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Predicting at the time of discovery the prognosis and metastatic
potential of cancer is a major challenge in current clinical research.
Numerous recent studies searched for gene expression signatures
that outperform traditionally used clinical parameters in outcome
prediction. Finding such a signature will free many patients of the
suffering and toxicity associated with adjuvant chemotherapy
given to them under current protocols, even though they do not
need such treatment. A reliable set of predictive genes also will
contribute to a better understanding of the biological mechanism
of metastasis. Several groups have published lists of predictive
genes and reported good predictive performance based on them.
However, the gene lists obtained for the same clinical types of
patients by different groups differed widely and had only very few
genes in common. This lack of agreement raised doubts about the
reliability and robustness of the reported predictive gene lists, and
the main source of the problem was shown to be the small number
of samples that were used to generate the gene lists. Here, we
introduce a previously undescribed mathematical method, proba-
bly approximately correct (PAC) sorting, for evaluating the robust-
ness of such lists. We calculate for several published data sets the
number of samples that are needed to achieve any desired level of
reproducibility. For example, to achieve a typical overlap of 50%
between two predictive lists of genes, breast cancer studies would
need the expression profiles of several thousand early discovery
patients.

DNA microarray gene expression data ! outcome prediction in cancer !
probably approximately correct sorting ! predictive gene list ! robustness

One of the central challenges of clinical cancer research is
prediction of outcome, i.e., of the potential for relapse and

for metastasis. Identification of aggressive tumors at the time of
diagnosis has direct bearing on the choice of optimal therapy for
each individual. The need for sensitive and reliable predictors of
outcome is most acute for early discovery breast cancer patients.
Adjuvant chemotherapy is recognized to be useless for !75% of
this group (1); it is believed that after surgery a large majority
of these patients would remain disease free without any treat-
ment. Nevertheless, they are often submitted to the same
therapeutic regimen as the small fraction of those who really
need chemotherapy and benefit from it.

Considerable effort has been devoted recently to outcome
prediction for several kinds of cancer on the basis of gene
expression profiling (2–8), with special emphasis on breast
carcinoma (9–13). Several of these studies reported considerable
predictive success. These successes were, however, somewhat
thwarted by two problems: (i) when one group’s predictor was
tested (G. Fuks, L.E.-D., and E.D., unpublished data) on another
group’s data (for the same type of cancer patients), the success
rate decreased significantly; and (ii) comparison of the predictive
gene lists (PGLs) discovered by different groups revealed very
small overlap. These problems indicate that the currently used
PGLs suffer from instability of their membership and of their
predictive performance. These statements are well illustrated by
two prominent studies of survival prediction in breast cancer.
Wang et al. (11), using the Affymetrix technology, analyzed
expression data obtained for a cohort of 286 patients with early

discovery. They identified and reported a PGL of 76 genes. van’t
Veer et al. (9) used Rosetta microarrays to study 96 patients and
produced their own list of 70 genes, which were subsequently
tested successfully on a larger cohort of 295 patients (10). Each
group achieved, using its own genes on its own samples, good
prediction performance. However, the overlap between the two
lists was disappointingly small: only three genes appeared on
both!§ Furthermore, the discriminatory power of the two clas-
sifiers, as found on their own data sets, was not reproduced when
testing them on the samples of the other study (G. Fuks, L.E.-D.,
and E.D., unpublished data).

