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Shi Yi Yue
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Building a QSAR model of a new biological target for which few screening data are available is a statistical
challenge. However, the new target may be part of a bigger family, for which we have more screening data.
Collaborative filtering or, more generally, multi-task learning, is a machine learning approach that improves
the generalization performance of an algorithm by using information from related tasks as an inductive
bias. We use collaborative filtering techniques for building predictive models that link multiple targets to
multiple examples. The more commonalities between the targets, the better the multi-target model that can
be built. We show an example of a multi-target neural network that can use family information to produce
a predictive model of an undersampled target. We evaluate JRank, a kernel-based method designed for
collaborative filtering. We show their performance on compound prioritization for an HTS campaign and
the underlying shared representation between targets. JRank outperformed the neural network both in the
single- and multi-target models.

1. INTRODUCTION

The developments of combinatorial chemistry and high
throughput screening (HTS) provide the pharmaceutical
industry with a great opportunity to filter millions of
compounds in a short time for a given target. HTS data can
be used to generate virtual screening models, which in turn,
can be used to further virtually screen even more com-
pounds.1

Many aspects of this process use machine learning
techniques. Standard machine learning considers a single
learning task at a time. For example, learning to predictY
from X using a set of pairs (xi, yi). Instead, humans learn a
variety of tasks, and it is believed that there are inter-
actions between these learning processes, which are fruitful
because of shared underlying mechanisms. It has already
been shown theoretically and practically2-4 that taking into
account multiple related tasks can be greatly beneficial to
generalization, if the tasks are sufficiently related. [A
necessary and sufficient condition for task relatedness is
roughly the following: there exists a simplersperhaps in
the Kolmogorov complexity5 sensesmodel that describes the
joint distribution of inputs, outputs, and task than the separate
models and inputs and outputs that one would obtain
separeately for each task.] From a neural network perspective,
this is due to a product increase of examples corresponding
to a summation increase in targets. Of course, if the added
targets are unrelated, the generalization power will decrease.

Interestingly, such multiple related tasks do exist in the
pharmaceutical industry, where they are commonly called a
target class(e.g., kinases, G-protein coupled receptors, and
maybe ion channels). These target classes have some
common features. First, they represent some significant
portion of a therapeutic area. Some members of these target
classes have been well studied. Second, targets within each
of these target classes share a common structural frame.
Members of each target class may have a similar binding
site. Third, with the development of genomic projects, many
new members of these target classes have been identified,
though the biological roles of these newcomers (so-called
orphans) are still unknown. The challenge we are facing here
is how to transfer our knowledge from known targets to
orphans. The traditional statistical approach considers a
different machine learning task for each member of a given
class. Our objective is to compare and evaluate methods to
take advantage of the commonalities between the different
tasks within a target class. In addition, we should also
develop a solution that allows us to estimate QSAR models
for orphans that have not yet been tested or for which there
are very little available data.

We emphasize here that the goal of our approach is not
to create the best global predictive model for a collection of
accurately known targets. Here, we assume that we do not
know the structure of the targets because we want to
generalize to a new unknown target. We have thus developed
a practical approach where very little prior knowledge of
the target is needed. We acknowledge that a full multi-target
model would need a much higher level of description, which
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would need many more target-ligand pairs than our data
set. We also underline that we are less interested in building
the best model for a single target than building a model for
which we lack sufficient data.

For this paper, we have studied a set of compounds which
have been used to screen a set of related targets in
AstraZeneca’s HTS campaigns. We first built up the models
of single targets and then selected some of those most related
targets to perform multiple target analysis. To improve
prediction power, we also added descriptors of the target
(i.e., the task) as side information to help in building the
multi-task model. We compared the results from two different
schemes, both seen as collaborative filtering models: a multi-
task neural network and a kernel-based ranking algorithm
called JRank. The analysis of the results allows to conclude
on the performance of these two algorithms and on the
contributions of the target descriptors.

2. METHODOLOGY

To test the efficiency of a multi-target scenario, we need
a framework that would provide an estimate of target
“relatedness”. Such a framework can then be used to decide
whether multi-target learning makes sense in the first place
before proceeding to the actual HTS campaign for a new
target.

The framework that we devised works as follows. Assume
that we have a set of targets from the same family with
enough screening data for each target. For each of them, we
construct two data sets:

1. A training set that contains the screening data for all
the targets except the current oneplus a fixed small
percentage of the screening data for the current target.

