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ABSTRACT
Motivation: Predicting the metastatic potential of primary
malignant tissues has direct bearing on the choice of therapy.
Several microarray studies yielded gene sets whose expres-
sion profiles successfully predicted survival. Nevertheless, the
overlap between these gene sets is almost zero. Such small
overlaps were observed also in other complex diseases, and
the variables that could account for the differences had evoked
a wide interest. One of the main open questions in this context
is whether the disparity can be attributed only to trivial reasons
such as different technologies, different patients and different
types of analyses.
Results: To answer this question, we concentrated on a single
breast cancer dataset, and analyzed it by a single method,
the one which was used by van’t Veer et al. to produce a
set of outcome-predictive genes. We showed that, in fact,
the resulting set of genes is not unique; it is strongly influ-
enced by the subset of patients used for gene selection. Many
equally predictive lists could have been produced from the
same analysis. Three main properties of the data explain this
sensitivity: (1) many genes are correlated with survival; (2)
the differences between these correlations are small; (3) the
correlations fluctuate strongly when measured over different
subsets of patients. A possible biological explanation for these
properties is discussed.
Contact: eytan.domany@weizmann.ac.il
Supplementary information: http://www.weizmann.ac.il/
physics/complex/compphys/downloads/liate/

INTRODUCTION
Several attempts were made to predict survival of cancer
patients in general (Bair and Tibshirani, 2004; Beer et al.,
2002;Khan et al., 2001;Nguyen andRocke, 2002; Rosenwald
et al., 2002), and of breast cancer patients in particular
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(Ramaswamy et al., 2003; Sorlie et al., 2001; van’t Veer
et al., 2002) on the basis of gene expression profiling.
Sorlie et al. (2001) used an unsupervised approach, hier-
archical clustering, to assign breast carcinoma tissues to one
of five different subtypes, each with a distinctive expres-
sion profile. Robustness of these survival-related subclasses
was demonstrated (Sorlie et al., 2003) by applying the same
analysis procedure to two independent breast carcinoma data-
sets (van’t Veer et al., 2002; West et al., 2001). van’t Veer
et al. (2002) applied a supervised approach to identify a
gene expression signature, based on 70 genes, capable of
predicting a short interval to the development of distant meta-
stases. First, they randomly selected a set of 78 patients,
a training set, which was used to measure the correlation
between each gene’s expression and disease outcome. The
genes were ranked according to this correlation, and the
70 most-correlated genes were used to construct a classifier
discriminating between patients with good- and poor pro-
gnosis. The remaining 19 patients served as the test set to
validate their prognosis classifier. A follow-up study (van de
Vijver et al., 2002) proved the efficiency of this classifier as
a survival predictor on a large set of 295 tumor specimens.
In a third study, Ramaswamy et al. (2003) identified a set
of 128 genes separating metastases from primary tumors. A
refined set of 17 metastases-associated genes were tested on
a large diverse set of primary solid tumors, and were found
to successfully distinguish patients with good versus poor
prognosis.
The predictive success of these studies was frustrated by

the fact that the sets of survival-related genes identified by
these three studies had only a few genes in common. Only
17 genes appeared in both the list of 456 genes of Sorlie
et al. (2001) and the 231 genes of van’t Veer et al. (2002);
merely 2 genes were shared between the sets of Sorlie et al.
(2001) and Ramaswamy et al. (2003) Such disparity is not
limited to breast cancer but characterizes other human disease
datasets (Lossos et al., 2004) such as schizophrenia (Miklos
and Maleszka, 2004).
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Fig. 1. (A) The histogram of the genes’ correlation with the real survival vector (projection onto the vertical s axis—red curve), and with a
random permutation of the survival vector (blue curve). (B) Globe of genes in the ‘world’ spanned by the normalized survival (s), BUB1 (b)
and ESR1 (e). The survival is located at the north pole, while BUB1 (chosen from a large cluster of genes characterized by negative correlation
with survival) and ESR1 (chosen from a large cluster of genes characterized by positive correlation with survival) are on the sphere’s surface
and their relative locations are determined by their angles with survival and with each other. All other (normalized) genes are represented by
spots whose size and color illustrate how close the gene is to the surface (large red spots are close and small blue are far). The genes create
an elongated structure at an angle <π/2 with s, implying that a large number of genes exhibit non-vanishing correlations with survival.