These intriguing problems have received great attention by the
community of cancer research and have been addressed in
several topical studies. The obvious and most straightforward
explanation of these apparent discrepancies is to attribute them
to (i) different groups using cohorts of patients that differ in a
potentially relevant factor (such as age), (ii) the different mi-
croarray technologies used, and (iii) different methods of data
analysis. Ein-Dor et al. (14) have shown that the inconsistency of
the PGLs cannot be attributed only to the three trivial reasons
mentioned above. To this end, they focused on a single data set
(9) and repeated many times precisely the analysis performed by
van’t Veer et al., thereby eliminating all three differences listed
above. Generating many different subsets of samples for train-
ing, they showed that van’t Veer et al. (9) could have obtained
many lists of equally prognostic genes and that two such lists
(obtained by using two different training sets generated from the
same cohort of patients) share, typically, only a small number of
genes. This discovery was supported by Michiels et al. (15), who
did not limit their attention to breast cancer and investigated the
stability of seven PGLs published by seven large microarray
studies. They showed that the prediction performances that were
reported in each study on the basis of its published gene list were
overoptimistic in comparison with results obtained by reanalysis
of the same data performed (using different training sets) by
Michiels et al. (15). Furthermore, they showed, much in the same
way as in ref. 14, that the PGLs reported by the various groups
were highly unstable and depended strongly on the selection of
patients in the training sets. Ioannidis (16), in a comment to ref.
15, and Lonning et al. (17), in a review on genomic studies in
breast cancer, cast doubt on the maturity of the published lists
to implementation in a routine clinical use and suggest that small
sample sizes might actually hinder identification of truly impor-
tant genes. Similar criticism was expressed in two recent reviews
(18, 19), which raise several methodological problems in the
process determining the prognostic signature. They conclude
that further research is required before applying the identified
markers in a routine clinical use.
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An obvious question is: Why does one need a short list of
predictive genes? There are at least three reasons for this need.
The first reason is technical and goes back to a problem well
known in machine learning. In general, the number of genes on
the chip is in the ten thousands, and the number of samples is in
the hundreds. Hence, by using all genes to classify the samples
into good and bad outcome, we take a high risk of overtraining,
i.e., of fitting the noise in the data, which may increase the
generalization error (the error rate of the resulting predictor on
samples that were not used during the training phase). The
second reason has to do with our desire to gain some biological
insight about the disease: One hopes that the genes that are the
most important and relevant for control of the malignancy also
will appear on the list of the most predictive ones. Third (and
least important), a relatively small number of predictive genes
will allow inexpensive mass usage of a custom-designed prog-
nostic chip. The second of these points was questioned by
Weigelt et al. (20); these authors addressed further the instability
of PGLs and concluded that the membership of a gene in a
prognostic list is not necessarily indicative of the importance of
that gene in cancer pathology.

These findings raise another question: Why should one worry
about the diversity of the derived short PGLs? Clearly, had the
predictor based on one group’s genes worked well on patients of
other studies, one would not have had to worry about list
diversity. However, the observed lack of transferability of pre-
dictive power may well be because of the same reason that causes
instability of the gene lists. Because one hopes that by generating
more stable PGLs one will obtain more robust predictors as well,
and in light of their tremendous potential for personalized
therapy, assessing the stability of these lists is crucial to guar-
antee their controlled and reliable utilization.

So far, the lack of stability of these PGLs has been either
ignored or demonstrated for a particular experiment by reanal-
ysis of the data. Here, we propose a mathematical framework to
define a quantitative measure of a PGL’s stability. Furthermore,
we present a method that uses existing data of a relatively small
number of samples to project the expected stability one would
obtain for a larger set of training samples, thereby helping to
design an experiment that generates a list that has a desired
stability.

To this end, we introduce a previously undescribed mathe-
matical method for evaluating the stability of outcome PGLs for
different cancer types. To measure list stability, we introduce a
figure of merit f, which varies between 0 and 1; the higher its
value, the more stable the PGL. We show how this figure of merit
increases with the number of training samples and determine the
number of training samples needed to ensure that the resultant
PGL meets a desired level of stability. We perform a compar-
ative study of list quality in several cancer types, using a
collection of gene expression data sets supplemented by out-
come information for the patients.