2. A testing set that contains the rest of the screening data
for the current target.

By training an algorithm on the first data set and testing
on the second one and then comparing the performance of
this algorithm with the performance of some other algorithm
that does standard, single-target, QSAR modeling (with the
training set containing just the fixed small percentage of the
screening data for the current target), we can see whether
adding the screening data for the rest of the targets improves
the results.

The reasoning behind choosing a small percentage is
simpleswe want an algorithm to generalize well given a
new target, for which we have not enough screening data,
and that is a quite realistic scenario. A standard single-target
QSAR model that is trained on a small data set will most
likely have a poor performance; ideally, an algorithm that
does multi-target learning (using the above-mentioned train-
ing set) should perform no worse than such a single-target
model.

We call the procedure of making the above data sets
“undersampling”. Our intention is to try to see the effects
of undersampling on both multi-target and single-target data
at several fixed percentages (which we sometimes call
“undersampling fractions”) of the screening data for the
targets in our data set.

One of the assumptions behind our experiments is that
the targets are related in some way that is encoded in our
data sets. Our goal is to obtain multi-target learning

procedures that will be at least as good as single-target
learning and that will outperform single-target learning for
small undersampling fractions. We want to test the hypothesis
that such a procedure can be successful in the context of
multi-target HTS data.

We present two machine learning methods that we will
use to test our hypotheses. The first is a custom-built neural
network (which we refer to as a “Multi-Target Neural
Network” or a “Multi-Task Neural Network”) and the second
is a kernel-based collaborative filtering algorithm called
JRank. Both methods can deal with both single-target and
multi-target learning and are, therefore, quite suitable for
testing our hypotheses.

The methods take advantage of prior knowledge about the
receptors. The idea is to choose a representation of each
receptor and to train a model to predict a single scalar (e.g.,
probability of percentage inhibition) given both the repre-
sentation of the compound and the representation of the target
receptor protein. Because the representation of receptors is
generic (and can accommodate receptors other than those
for which assay results are available), this approach can in
principle generalize to new receptors.

2.1. Multi-Task Neural Network. The approach of
modeling more than one target at a time falls into a broad
category of machine learning approaches, called multi-task
learning.6 Such techniques were first developed in the context
of multi-layer neural networks, which were modified so as
to allow the process ofinductiVe transfer(from one modeling
task to another) to take place. The simplest of such
modifications would be increasing the number of output units
to be equal to the number of tasks, but various other
techniques exist that allowbiasingthe modeling process of
one task by the other tasks.4,6

In our case, the basic architecture of the neural network
model (Figure 1) has two hidden layers.7,8 The first hidden
layer is committed to biological descriptors, to discover a
low-dimensional embedding for targets.

In one version (eq 1), we use in input of the first layer a
one-hot variable (a vector full of zeros except for a 1 at
positioni for coding symboli) indicating the target protein.
The second layer receives the output of the first layer and
the chemical descriptors of the compounds. This architecture
will learn an individual predictive model for each target, but
the first layer will contain information about the relatedness
of targets in regard to their ligand activity:

whereei is the one-hot variable defined above. In another
version (eq 2), we use threading-based target descriptors in
the first layer. The target model is a set of 25 binding site
pocket fingerprints. Here we learn an indirect predictive

Figure 1. Multi-task neural network architecture.

P(active|x, i) ) sigmoid(V tanh(Ax + B tanh(Wei))) (1)
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model for each target:

The parameters of the neural network (V, A, B, W) or (V,
A, B, C) are tuned by stochastic gradient ascent9 on the
average log-likelihood of the training set (average of the
logarithm of the above probabilities). The number of hidden
units (e.g., dimension ofA) and optimization parameters are
selected using a validation set disjoint from the test set.

2.2. JRank.In this section, we present a machine learning
algorithm that was proposed for collaborative filtering
applications. We describe the way it can be applied for the
problem of multi-target QSAR and provide a pseudo-code
as well as general intuitions behind the algorithm.

2.2.1. Collaborative Filtering and Multi-Task Learning.
Collaborative filtering10,11 has its roots in recommender
systems applications, whereby automated recommendations
are produced. Such recommendations are based on similari-
ties between the preferences of different users of the system.
Typical collaborative filtering data sets usually include some
form of demographic data about the users of the system and/
or some basic facts about the items (movies, songs, etc.) that
are rated. Evidently, such data could be useful in im-
proving the generalization performance of the algorithm,
especially when for some user or item there is only a small
number of ratings available. Systems that make use of such
extra data have been termed ascontent-based filtering12

algorithms.
The parallel with multi-target QSAR can be made almost

immediately: the “users” are the biological targets, the
“items” are the molecular compounds (or vice-versa), and
the “ratings” are the levels of activity of the given compound
for a given target. The descriptors or the features of the
targets and of the compounds could be anything that might
help us in uncovering relationships both between the targets
and the items.