In this work, we explore this surprising phenomenon, and
suggest new explanations for the lack of agreement between
the sets of genes.

MATERIALS AND METHODS
Public dataset
The data van’t Veer et al. (2002) contain gene expression
profiles of primary breast tumors, from 96 sporadic young
patients with grade T1/T2 tumors <5 cm in size, and N0 (no
lymph node metastases). Of the 96 sporadic patients, 34 were
treated by modified radical mastectomy and 62 underwent
breast-conserving treatment, including axillary lymph node
dissection followed by radiotherapy. Hybridization ratios
were measured with respect to a reference made by pooling
equal amounts of cRNA from all the sporadic carcinomas, on
microarrays containing 25 000 human genes (Hughes et al.,
2001).

Preprocessing of data
The full expression matrix of van’t Veer et al. (2002) had
24 481 rows (genes) and 117 columns (samples). We applied
filtering criteria, based on the entire set of 117 samples, yield-
ing 5852 genes that exhibited a 2-fold change of expression

with aP -value< 0.01 in five ormore samples [van’tVeer et al.
(2002) applied the same filtering criteria on 98 samples, while
discarding the test set of 19 samples, yielding 5000 genes]. We
discarded from the set a single sample (sample 54) that con-
tained>20%missing values [van’t Veer et al. (2002) decided
to include this patient in their analysis]. Like van’t Veer et al.
(2002) we also based our analysis on 96 ‘sporadic’ patients
free of BRCA1/2 germ line mutations.

Correlation analysis
For each gene, we test the null hypothesis that its gene expres-
sion profile is uncorrelated with the survival vector (over all
96 samples). We randomly permuted the survival vector (105
times) and calculated the correlation of the expression of each
gene with the randomized survival vector. The P -value is
the fraction of times one gets an absolute correlation larger
or equal to the absolute correlation of the unpermuted data.
Correction for multiple comparisons was performed using the
false discovery rate (FDR) method (Benjamini and Hochberg,
1995). Bounding the expected FDR by 10% yielded a list of
1234 genes for which the null hypothesis can be rejected. His-
tograms of the correlation (measured for 5852 genes) with the
true survival and with a randomly permuted survival vector,
are shown in Figure 1A.
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Dividing the data into ten different divisions
of 77/19
Toexamine howdifferent experiments of 77 samples influence
the composition of the 70most-correlated geneswith survival,
we used the bootstrapping method (Tibshirani, 1993). Boot-
strapping is a computer simulation enabling the overcoming of
finite size effects. It assumes that the sample is a good approx-
imation of the population. By generating a large number of
newsamples from theoriginal sample sets, we can estimate the
statistical parameters of the population. To keep the good/poor
prognosis ratio of the original training set (33/44) we divided
the 96 samples into a poor prognosis set of 45 samples, and a
good prognosis set of 51. We chose with repetitions a random
set of 33 samples from the poor prognosis set, and 44 from
the good prognosis. We repeated this procedure ten times and
found the top 70 genes for each ‘training set’ composition.

Measuring the STD of a gene based on a sample
size of 77
We assumed that the degree of the polynomial fit for the aver-
age STD curve (Fig. 5) is the degree of the polynomial fit to
the STD curve of each individual gene. Using this assumption,
we found the polynomial fit to the STD curve of each gene in
the data, and used it to estimate their STD values in a sample
size of 77.