Overview and Notation
Denote by Ng the number of genes from which a PGL is to be
selected: either the total number of genes on the chip or the
number of those that pass a relevant filter (such as significant
expression in at least a few samples or variance above a thresh-
old). Either way, Ng ! 10,000. The expression levels measured
in n samples are used for gene selection and, subsequently, for
construction of a predictor of outcome. These samples are
routinely referred to as the ‘‘training set’’; usually n is on the
order of a few tens, up to a few hundreds. For each gene, a
predictive score is calculated on the basis of its expression over
the training set, and the genes are ranked according to this score.
The NTOP top-ranked genes are selected as members of the PGL.
Usually (9) NTOP is determined by incrementing the number of
genes on the list and monitoring the success rate of the resulting

predictor, using cross-validation. Broadly speaking, the success
rate increases, peaks, and decreases (21, 22), and the optimal
number of genes is used as NTOP. Because determination of NTOP
is outside the scope of our work, we use a free parameter, ! "
NTOP"Ng, and calculate our results as a function of !. In typical
studies NTOP ! n; hence, for our problem ! ! 0.01.

The figure of merit we introduce and use here, f, is the overlap
between two PGLs, obtained from two different training sets of
n samples in each. That is, 0 " f " 1 is the fraction of shared
genes (out of NTOP) that appear on both PGLs; the closer f is to
1, the more robust and stable are the PGLs obtained from an
experiment.

Our central point is that because the n samples of the training
sets are chosen at random from the very large population of all
patients, the figure of merit f is a random variable. The aim of
our work is to calculate Pn,!( f ), the probability distribution of f.

Once this distribution has been determined, we are able to
answer the following question: For given n and !, what is the
probability that the robustness f of the PGL exceeds a desired
minimal level? This question is related to the classical concept
of probably approximately correct (PAC) learning (23), which
we generalize here to ‘‘PAC sorting.’’ Alternatively, we can
answer a question such as: How many training samples are
needed to construct a PGL whose expected f exceeds a desired
value?

Results
Analytical Derivation of Pn,!(f). Our central result, correct to order
1"Ng, is that this probability distribution has the form

Pn,!# f$ #
1

#2$%n
e&

#f&f*n $2

2%n
2 . [1]

Hence, the probability distribution of f is a Gaussian; We have
calculated (see Supporting Text, which is published as supporting
information on the PNAS web site) the mean f *n and variance
'n

2 as functions of Ng, !, and n We have found that 'n ( 1")Ng,
and hence in the limit of infinite Ng the overlap between any two
PGLs is fixed at f *n and does not depend on the specific
realization of the training set, but only on its size n.

Testing the Validity of Our Assumptions. As described in Materials
and Methods, our analytical calculation is based on several
assumptions on the model generating the data we have at hand.
The extent to which any of these assumptions is fulfilled for
real-life data sets varies from case to case and may affect the
extent to which our analytical results can be used for a particular
data set. Importantly, one can test the correctness of the
assumptions by using the real data. A detailed analysis of our
assumptions for each of the data sets we have investigated,
presented in Supporting Text, shows that our assumptions hold.
Excellent agreement between simulations and the analytic cal-
culation was found in five of the six data sets studied.

Breast Cancer Expression Data. Fig. 1b shows the probability
distributions of f, estimated from the data of ref. 10. We set ! to
0.0046, which corresponds to a PGL of size 70, and present
Pn,!( f ) for several values of n. Note that the analytical calculation
can be performed for any n irrespective to the number of samples
used in the actual experiment (10). As n increases, the typical
overlap f *n increases as well; for the range of n shown, the width
of the distribution, 'n, also increases (for large n it will start to
decrease). In Fig. 1a, we show the variation of f *n with n.
Importantly, we see that for these moderate values of n the
typical overlap between two PGLs, obtained from two training
sets, is of the order of a few percents! For two randomly selected
lists of !Ng genes, one expects f ! !. In Table 1, we show the
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number of samples needed to achieve a desired level of overlap
between a pair of PGLs produced from two randomly chosen
training sets. Suppose that we wish to know how many samples
are needed to guarantee, with confidence level 1 & %, that the
PGL produced by these samples has an overlap f (with a
hypothetical PGL obtained from an independent cohort with the
same number of samples) that exceeds a desired level fc " 1 &
&. The number of samples n, needed to achieve this goal is given
in column 3 of Table 1 for the data of ref. 10, for a PGL of 70
genes, and in column 4 for ref. 11, for a PGL of 76 genes. When
% " 0.5, we have fc " f *n so that to achieve a typical overlap of
f *n " 0.50, n " 2,300 samples are needed for the data of ref. 10
and 3,142 for the data of ref. 11.