Ideally, one is interested in using all the data that is
availablesboth ratings and user/item descriptorsssuch that
the algorithm could exploit to the maximum the relationships
between the users, items and the ratings. Such an algorithm
would be a combination of collaborative and content-based
filtering. Such a scenario can be described in a more general
framework of multi-task learning, which was presented
above. We consider learning the preferences of one user,
given the user’s past ratings, and the features of the items,
as one “task”. For a given number of users (and, possibly,
some features associated with them), we could combine the
“tasks” and, perhaps, profit from this combination.

Getting back to our QSAR setting, we can easily notice
that a standard one-target QSAR can be seen as a (modeling)
“task” and that multi-target QSAR is just a form of multi-
task learning. The collaborative filtering technique that we
tested in such a setting is the so-called JRank kernel
perceptron algorithm.13 It is an algorithm that performs
ordinal regression (i.e., our “ratings” are ordinal values, and
we are not modeling their absolute values but their order;
see section 2.2.3) and that is an extension (in both the
collaborative filtering sense and in the sense that uses kernels)
of the PRank algorithm.14

2.2.2. Unifying Target and Compound Features.The
algorithm makes use of kernels (similarity measures). These

are used to encode similarities between items (compounds)
and between users (protein targets). These two types of
similarities need to be combined into a function that
computes a “similarity measure” between user-item pairs.
Such a measure can then be used to exploit efficiently the
user and item features and to try to uncover a relationship
between user-item (or target-compound) pairs and the
activity rates (the ultimate goal of a QSAR technique).

The underlying structure of the algorithm is very similar
to the original perceptron,15 which means that it has several
useful characteristics such as its simplicity and its online
nature. It can also take advantage of Mercer kernels16

(including custom-built kernels for collaborative filtering
problems)sof the type used in Support Vector Machine
algorithms16sin order to find a separating hyperplane in a
high-dimensional space and can be used, therefore, for
finding highly nonlinear solutions (such an extension of the
perceptron algorithm is typically referred to as thekernel
perceptron17).

Below we follow the notation and description of JRank
from reference 13. The basic idea of the algorithm is to unify
the target and compound features in a joint feature space in
which distances (inner products) can be computed easily.
We could then try to find a mapΨ that takes elements (t, c)
into Ψ(t, c) ∈RD, where t is the vector of target features
andc is the vector of compound features for a given target-
compound pair (withD being thespossibly infinites
dimension of the resulting combined space). Such a map
would allow us to compute similarities betweenpairs of
targets/compounds and would allow us to generalize across
both target features and compound features at the same time.

Let u be the set of targets,C be the set of compounds,
and the map beΨ: u × C f RD, which gives a
D-dimensional feature vector for each target-compound pair.
Our goal is then to choose a function (which should be
optimal in some sense) from the set of functionsF, which
are linear inΨ, i.e.

(whereT is the transpose). This function would encode (in
a linear fashion) the relationship between the features of pairs
of targets and compounds and the respective activity levels.

The output of such a function is binned via a set of
adaptive thresholdsθ ∈ Rk, wherek is the number of activity
levels we are interested in (θk ) +∞ for convenience). This
is done in order to predict the activity level from a target-
compound pair: by simply selecting the number of the bin
whereF(t, c; w) falls into. The prediction functionf (t, c;
w, θ) depends straightforwardly onθ: it outputs a leveli
associated with the interval [θi, θi+1) which containsF(t, c;
w).

Note thatΨ(t, c) from eq 3 is not computed directly (for
reasons that will become clearer a bit later) and that our
algorithm is only using dot products in the feature space
defined byΨ. The dot product between the application of
Ψ on two pairs is referred to as akernel. More precisely,
for two given pairs (t, c) and (t′, c′), we define the kernel as

As shown in refs 14 and 16, one can rewrite eq 3
via the kernel defined in eq 4 as follows, thanks to

P(active|x, i, T) ) sigmoid(V tanh(Ax + B tanh(CTei))) (2)

F(t, c; w) ) Ψ(t, c)T·w (3)

K((t, c),(t′, c′)) ) Ψ(t, c)T·Ψ(t′, c′) (4)
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the Representer Theorem:

Thus if we can compute efficiently the dot product from eq
4, then we do not need to explicitly compute the feature
vectors given byΨ. This is important because the computa-
tion of Ψ may be impractical if we want this nonlinear
transformation to be rich enough: in practice we choose not
Ψ but the kernelK, and for many choices of interest forK,
the correspondingΨ is infinite-dimensional. The only
constraint on the choice ofK is that it must be positive semi-
definite. It means that for any finite setP of pairs pi, the
Gram matrixG associated withP must not have any negative
eigenvalues. The entry (i, j) of G is Gij ) K(si, sj) with si ∈
P andsj ∈ P.