RESULTS
Many genes are related to survival
As was mentioned before, several microarray studies yiel-
ded gene setswhose expression profiles successfully predicted
survival in breast cancer. However, the overlap between these
gene sets was almost zero. This lack of agreement can be
attributed to different chips, different methods of sample pre-
paration, mRNA extraction and analysis of the data and,
most importantly, to genuine differences between the patients
(tumor grade, stage, etc.). To eliminate these sources of vari-
ation, we focused on data from a single experiment (van’t
Veer et al., 2002). The data consist of 96 samples and 5852
genes (see Materials and Methods). Disease outcome is rep-
resented by a survival vector s, of 96 binary components, with
1 representing good prognosis (metastasis-free time interval
>5 years), and 0 representing poor prognosis (<5 years). The
projection of the 96-dimensional expression vector of each
gene onto a three-dimensional space [spanned by the survival
vector (s) and the expression vectors of ESR1 (e) and BUB1
(b)] is shown in Figure 1B.
We chose to use ESR1 and BUB1 as representative genes

of two large clusters characterized by positive- and negative
correlation with survival, respectively.
The 5852 genes comprise an oblate spheroid shaped cloud,

tilted with respect to the equator. If survival is replaced by
a random binary vector, the oblate spheroid cloud lies on the
plane of the equator. Since the vertical component of each

gene is the correlation of its expressionwith survival (Fig. 1A),
this difference is a striking geometrical manifestation of the
fact that the expression vectors of very many genes (1234—at
an FDR of 10%, see Materials and Methods) are related to
survival.
According to our model, if the experiment is repeated on

a different group of patients (with the same clinical charac-
teristics), the overall appearance of the new ‘globe’ will be
quite similar, but the positions of individual genes will swarm
around. This swarming will suffice to change drastically the
relative ranking of the genes on the basis of their correlation
with survival.

Many sets of 70 genes can be used to
predict survival
This dataset is characterized by three main properties: first,
many genes are correlated with survival; second, the differ-
ences between these correlations are small; and third, the
correlation-based rankings of the genes depend strongly on
the training set (shown later). These properties may indicate
that the top 70 genes are not superior to others in predict-
ing disease outcome. To test this hypothesis, we selected the
same 77 patients (out of 78; see Materials and Methods, and
van’t Veer et al., 2002) and ranked all genes according to their
correlation with survival. We used the 5852 genes to build a
series of classifiers (following the method used by van’t Veer
et al., 2002), based on consecutive groups of 70 genes. For
each classifier, we measured the training and the test error,
and found seven other sets of 70 genes, producing classifiers
with the same prognostic capabilities as those based on the top
70. The genes of some of these seven classifiers appeared way
down in the correlation-ranked list; the 70 genes of the first
classifier are ranked between 71 and 140; classifier 2, 141–
210; classifier 3, 211–280; classifier 4, 281–350; classifier 4,
351–420; classifier 5, 421–490; classifier 6, 561–630; clas-
sifier 7, 701–770. The location of these seven sets on the
globe and their predicting performance is shown in Figures 9
and 11, respectively (see Supplementary information), and the
corresponding Kaplan–Meier plots are shown below (Fig. 2).
To ensure that the aforementioned phenomenon is not

unique to the specific training and test sets selected by van’t
Veer et al. (2002), we repeated the procedure described
above for 1000 different compositions of training sets (of
77 samples) and test sets (19 samples). Each training set was
used to rank the genes, and for each case the sequence of
classifiers described above was constructed, and the training
and test errors were measured for each classifier. Note, that
when repeating this procedure for a randomized survival vec-
tor, the training error curve fluctuates around 37.5 mistakes
(50% rate of errors) while the test error fluctuates around 9.5
mistakes, independent on the genes’ rank. The results shown
in Figure 3 imply that indeed, for each of the training sets,
classifiers based on very-low-ranked genes are capable of pre-
dicting survival with quality similar to the high-ranking ones.
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Fig. 2. Kaplan–Meier analysis of van’t Veer et al.’s classifier and of the seven alternative classifiers as obtained from classifying all 96
samples. Upper curves describe the probability of remaining free of metastasis in the group of samples classified as having a good prognosis
signature, while the lower curves describe the poor prognosis group.