Comparing Data from Several Groups and Types of Cancer. We
analyzed the stability of PGLs obtained from gene-expression
data from various cancer types: breast (10, 11), lung (3, 7),
lymphoma (5) and hepatocellular carcinoma (24). First, we
checked the agreement between simulations and our analytic
prediction. The results, presented in Fig. 2, show that simulations

coincide with the analytical results for the mean and the standard
deviation of the overlap between two measured lists, for five of
the six data sets studied. Once agreement between simulations
and the analytic calculation is established for a particular study,
we can rely on the analytic results for values of n that exceed the
range that is currently experimentally available. If no agreement
is found, we can extrapolate the results of the simulations.

The results are shown in Fig. 3, which presents the expected
overlap f *n for all data sets, thus enabling one to compare the
robustness of the PGLs obtained using different microarrays and
for different cancers. One can see a clear hierarchy of cancers
with respect to their PGLs robustness, where hepatocellular
carcinoma is most stable, breast cancer ranked second, acute
lymphocytic leukemia is third, and lung cancer is characterized
by the lowest stability. This result may reflect the difficulty of
outcome prediction in the different cancers where survival of
hepatocellular carcinoma patients is the easiest to predict,
whereas survival prediction in lung cancer is most difficult.

Summary and Conclusions
We introduced probably approximately correct (PAC) sorting, a
previously undescribed mathematical method for calculating the
quality of the PGLs obtained in an experiment, by measuring the
overlap f between pairs of gene lists produced from different
training sets of size n. We proved that the method can predict
with high accuracy Pn,!( f ), the probability distribution of f, for
any n. Because gene expression profiles are believed to possess
high potential of outcome prediction, and such PGLs will be put
to clinical prognostic use, obtaining information about their
quality and robustness is crucial. Moreover, by discovering the
relationship between n, the number of training samples used to
obtain a gene list and the quality of the resultant list, our method
provides a means for efficient experimental design. Given any
desired list quality, we can calculate the number of samples
required to achieve it in a particular experiment. Furthermore,
by finding the mathematical expressions for Pn,!( f ), we gain an
insight into the problem of instability of PGLs, discussed at the
beginning of this work. In Materials and Methods, we introduce
two distributions, q(Ct) and p*n(Z; Zt), and show that the insta-
bility is governed mainly by the magnitude of q(Ct) near the

Fig. 1. The overlap f of two top-gene lists derived from data of van de Vijver
et al. (10), with ! " 0.0046 (corresponding to predictive lists of 70 genes). (a)
The mean and standard deviation (represented by vertical bars) of f for various
values of n. (b) The probability distribution of f for the same values of n.

Table 1. The number of samples n needed to get an overlap f >
fc " 1 # $, with confidence 1 # %, for two PGLs of size !Ng

fc " 1 & & % n (10) n (11)

0.02 0.5 87 104
0.05 0.5 170 218
0.10 0.5 290 383
0.20 0.5 553 743
0.50 0.5 2,300 3,142
0.02 0.1 178 195
0.05 0.1 270 319
0.10 0.1 412 507
0.20 0.1 736 930
0.50 0.1 3,026 3,883

We use ! " 0.0046 (corresponding to a PGL of 70 genes) and ! " 0.0068
(corresponding to a PGL of 76 genes) for refs. 10 and 11, respectively. For % "
0.5, fc " f*n, and hence n represents the number of samples needed for an
average overlap of 1 & &. The effective number of genes used here (after
preprocessing) was Ng " 15,125 for ref. 10 and Ng " 11,130 for ref. 11.