In our case, we must define a kernel over target-
compound pairs. We take a bottom-up approach, by first
defining similarity measures between pairs of targets, then
between pairs of compounds, and then combining the two
measures into a kernel function of the desired type. Thus,
we use the following kernels:

1. an identity kernelK u
id, which returns one if the two

targets have the same feature vector and zero otherwise,
2. a Gaussian kernelK u

ga (e.g., see ref 16),
3. a correlation kernelK u

co, which computes the Pearson
correlation coefficient, which is a dot-product between the
normalized activity level vectors corresponding to each target
(over the users for which activity is measured on both
targets),

4. a quadratic kernelK u
qu, which isK u

co‚K u
co (it has the

necessary property of always being positive semi-definite).
So far, we have not mentioned a way of combining the

kernels. If we were to deal with only target features (or only
with the compound features), combining the kernels could
be done by simple addition, since the sum of positive semi-
definite matrices is also positive semi-definite:

We can do exactly the same for the kernel for the compound
features:

If we are interested in combiningK u andK C, we could
use the tensor product to getK((t, c), (t′, c′)). However, we
do not (and cannot, for any practical purpose, because of
the infinite dimension vectors) compute this product in the
spaces defined by the respectiveΨ values. This is because
it can be computed simply as

which is a handy shortcut that allows for great savings in
the runtime of the algorithm.

Given this kernel and the definition of theF function that
is to be learned (from eq 5), we can now define the kernel
perceptron algorithm that will find both an optimal set of
coefficientsR(t,c) (∀ (t, c) ∈u × C) and a matching set of
adaptive thresholdsθ (used for binningF).

2.2.3. The Algorithm. As previously mentioned, JRank
works in the framework ofordinal regression. This means
that we define an order among the activity levels and that
we do not interpret their numerical value. This is appropriate
for both binary classification problemsswhere we would
interpret the two activity levels as “more active” and “less
active”sand for multi-class/regression problems, where the
transformation of the numerical values to an ordinal scale
poses no problem.

Algorithm 1, proposed in ref 13, is a straightforward

extension to the kernel perceptron algorithm.17 As in ref 14,
JRank projects each instance from our data set onto the real
line. Each ranking is then associated with a distinct sub-
interval of the reals. During learning these sub-intervals are
updated: if and when the current set of parameters predicts
an incorrect sub-interval, the parameters are updated such
that the new predicted rank is closer to the sub-interval
(and vice-versa, by modifying the boundaries of the sub-
intervals).

A(t,c) is the activity level observed for pair (t, c). In the
formulation it is also understood that we have access to the
set of all the data triplets (t, c, A(t,c)). The sparse parameter
matrix R has nonzero entriesR(t,c) only for the observed pair
(t,c). It can be used for prediction via eq 5. A set of
thresholds/binsθi (one per ordinal value) is also learned. The
algorithm runs through the data set inNit stages/iterations
and updatesR(t,c) and updates the thresholds if it predicts an
incorrect activity level. The algorithm assumes that the ranks
are ordered fromi ) 1 to k, but it can be easily modified to
accommodate other types of ranks.

The updates ofR(t,c) follow the prediction error (the
difference between the predicted rank and the actual rank,
also called theranking loss), i.e., they follow the gradient,
while the thresholdsθi are updated so that the value of the
F function becomes closer to the correct bin at the next
iteration.

The algorithm has two hyper-parameters:
1. The width of the Gaussian kernelσ. Ideally, there should

be one for each (target and compound) kernel.
2. The number of iterationsNit.
It is worth noting that the algorithm functions correctly

and as expected whenk ) 2 (i.e., it learns to perform binary

F(t, c; R) ) ∑
(t′,c′)

R(t′,c′)K((t, c), (t′, c′)) (5)

Ku ) K u
id + K u

ga + K u
co + K u

qu (6)

KC ) K C
id + K C

ga + K C
co + K C

qu (7)

K((t, c), (t′, c′)) ) K u (t, t′)·KC (c, c′) (8)
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classification). The algorithm reduces to simple single-task
learning if the data set has only one target (R becomes a
vector)swhich is quite handy because it allows us to
compare directly single-task learning with multi-task learn-
ing.