To give a quantitative meaning to this claim, we generated the
histogram presented in the inset of Figure 3, which shows that
>70% of the 1000 training sets produced at least one classi-
fier with the same (or better) performance as the one based on
its own top 70 genes. The average number of such classifiers
is four. The surprising summary of these observations is that
(1) the list of the ‘top 70 genes’ of highest correlation with
survival depends strongly on the training set of (77) patients
on which the correlation was measured and (2) even with a
fixed training set, one could have easily singled out a dif-
ferent group of 70 much lower ranked genes with as good a
prognostic performance as that of the top-ranked genes.
Our results imply that although the top 70 genes may

provide good prediction, other groups of 70 genes may do
the same. Hence, these 70 genes cannot be considered as
the main candidates for targeting anti-cancer treatment. Such
candidates should be selected from the much longer list of
genes related to survival, as demonstrated by the following
list of cancer-related genes, present in the seven classifiers

mentioned above. We list several of these genes, and indicate
next to each one its correlation rank (in parentheses)measured
on the training set selected by van’t Veer et al. (2002).
Negative correlation with survival IL-6 (rank = 502) is

anti-apoptotic, and therefore supports tumor survival (Lotem
et al., 2003); CDC25B (402) (Nilsson and Hoffmann, 2000),
CKS2 (297) (Urbanowicz-Kachnowicz et al., 1999), CDC2
(229) (Winters et al., 2001) and CDC20 (341) (Singhal et al.,
2003) are known to function in cell cycle regulation or DNA
replication; oncogenes NRAS (260) (Boon et al., 2003)
and EZH2 (92) (Varambally et al., 2002) enhance cancer
aggressiveness.
Positive correlation with survival It may be caused by

some indirect relation to tumor growth, affecting survival
through indirect mechanisms like immunity, apoptosis or
inhibition of oncogenes. Examples: BIN1/AMPH2 (477) by
binding to MYC functions as a tumor suppressor (Sakamuro
et al., 1996); BIK (342) is pro-apoptotic (Li et al., 2003)
via binding to BCL2 (1106) (Li et al., 2003). The positive
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Fig. 3. The average performance of a series of classifiers generated
by consecutive sets of 70 genes. The fluctuating curves present the
number of errors produced by the classifiers resulting from one par-
ticular selection of training and test sets (upper, training errors out of
77 samples; lower, test errors out of 19). The x-axis represents the
rank of the genes in the classifiers. The average over 1000 partitions
is plotted as black x’s; the two gray areas are the 95% confidence
intervals of the training and test errors. Inset: histogram of the num-
ber of classifiers whose training and test errors are at least as low
as those of the first classifier (based on the 70 genes with highest
correlation to survival). Of the 1000 partitions, for ∼28% no such
classifier was found, whereas for ∼6% five were found. Note that
>70% of the training sets produce at least one classifier with the
same performance as the top 70 genes; the expected number of such
classifiers is around 4.

correlation of FLT3 (220) is due to its strong effect on dendritic
cells and T-cells to enhance anti-tumor immunity (Ciavarra
et al., 2003). BRAK (237) is highly expressed in all normal tis-
sues but low inmalignant cells (Hromas et al., 1999); IGFBP4
(225) induces apoptosis (Byron and Yee, 2003; Zhou et al.,
2003). Expression of GATA3 (255) is highly correlated with
ER status (Bertucci et al., 2000). Similarly, MYB (285) is also
positively correlated with breast cancer outcome since it is a
target of ER (Bertucci et al., 2000; Guerin et al., 1990) which
is positively correlatedwith outcome. None of the genes listed
above is ranked among the top 70.
Note that as opposed to claims made in (Gruvberger et al.,

2003), the success of the classifier is not due to the correlation
of outcome to ER status. Creating a dataset which lacks this
correlation, our seven classifiers, as well as van’t Veer et al.’s
(2002), kept their prognostic capabilities (see Supplementary
information).