Fig. 2. The mean overlap f*n as a function of the number of samples, for six
different data sets, for ! " 0.012. The vertical bars indicate one standard
deviation. Analytic estimations are in blue, and the results of simulations are
in red. For each data set, the range of n for which results are presented reflects
the number of samples of the particular experiment. Numbers in parentheses
refer to the reference from which the data were taken.
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values that correspond to the top !Ng correlations, and by the
variance 'n

2 of p*n. These two factors determine the sensitivity of
the PGL’s composition to random selection of the training set.
Our method can be extended to deal with applications to a wide
variety of feature selection problems, including pattern recog-
nition and text categorization.

Materials and Methods
The analytical calculations rely on our ability to use available
expression data to estimate two distributions, p*n(Z; Zt) and q(Zt),
which we define now.

Scoring Genes by Their ‘‘Noisy’’ Correlation with Outcome. We used
one of the accepted ways (9–11, 15) to represent outcome: as a
binary variable, with 1 for good and 0 for bad outcome. A sample
(patient) is designated as ‘‘good outcome’’ if the metastasis and
relapse-free survival time exceeds a threshold, or ‘‘bad’’ if it does
not. The simplest score of a gene’s predictive value is the Pearson
correlation C of outcome with the gene’s expression levels.¶
Measuring a gene’s correlation with outcome over several
different training sets of n samples yields different values of C;
i.e., our measurement of a gene’s C is noisy, taken from some
distribution pn(C; Ct) around the ‘‘true’’ value Ct.$ The deviation
of a gene’s measured C from Ct, referred to as ‘‘noise,’’ is due to
the variation of the measured correlations when the n samples
of the training set are randomly selected; it is one of the factors
that governs the diversity or lack of robustness of the PGL. Large

noise causes large differences in a gene’s correlation when
measured over different subsets of samples, potentially inducing
large shifts in a gene’s rank, which induce instability of the PGL.

The Distributions pn(C;Ct) Are Different for Each Gene. A simple
transformation on the correlations produces new variables Z "
tanh&1(C). Under certain assumptions (25, 26) their distribution,
p*n(Z; Zt), is approximately a Gaussian around the true value
Zt " tanh&1(Ct), with identical variances for all of the genes,
given by 'n

2 " 1"(n & 3). These assumptions do not necessarily
hold for all expression data; we found that the distribution of the
noise is Gaussian to a good approximation, and in our analytical
calculations we use the same variance for all genes, but this
variance has to be estimated for each experiment from the
measured data.

The Distribution of the True Correlations,q(Zt), Is Another Important
Factor That Affects the Diversity of the PGL. When the training set
changes, the measured Z of each gene changes (by the noise
described above). As a result, genes will move in and out of the
interval that contains the NTOP highest-ranked ones. Higher
density of genes in this interval increases the sensitivity (to noise)
of a top gene’s rank, resulting in a more unstable PGL. We
estimate Vt, the variance of q(Zt), from the data, as described
below, and for the analytic calculation approximate q(Zt) by a
Gaussian of variance Vt and mean zero.

Analytical Calculation. Here we present only an outline of the
method; a concise description is in Supporting Text and also Figs.
4–6, which are published as supporting information on the
PNAS web site. We do review here the assumptions that are
made about the expression data and the approximations taken
to carry out the calculation.

¶Actually, the absolute values !C! matter for ranking genes, because negative correlation is
as informative as positive.

$Ct corresponds to measuring C over an infinite number of samples (here, over all of the
early discovery cancer patients in the world). Obviously, the numbers Ct are not known, but
they exist.

Fig. 3. The typical overlap f*n as a function of the number of samples, for the six different data sets (! " 0.012 was used). All curves except lung cancer (3) were
produced using the analytical results. Because no agreement was found between simulation and analytical results for lung cancer (3), this curve was produced
using extrapolation of simulation results (see Materials and Methods). Numbers in parentheses refer to the reference from which the data were taken.
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Assumption 1. The distributions of the measured Z values are
Gaussian, centered for each gene around its Zt.

