

We assume each group distributes according to a gamma

distribution:

c~f (xja,b)~
1

baC(a)
xa{1e

x
b

The objective of the EM algorithm is to provide us with

maximum-likelihood estimates to the aU, bU values for the

promoted group and to the aD, bD values for the suppressed

group. Additionally, it computes the maximum-likelihood esti-

mates of the mixture coefficients, g1, g2.

We assume that the expression distribution of each gene is

either coming from a mixture of two distributions (one for the

‘‘up’’ case and one for the ‘‘down’’ case) or from a single distribu-

tion (for example, when the gene is ‘‘up’’ in all the samples we

have). We determine the number of underlying distributions (one

or two) using the EM algorithm in combination with a model

selection method, see below.

To find the maximum of the log likelihood, we need to find the

maximum of the auxiliary function Q [25]:

Q(h,h0)~
X

t

X

i

vt,i( log gi{ log (c(xt; ai,bi))

where

vt,i~
g0

i
:c(xt; a0

i ,b0
i )P

j

g0
j c(xt; a0

i ,b0
i )

Here, h is the collection of parameters that define the distribution,

and the superscript 0 designates magnitudes that had been

determined in the previous iteration.

To find maxima, we differentiate Q with respect to the model

parameters, and compare to zero.

LQ

Lbi

~
X

vt,i(aibi{yt)~0

bi~

P
t

vt,iyt

ai

P
t

vt,i

And the coefficients

LQ
Lai

~0[{ log (bi):
P

t

vt,iz
P

t

vt,i
: log (yt){Y(ai)

P
t

vt,i~0

where Y(x) is the psi function
C0(x)

C(x)
.

Using a Lagrange multiplier to incorporate the constrain

P
i

gi~1,

we have to maximize the target function

L(h)~Q{l(
P

i

gi{1)

with respect to the gi, we derive

LL(h)

Lgi

~
LQ

Lgi

{
L

Lgi

l(
X

i

gi{1)

Pathway Augmentation in Cancer

PLoS ONE | www.plosone.org 2 May 2007 | Issue 5 | e425



and obtain

gi~

P
t

vt,i

P
i,t

vt,i

We solve this numerically (using MatlabH) in every iterative step,

until we reach some predefined convergence criterion.

Choosing an optimal number of distributions:
Obviously, the more distributions we take as our basis for the

overall distributions, the better fit we have for the data and the

better the likelihood will be. Consider, for example, as many

distributions as there are data points. That would fit the data

exactly and produce maximal likelihood. To overcome this, and to

be able to choose an optimal number, we compare models with

different number of distributions using the Bayesian Information

Criterion (BIC)[26], computed as

BIC ~ log(likelihood){
1

2
(no:offreevariables):

log (no:ofobservations)

This cost function compensates for the additional increase in com-

plexity. The statistical model chosen is the one with the largest

BIC.

Calculate p(Upjx)

p(x,Up)~p(Up) � f (xjaU ,bU )~
NU

N

1

bUC(aU )
xaU {1e

{ x
bU

And similarly:

p(x,Down)~p(Down) � f (xjaD,bD)~
ND

N

1

bDC(aD)
xaD{1e

{ x
bD

But we need the probability of being in the ‘‘promoted’’ state for

a specific expression value:

p(Upjx)~
p(x,Up)

p(x)

And since

p(x)~p(x,Up)zp(x,Down)

we can obtain the needed values by:

p(Upjx)~

NU

N
1

bUC(aU )
xaU {1e

{ x
bU

NU

N
1

bUC(aU )
xaU {1e

{ x
bU z ND

N
1

bDC(aD)
xaD{1e

{ x
bD

For example, the expression of the gene CDKN1A in the dataset

[13] (a collection of 698 tumor samples) follows this distribution

(see Figure 1):

The two distinct distributions (Down and Up) are evident and the

algorithm gives the parameters for the two gamma distributions.

Pathway activity and pathway consistency

1. Pathway consistency score: To determine the pathway

consistency score of a given signaling pathway in a sample,

we follow these steps:

a. Every pathway is a collection of interactions. Input genes

and output genes define each interaction. For each

interaction in the pathway, we first look at the input genes

and determine, for each such gene, the probability of being

in a ‘‘down’’ or ‘‘up’’ state (see ‘‘gene state’’ above)

b. We then determine the probability of the materialization

of the specific interaction as the joint probability of all

needed components (genes)

c. Next, we look at the molecular output of the interaction.