A gene’s rank may fluctuate
Say we measure the correlation r of a gene’s expression with
survival on the basis of a sample ofN patients drawnat random

from a larger group with similar clinical characteristics. If a
different set of N is drawn, the correlation will be different.
If these statistical fluctuations of r are sizeable, they may
change the ranking of a gene from high in one sample to a
much lower rank in another; the smaller the N , the larger the
fluctuations of r . In order to estimate the effect of these fluctu-
ations on the composition of gene lists such as those of van’t
Veer et al. (2002), we repeatedly selected different subgroups
of 77 samples out of the 96 (in each group we maintained
the overall good/poor prognosis ratio) and for each subgroup
identified the 70 genes that have the highest correlation with
survival. The significant variation of the membership of the
top 70 genes is clearly shown in Figure 10 of the Supplement-
ary information. Note that every pair of these training sets has
at least 58 samples in common, which significantly reduces
the fluctuations of r and variation of the genes’ ranks. In spite
of this, the average overlap between two such gene groups
is only 33.7/70. To better estimate the ‘true’ fluctuations of
r for independent subgroups of 77 we used bootstrapping
(Tibshirani, 1993), drawing subgroups from the 96 samples
with repeats (see Materials and Methods). This reduces the
expected overlap of two top 70 gene lists to 12.2/70. Figure 4
shows how large the variation of gene rank is, measured for 10
subgroups. Geneswhose correlationwith survival ranked high
over one subgroup are likely to become low ranked in another.
Hence, different sets of 77 patients, drawn from a clinically
similar pool, will yield different lists of ‘top 70 genes’ with
respect to correlation with survival.

Measuring the correlation fluctuations
In order to study how the fluctuations of the correlation
with survival vary with the sample size K , we created nK

non-overlapping subgroups of size K from the 96 available
samples.Wecalculated the correlation of eachgenegwith sur-
vival, measured over each subgroup, and from thesenK values
we estimated the standard deviation (STD) of the correlation.
We repeated this procedurefive times (each time creating a dif-
ferent set of subgroups), to obtainσg(K), the average STD, for
each of the 5852 genes, forK ranging from 2 to 48 (the max-
imalK allowing for non-overlapping subgroups). Finally, we
extrapolated the correlation noise (estimated by 〈σ 〉, the STD
averaged over the genes), from K = 0–96 (Fig. 5). As shown
in Figure 5 the correlation noise decreases as the samples size
increases. For sample size of 77 (the size of the training set),
the expected average noise is ∼0.1, whereas the significant
genes found by van’t Veer et al. (2002) and by our study show
correlation between 0.3 and 0.5. In light of this small sig-
nal to noise ratio, the phenomenon shown in Figure 4 is not
surprising.
Focusing on sample size K = 77 (Fig. 6), one can see that

even relatively-low-ranked genes (around 1000), may have a
non-negligible probability to be included among the 70 top
ranked genes. Conversely, genes ranked among the top 70
can easily fluctuate to much lower ranks. The relatively low
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Fig. 4. Ten sets of top 70 genes, identified in 10 randomly chosen
training sets ofN = 77 patients (using bootstrapping—seeMaterials
andMethods). Each row represents a gene and each column a training
set. The genes were ordered according to their correlation rank in the
first training set (leftmost column). For each training set, the 70 top-
ranked genes are colored black. The genes that were top ranked in
one training set can have a much lower rank when another training
set is used. The two rightmost columns (columns 11 and 12) mark
those of the 70 genes published by van’t Veer et al. (2002) and the
128 genes appearing in (Ramaswamy et al., 2003) that are among
the top 1000 of our first training set.