Assumption 2. The variance 'n
2 is the same for all genes.

Assumption 3. The noise variables Z & Zt are independent (i.e.,
uncorrelated noise for different genes).

Assumption 4. q(Zt), the distribution of the true correlations, can be
approximated by a Gaussian with variance Vt. This assumption is
easily generalized to represent q(Zt) as a mixture of Gaussians.

Under these assumptions, we can write down an expression for
Pn,!( f), which reflects a process of (i) drawing Ng independent true
correlations Zt from the distribution q(Zt), (ii) submitting each to a
Gaussian noise of variance 'n

2, and (iii) identifying the !Ng top
genes. Submitting the Ng true values to another realization of the
noise, we obtain another list of !Ng genes. Note that for finite n the
lists are expected to be different because of noise (nonvanishing 'n

2).
The probability to obtain an overlap f between two PGLs, Pn,!( f),
is given by

Pn,!#f$ #
1

Nr%
0

+

dx1dx2 &
h,l&,0,1-Ng

'%(&
j"1

Ng

hj ( NTOP)
!%( &

j"1

Ng

l j ( NTOP) %( &
j"1

Ng

hjl j ( fNTOP)
!*
j"1

Ng

.#1 ( hj$P#x1 , Ztj, 'n$ ) hj#1& P#x1, Ztj, 'n$$/

!*
k"1

Ng

.#1 ( lk$P#x2, Ztk, 'n$ ) lk#1&P#x2, Ztk, 'n$$/+,

[2]

where

P#x, Z, '$ # %
&x

x

dZm
1

#2$'
exp(& #Zm ( Z$2

2'2 ) ,

%(.) is the Kronecker delta, Nr is a normalization factor, and Ztj is
the true correlation of the jth gene with outcome. h " (h1, . . . , hNg)
and l " (l1, . . . , hNg) are binary vectors of size Ng whose nonzero
elements correspond to the genes included in the measured NTOP
of the first and the second realizations, respectively.

Approximation: 1"Ng expansion: By using mathematical manip-
ulations, we represent Eq. 2 as a multivariate integral over Ng
variables and calculate it using saddle-point integration and expan-
sion (to first order) in 1"Ng, a technique widely used in theoretical
physics (27, 28). We have tested and found this to be an excellent
approximation, as expected (because Ng 00 1"! ! 100).

Some single-variable integrations have to be done numerically
to obtain the final result, Eq. 1, i.e., that Pn,!( f ) is a Gaussian,
with mean f*n and variance 'n

2 that we know how to calculate on
the basis of available data (see Supporting Text).

Derivation of the Variances 'n
2 and Vt from Real Data. As mentioned

above, the two major components that affect Pn,!( f ) are q(Zt),
the probability distribution of the true Z values, and the noise
variance 'n

2. Yet, for real data sets, one knows only the Ng
measured Z values, obtained for each of the Ng genes on the basis
of their expression levels in n samples, n " Ns. Hence, we have
access to the measured probability distribution qn(Z), and to the

expression data, from which we have to reconstruct the true
distribution q(Zt) and the variance of the noise, 'n

2.
If the noises of the different genes are identical independent

Gaussian random variables, the measured qn(Z) is obtained from
the true one by adding noise to each Zt, yielding

var.qn#Z$/ # Vt ) 'n
2 . [3]

To determine 'n
2 and Vt, we randomly select from the full

available set of Ns samples, 200 training sets of n samples. For each
training set, we calculate the Z values of all genes, and the variance
of the resulting ‘‘measured’’ distribution. Thus, we end up with 200
variances obtained from the 200 training sets of n samples. Denote
by V(n) the average of these 200 measured variances; this value is
our estimate of var[qm(Z)] obtained for n samples. Repeating this
procedure for n " n0, . . . , Ns yields a series of variances V(n).
Because the noise is due to the finite number n of samples in a
training set, the variance of the noise approaches zero as n 3 +;
hence, extrapolation of V(n) to n " + yields our estimate of Vt.