Usually, this output is a list of genes, for which we

establish the probability of being in a ‘‘down’’ or ‘‘up’’

state (see ‘‘gene state’’ above)

d. Next, we calculate the likelihood of the output gene(s)

being in one of the two states, under the given probability

of the interaction (calculated in (b))

e. Lastly, to obtain the pathway consistency score, we

calculate the consistency score for every interaction in the

pathway and average the scores over all the interactions

for which we were able to obtain a score. In Figure 2 we

show an example to calculating the consistency value of

an interaction taken from the pathway ‘‘Signaling events

mediated by Stem cell factor receptor (c-Kit)’’, one of the

NCI-Nature Curated pathways from the Pathway In-

teraction Database (PID)[27]. The specific steps to

calculate consistency in this example are:

i. Establish probabilities to all genes involved in the

interaction. This is done according to the steps

described below (see ‘‘gene state’’ section). The

values we obtain are: P(CREBBP) = 0.95;

P(STAT5A) = 0.8; P(KIT) = 0.7

ii. Calculate the joint probability of an active in-

teraction. Since the input molecules to the in-

teraction are not co-dependent, the joint probability

of the interaction is P(CREBBP)6P(STAT5A) =

0.9560.8 = 0.76

iii. Calculate the likelihood that the output molecule is the

result of the interaction. Since the molecule is solely

dependent on the interaction the likelihood is

Figure 1. An example to the distribution of gene expression and its
resemblance to a mixture of two Gamma distributions. The Up/Down
calls for gene states are based on an expression value classified as
residing in one of the two distinct distributions.
doi:10.1371/journal.pone.0000425.g001
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straightforward:

P(activeinteraction)|P(}up}genestate)

zP(non{activeinteraction)

|P(}down}genestate)

~0:76|0:7z(1{0:7)(1{0:76)~0:604

iv. Iterate this computation throughout all interactions

in the pathway. The final score of a pathway is an

average over all interactions.

2. A pathway activity score is the average over activity of

interactions in a pathway. For example, in the previous

example, the interaction activity is 0.76. The main advantage

to calculating pathway activities on top of pathway consis-

tencies is that activities can be calculated even when there is

not enough data to work with the output, as is the case, for

example, when the interaction is based on activating or

modifying molecules without the generation of a novel

molecule as output. In such cases, we can still calculate the

activity, although consistency loses its meaning.

Choosing a minimal set of pathways to classify

phenotype
As we obtain pathway activity and consistency scores for each

pathway, we are able to transform the representation of each bio-

sample from a list of gene expression measurements into a novel

representation, displaying each sample with the collection of

pathway activity and consistency scores. As we use this

representation to distinguish between phenotypes, we wish to find

the minimal set of pathways scores that is able to make the

distinction between phenotypic classes. We use feature selection to

choose an optimal minimal set (see Results). We used different

methods of feature extraction and feature classification [28,29],

including forward selection, backward selection, and floating

search [29]. These methods help in eliminating pathway scores

that do not contribute to making the distinction and highlighting

specific pathways that together achieve an optimal classification

rate.

Pathway metric to predict outcome
Representing each bio-sample using its pathway metrics allows us

to look for patterns in the collection of pathways. By using

clustering algorithms, we see that pathway metric values segregate

samples into groups. If we look at the survival patterns of these

groups, we see that in some cases and for some pathways, the

groups correlate with distinct patterns of survival.

RESULTS
The analysis applied here treats a pathway as a network of genes

whose interactions are logically evaluated in the pathway context

to generate sets of scores. Biologic pathway structure information

was obtained from public sources [27,30,31].

Each pathway is assessed for consistency and activity. A

pathway consistency score is calculated as the average likelihood

of the logical consistency of the collection of interactions given the

calculated states of the genes (see Methods). A pathway activity

score is calculated as the average likelihood of the pathway’s

individual interactions being active given the calculated gene

states. Using basic principles of machine supervised learning

[28,29] a classification algorithm that distinguished each onco-

genic phenotype (e.g. cancer sample verse normal) was generated

and validated. Based on simplicity and comparability of alternative

approaches tested, a Bayesian linear discriminant classifier was

used.

First, a classification algorithm was derived to distinguish

diverse cancer phenotypes from normal phenotype tissues. A

classifier derived from an 1800 sample training set (10-fold

validation) demonstrated 98% success in an independent valida-

tion test set of 211 samples (see Figure 3 and Table 1).