Fig. 5. Standard deviation (STD) of a gene’s correlationwith disease
outcome, averaged over 5852 genes (y-axis) as a function of sample
size K (x-axis). The curve is the polynomial fit to the results obtained
for K between 2 to 48. This curve was used to extrapolate the STD
to larger values ofK . (The values extrapolated toK = 77 were used
to calculate the error-bars presented in Fig. 6.)

signal-to-noise ratio explains the phenomenon demonstrated
in Figure 4. In order to estimate the actual probability of
each gene to be included in a list of top 70, we generated,
at random, 10 000 training sets, each of 77 samples. For each
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Fig. 6. Correlation of genes with survival versus their ranks. The
correlation of each gene (y-axis) was measured based on the 96
samples, and the genes were ordered according to their correlation
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gene based on sample size 77 (see Materials and Methods).
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Fig. 7. The probability of genes to be included in a list of top 70. The
genes were ranked on the basis of their correlation with outcome, as
measured over the 77 samples of one particular (randomly chosen)
training set.

such training set we identified the top 70 genes. The fraction
of times (among 10 000) that each gene appeared in the top
70 is shown in Figure 7.
Taking into account the correlation noise, we defined

an alternative gene score (instead of correlation coefficient),
by calculating its probability to have a correlation above a
given threshold for a given sample size (see Supplementary
information). Figure 8 presents the probability of genes to
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Fig. 8. The probability (y-axis) that genes have a correlation higher
than a given threshold, calculated on the basis of noise derived for
a training set of 77 samples. The x-axis represents the gene ranks
according to their correlation with all 96 samples. The left curve
corresponds to threshold of 0.4 and the right curve to threshold 0.1.

have a correlation higher than a given threshold (y-axis)
calculated on the basis of the noise derived for a samples size
of 77. The x-axis represents the genes’ ranks according to
their correlation coefficient with all 96 samples.

DISCUSSION
In this work, we investigated a single breast cancer data-
set (van’t Veer et al., 2002) in an attempt to explain the
inconsistency between lists of survival-related genes derived
from different experiments. While no single gene has a very
high correlation with outcome, for many the correlation has
intermediate values (Fig. 1). The differences between these
correlation values are small, and the relative ranking of genes
on the basis of correlation with survival changes drastically
when a different training set is used. These large fluctuations
in gene rank indicate that the identities of the top 70 ranked
genes are not robust, and hence will not be reproduced in a
different experiment. In spite of this sensitivity, the predictive
power of several sets of genes is quite good. The main lesson
is that whenever any arbitrary decision (e.g. choice of training
and test set) is taken throughout analysis of the data, one has
to generate a large ensemble of the different ways in which
this arbitrary decision could be taken, and perform a statist-
ical analysis of the results obtained over this ensemble. A high
sensitivity of the results to the arbitrary decisions may indic-
ate that the conclusions, e.g. the list of survival-related genes,
are not unequivocal. In light of the inconsistency between
lists of survival-related genes generated from the same data-
set, the disagreement between lists obtained from different
datasets is not surprising. A possible biological explanation

for this may be the individual variations and heterogeneities
associated with markers for outcome, even within a clinically
homogenous group of patients.
Perhaps one has to divide the patients into smaller subgroups

(Sorlie et al., 2003) on the basis of some yet unknown attrib-
ute and for each subgroup of tumors look for it’s much sought
‘primary, master genes’ that control the metastatic potential.
The correlations with survival of such a master gene may be
very high in its own subgroup and low in others. The large
fluctuations in the correlation of such a gene’s expression with
survival, measured over different training sets, are due to the
fluctuating fraction of how many members of the gene’s sub-
group are in the training set. It is important to note that such
a master gene will not necessarily be top-ranked with respect
to correlation measured in a very large sampling of patients,
composed of a mixture of subgroups.
Since one may need much larger numbers of patients to

identify such survival-wise-homogenous subgroups and their
associated, potential master genes, one should separate two
issues: the quest for survival-related master genes and the
construction of prognostic tools on the basis of a short gene
list. One can produce fairly reliable prognostic tools; many
genes are related to survival, and using a large enough subset
of them will compensate for the fluctuations in the predictive
power of individual genes for individual patients. Membership
in a prognostic list, however, is not necessarily indicative of
the gene’s importance in cancer pathology. Rather, in order
to study the potential targets for treatment, one must scan
the entire, wide list of survival-related genes. By focusing
only on those genes that were singled out from one dataset
as its preferred prognostic tool, one may miss important key
players, in breast and also in other types of cancer.
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