Motivated by the form 'n
2 " 1"(n & 3) given by Fisher (25, 26),

we fit the measured V(n) to

V#n$ , a!#n ( 3$b ) c, [4]

where b 1 0, and hence Vt " c. We see from Eqs. 3 and 4 that
if the noise is uncorrelated, a!(n & 3)b " 'n

2. Indeed, we get for
most data sets a ! 1 and b ! &1 (see Table 2, which is published
as supporting information on the PNAS web site). Note that our
analytical calculation assumes uncorrelated noise. To test this
assumption, we estimate the variance of the noise in an inde-
pendent, more direct way (see below); deviation of this estimate,
'̂n

2, from a!(n & 3)b implies that the noise is correlated, and
Assumption 3 of our analytical method does not hold. We claim
that when this assumption breaks down, by setting

'n
2 # a!#n ( 3$b, [5]

we create an ‘‘effective problem’’ with uncorrelated noise, which
provides a good approximation to the original problem. To prove
our claim we used Eq. 5 to get our analytical prediction of f as
a function of n. Comparison with simulations (see below) reveals
good agreement, which supports our claim.

Simulations to Measure the Distribution of f. To perform these
simulations, we created a model that enables us to generate an
unlimited number of samples. The motivation for generating
the samples in this particular way is described in Supporting
Text. Simulations were performed by measuring, for each gene
i, the mean and variance of its expression values, first over all
good prognosis samples, yielding *g(i) and 'g(i), and then over
all poor prognosis samples, yielding *p(i) and 'p(i). These
means and variances were used to create, for each gene, two
Gaussians, G(*g(i), 'g(i)) and G(*p(i), 'p(i)), approximating,
for n " Ns, the probability distribution of the gene expression
over the good- and poor-prognosis samples, respectively. Note
that the true distributions were those corresponding to n " +.
Therefore, the aforementioned Gaussians had to be rescaled
to approximate the true distributions. This rescaling was done
by adjusting the difference between the means of each pair of
Gaussians, *g(i) & *p(i), so that the resulting distribution of
Z values would fit the true one (see details in Supporting Text).
The ultimate set of Ng pairs of Gaussians was used to create
artificial good- and poor-prognosis samples in the following
way. An artificial poor (good) prognosis patient was generated
by drawing Ng gene expression values from the Ng Gaussians
of the poor (good) prognosis population. In this way, we were
able to generate an unlimited number of samples (training
cohorts), which allowed us to obtain simulation results for any
desired n. We generated the PGL of a given training cohort of
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n samples by calculating for each gene its Z, ranking the genes
according to this score and selecting the !Ng top-ranking genes
as members of the PGL. We repeated this procedure for 1,000
different cohorts, ending up with 1,000 PGLs. We then
calculated the overlap f between 500 independent pairs of
PGLs to obtain the distribution of f.

Independent Estimate of the Noise. To test directly the validity of
Assumption 2, an independent estimate of the noise was obtained
by randomly drawing 100 cohorts of n samples (see Simulations
to Measure the Distribution of f ) and for each gene measuring Z
for every cohort. We then calculated the variance of these 100
values of Z and averaged it over all genes. The result is our
independent estimate '̂n

2 (see Fig. 5).

Extrapolation. By using the data of a particular experiment, we
determined Pn,!( f) analytically and by simulations. The advantages

of the analytic method are obvious; the disadvantage is that the
calculation relies on the validity of certain assumptions, which need
to be tested for each data set. Discrepancy between the analytic
results and simulations (that are based on the data) indicates that
some of the assumptions do not hold; in such a case we rely on the
simulations, which are extrapolated to the regime (e.g., number of
training samples n) of interest, which usually lies beyond the current
experiment’s range. To extrapolate simulation results, the analytical
function was multiplied by the factor that yielded the best fit to the
simulation curve.
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