Since linear classifiers turn each of the pathways in the problem

into a variable in the classifier, it is possible through feature

analysis to identify subsets of classifier variables (pathways) that, as

a group, distinguish the phenotypes with high accuracy. Feature

selection was used to identify a set demonstrating the optimal 98%

accuracy of the original classification in the validation sample

analysis. It is composed of the activity scores of six pathways: Trka

Pathway, DNA Damage pathway, Ceramide Pathway, Telomer-

ase Pathway, CD40L Pathway and Calcineurin Pathway.

Cancer is a disease of great phenotypic and molecular hetero-

geneity. Even within a given organ site, phenotypic heterogeneity

Figure 2. An example to calculating the consistency and activity of a single interaction. See Methods for details.
doi:10.1371/journal.pone.0000425.g002
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Figure 3. Classification results of the different classifiers tried. Each panel in the figure corresponds to a different phenotypic difference, according
to panel captions. The horizontal axis in each panel corresponds to the one-dimensional projection calculated by the classification algorithm, that
signifies distance between biological samples, according to the multi dimensional pathway metrics. The vertical axis is a jitter scatter of the samples
to enable a clear view of the separation.
doi:10.1371/journal.pone.0000425.g003
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is associated with significant differences in cancer outcome. It is

therefore of additional interest to identify molecular processes that

underlie the phenotypic differences and that predict outcome. We

therefore derived signatures for a variety of subtypes of breast

cancer. These subtypes include: histologic grade (Elston grades 1

vs. 3, or grades 2 vs. 3); P53 status (mutated/wild type); estrogen

receptor positive/negative status (ER+/2); and progesterone

receptor positive/negative status (PgR+/2). The performance of

the classifiers is displayed in Figure 3. In all cases, classifiers with

a small number of pathways (three to six) achieved a high level of

accuracy (83% to 95%). Table 1 shows the different pathway

groups that classify different phenotypes.

We next evaluated the ability of the cancer subtype-specific

signatures to stratify the 236 breast cancer samples by outcome.

Following unsupervised clustering of the cancer samples using the

pathways identified above, Kaplan Meier analyses was performed

(Figure 4). In three cases, a single pathway from the sub-type

signature significantly predicted outcome: the Circadian Rhythms

pathway, from the grade 1/3 signature (P = 2.9E-11); the Sonic

Hedgehog pathway, from the grade 2/3 signature (P = 4E-8); and

Agrin in Postsynaptic Differentiation, from the P53 signature

(P = 4.6E-7). The three pathways in the PgR+/2 signature

separated the samples into two groups with a P value .0001, with

the Bone Remodelling pathway accounting for most of the effect.

Table 1. Pathway names and classes.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Classification
Pathway name and metric (A-activity,
C-consistency) Pathway Title

Normal/Tumour separation Trka Receptor (A) Trka Receptor Signaling Pathway

DNA Damage Apoptosis (A) Apoptotic Signaling in Response to DNA Damage

Ceramide (A) Ceramide Signaling Pathway

Telomerase (A) Overview of telomerase RNA component gene hTerc
Transcriptional Regulation

CD40L (A) CD40L Signaling Pathway

Calcineurin (A) Effects of Calcineurin in Keratinocyte Differentiation

Separation of Histological Grades 1/3 in breast
cancer tumour

NGF (A) Nerve Growth Factor Pathway (NGF)

Ras (A) Ras Signaling Pathway

Circadian Rhythms (A) Circadian Rhythms

IL-7 (A) IL-7 Signal Transduction

Separation of Histological Grades 2/3 in breast
cancer

Sonic Hedgehog (A) Sonic Hedgehog Receptor Ptc1 Regulates Cell Cycle

Csk Activation (A) Activation of Csk by cAMP-dependent Protein Kinase Inhibits
Signaling through the T Cell Receptor

ChREBP Regulation (A) ChREBP Regulation by Carbohydrates and cAMP

Trka Receptor (A) Trka Receptor Signaling Pathway

HDAC and CaMK (A) Control of skeletal myogenesis by HDAC and calcium/calmodulin-
dependent kinase (CaMK)

Separation of ER+/ER2 breast cancer samples Th2 activation (A) GATA3 participate in activating the Th2 cytokine genes expression

Lipid Synthesis (A) SREBP Control of Lipid Synthesis

ER modulation (A) Pelp1 Modulation of Estrogen Receptor Activity

LIS1 dependent migration (A) Lissencephaly gene (LIS1) in neuronal migration and development

Erk1/Erk2 MAPK (A) Erk1/Erk2 MAPK Signaling Pathway

Separation of PgR2/PgR+ breast cancer samples Th2 activation (A) GATA3 participate in activating the Th2 cytokine genes expression

Bone remodeling (C) Bone remodeling

Mucosal Healing (A) Trefoil Factors Initiate Mucosal Healing

Separation of P53 mutated/P53 wildtype breast
cancer samples

Cdc25 and chk1 (A) cdc25 and chk1 Regulatory Pathway in Response to DNA damage

Neuronal Survival (A) Role of Erk5 in Neuronal Survival Pathway

Postsynaptic Differentiation (C) Agrin in Postsynaptic Differentiation

Regulation of Splicing (A) Regulation of Splicing through Sam68

T cell activation (A) The Co-Stimulatory Signal During T-cell Activation

ACH Receptor Apoptosis (C) Role of nicotinic acetylcholine receptors in the regulation of
apoptosis

Separation of histological grades 2/3 in colon
cancer

Telomerase (A) Overview of telomerase RNA component gene hTerc
Transcriptional Regulation

NFkB activation (A) NFkB Activation by Nontypeable Hemophilus Influenzae

doi:10.1371/journal.pone.0000425.t001..
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In addition, the five pathways in the ER+/2 signature separated

the samples into two groups with a P value of .004, with the

SREBP pathway accounting for most of the effect.

It is important to note that a number of findings in the literature

emerge independently from our pathway analysis of the breast

cancer samples. As the importance of the ER+/2 distinction in

management of breast cancer is well established, we looked at each

of these subgroups separately. It has been observed [32] that the

Trka Pathway (identified in both the generic oncogenic signature

and the grade 2/3 signature) plays a significant role in ER- cases.

Our analysis shows that the generic oncogenic signature separates

the ER- samples into two groups (P = 4.6E-9) with the Trka

pathway accounting for most of the effect, high activity of this

pathway correlating with poor prognosis. Likewise, it has been

observed [33,34] that beta-catenin plays a significant role in the

response to tamoxifen, a standard treatment for ER+ disease. To

analyze the nature of the tamoxifen-induced response, we derived

a classifier to distinguish the ER+ cases that had been treated with

tamoxifen from those cases that had not been so treated and then

used the pathways in the resulting signature to cluster the cases by

Figure 4. Examples of the stratification of survival plots and their immediate connections to pathway activity/consistency. (A) (1) Kaplan-Meier
survival plot of breast cancer patients from [15], stratified according to clustering based on pathway activity. Panel (2) in (A) shows the activity score
of the Sonic hedgehog pathway colored according to affiliation with either of the accordingly colored survival curves in (1); (B) The same analyses
done with breast cancer patients from [15], based on the pathway Bone Remodeling (see text for pathway choice). (C) Kaplan Meier survival plots of
lung cancer patient data from [17], stratified according to activity of the Csk pathway and the (D) NFKb pathway. In every panel, the (2) sub-panel
shows the most influential pathway metric out of the group of stratifying pathways. This does not mean that the pathway represented is responsible
for the entire separation into two groups.
doi:10.1371/journal.pone.0000425.g004
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outcome. The Beta-catenin pathway emerged as the most

significant (P = 1E-13) pathway in predicting outcome.

It has long been suggested that molecular classifications of

cancer may have the capacity to transcend organ or tissue-specific

definitions. More specifically, it has been suggested that molecular

definitions that reflect the universal properties of cell type or

ontology and that underpin a common molecular etiology may

emerge across organ site definitions. To assess whether the

signatures observed above in cancer of breast epithelium may

generalize to other cancers, we examined their capacity to predict

phenotypes in lung and colon cancer. We applied signatures

derived from the breast cancer subtypes to cluster the lung cancer

outcomes (Figure 4). Pathways predicting outcome included the

IL-7 Pathway (P = .002) and the Csk Pathway (P = 3E-11). It has

been previously noted that these pathways have been linked with

outcome in lung cancer [35,36]

Lastly, we examined the general oncogenic signature’s capacity

to predict organ-site specific outcome. Interestingly, the signature

pathways separated the 236 breast cancer samples into five

different survival subgroups (P = 2E-8) and the 90 lung cancer

samples into two different subgroups (P = 5E-17).

DISCUSSION
The above results suggest that using the pathway as the unit of

analysis can augment current individual gene based approaches to

mapping phenotype to underlying molecular process. Objective

identification of processes previously associated with phenotypes

utilizing genome-wide datasets provides partial validation of the

observed results. Newly observed process mappings to phenotypes,

however, clearly require either verification from independent data

sets or experimental confirmation.

The observations made through this analysis are provocative.

Many of these pathways (e.g. apoptosis, telomere maintenance)

have been previously described as universal components of

oncogenesis[2]. Additionally, processes are identified that may

Figure 5. The sub network formed by the six pathways that together create the normal/tumor classifier. The joined pathways color shared nodes.
doi:10.1371/journal.pone.0000425.g005
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underlie common cancer related phenotypes, such as inflamma-

tion. Interestingly, novel pathways are also identified as part of the

general oncogenic signature as depicted in the six pathways

collective (e.g. Ceramide and Calcineurin pathways). Recent

interest in Ceramide supports this hypothesis. Ceramide has been

long known to be involved in apoptosis [37–39] and recent work is

looking at the relevancy of ceramide in cancer [40–42] and in

cancer therapy [43], [44]. Similar interest has been developing in

calcineurin. Whereas interest was previously confined to its activity

in immune response, it is now becoming recognized as a pre-

dominant participant in oncogenesis [45,46]. The combination of

this set of pathways may define key processes that are

characteristic of a universal progenitor cell type.

Conversely, the pathway analysis of cancer sub-phenotypes may

also provide novel mechanistic insights that reveal underlying

biology. For example, tamoxifen is effective in treating some cases

of ER+ breast cancer. In these cases, tamoxifen must be affecting

the activity of interaction networks. It is therefore logical to

hypothesize that there will be observable differences in network

activity between those cases where tamoxifen is effective and those

cases where the drug is not effective. Our approach uses pathway

signatures to predict variance in outcome, which is taken as the

measure of drug effectiveness. We speculate that our approach can

reveal those networks that are both differentially activated in

response to treatment with tamoxifen and important to tumor

growth and sustainability.

The approach applied here has parallels to the use of gene maps

for translating phenotypes into the molecular domain. First,

pathway models represent a reproducible framework that can be

tested across studies and extended as further knowledge becomes

available. Also, the pathways and their structure provide a higher

order construct for assessing the role of genes.

Each interaction within a pathway requires the contribution of

multiple gene observations. Each single gene activity level

contributes only in the context of other genes participating in an

interaction within the process network. This is demonstrated by

the observation that we were unable to derive effective classifiers,

directly from the gene-state values alone (for the genes composing

the main six pathways).

It is also interesting that five of the six pathways we use to

classify normal and tumour samples form a single connected

network (Figure 5, the telomerase pathway remains unconnected).

This interconnection may provide novel opportunities for de-

veloping interventions. Knowledge of the connections may suggest

alternative targets that would have multiple pathway effects.

Minimally, it may permit the identification of complexities

associated with target selection prior to intervention design.

It is understood that the probabilistic classification of genes into

alternative states of down and up is a simplification of much

greater complexity patterns of gene behaviour and action.

However, empiric evaluation of the observed data finds that gene

expression patterns commonly can fit one of two alternative

expression level distributions. Moreover, such simplification has

proven valuable in other research domains. For example the

simplification that abstracts digital logic from the underlying

continuous flow of electrons in integrated circuits has enabled the

design of devices of staggeringly complex functionality [47].

It is clear that current knowledge of biologic pathways is

incomplete and imperfect. As such, processes identified are almost

assuredly not the only factors influencing the phenotypes of

interest. Nevertheless, where processes are identified, they serve as

important targets for further investigation. Moreover, the process-

oriented approach allows one to distinguish which components of

the complex networks in which genes participate are differentially

contributing to a phenotype of interest. The combined use of

activity and consistency score permits the discrimination of

processes activated because of the phenotype versus those whose

logic differs between phenotypes. The latter (consistency),

potentially is causally attributable to the phenotype and suggests

candidates that have been altered. However, utilizing gene

expression data, consistency scores can only be calculated for

interactions involving transcription events, limiting their discrim-

inatory power.
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