2.3. Data Sets and Descriptors.All the ligands used in
this study were made in AstraZeneca R&D Montreal. They
all satisfy the Lipinskirule of fiVe. Figure 2 shows the
number of compounds for which the screening data was
available for each target. We detailed the active and inactive
compounds. Here, active compounds corresponds to any
value of inhibition higher than 0.

We then computed descriptors with MOE (version
2004.03).18 The set of 469 descriptors range from atom
frequencies19,20 and topological indices21-24 to 3D surface
area descriptors. We also computed MACCS,25 Randic,26 and
EState27 descriptors that are available in the MOE package.
The numerical values were normalized.

Several receptor-binding fingerprints have been published.
The binding pocket fingerprints we used in this work were
based on our observations and some assumptions. The first
assumption is that all the targets in our study share a similar
binding position. The second assumption is that the amino
acids of the targets in binding sites have three native
interactions between their side chains: ionic, polar, and
hydrophobic. When a ligand interacts in the binding site, it
will break some of the native interactions and build up new,
ligand involved (mediate) interactions. Based on the positions
(at the binding site), the type of the interactions, and the
variations amount the targets in this study, 14 bins were
identified and used. Each bin represents a type of the
interaction at the given position of the binding pocket.
Adding, reducing, or changing the targets will alternate the
binding pocket fingerprints.

Two preconditions should be satisfied for this type of
studies. First, the ligands have not been designed to improve
their selectivity, and/or second, the recognition region of the
target is away from the binding region. To accommodate
our study, we did not intend to further detail the differences
between the targets, which would have been possible with
other protein fingerprints.28 As a final step, we selected the
most varying receptor descriptors to match the small number
of targets can studied.

3. RESULTS

In this section, we present suitable performance measures
for the algorithms that we implemented as well as results
that can be used for verifying our hypotheses.

3.1. Direct Activity Correlation. Before computing the
relationships between different biological targets, we trans-
form the biological activity in a bi-class target using a 20%
inhibition cutoff. We can then compute the pairwise linear
correlation of activity between each target for shared
chemical compounds in the data set. The linear correlation
will get higher when two targets have the same active and
inactive compounds.

Figure 3 shows the number of compounds for which we
have pairwise screening information. As can be seen, many
pairs' shared number of compounds are small. This fact has
many implications in the results shown afterward. It should
be noted that the choices of compounds for the screening
introduce some unnecessary biases in a multi-target scheme.

Figure 4 shows the actual pairwise linear correlation of
biological activity. From this, we picked seven targets in the
G1* family, for which cross-correlations were the strongest.
These seven targets (A, D, F, H, I, S, and U) will constitute
the main focus of interest for the undersampling experiments.

We also computed pairedt-test directly on the percentage
of inhibition of paired compounds. This is a more robust

Figure 2. Number of compounds available for each target,
classified as actives or inactives. Figure 3. Number of compounds shared by each pair, in

logarithmic scale.

Figure 4. Pairwise correlation of biological activity.
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measure of relatedness between biological activity. Table 1
details the best results. Based on the score, we constructed
three ensemble of targets for future experiments: D, F, O;
D, F, I, J, O, Q, X; and A, B, D, F, I, J, K, L, O, Q, W, X.

3.2. Undersampling Scheme.To recreate an environment
where we lack sufficient number of examples to learn a
predictive model, we artificially deplete a data set, focusing
on a target, as explained in section 2. Following algorithm
2, we focused on the seven most correlated target in the G1

family. Algorithm 2 describes a simple method for testing
the efficiency of a certain multi-task learning algorithm. By
artificially depleting the data set used for training and
validation of examples from a certain task and by varying
the level of depletion, we can obtain a relatively complete
picture of the performance of such an algorithm given
different real-life scenarios. Such a scheme also allows for
direct comparisons between multi-task learning and single-
task learning.

3.3. Hyper-Parameter Selection.To assess the generali-
zation performance of the algorithms presented, we need to
select a combination of hyper-parameters that gives an
optimal performance on a validation set (which is indepen-
dent from the training set). Given this combination of hyper-
parameters, we can get an unbiased estimate of the gener-
alization ability of the algorithms by testing the models on
a testing set, that is independent from both the training and
validation sets.

In the case of the neural network, such model selection
procedures have been performed for parameters such as the
number of hidden units, the weight decay, the learning rate,
etc. Early stopping on the number of epochs (by computing
the validation error at each step and stopping when it starts
to increase) has also been performed.

In the case of JRank, the width of the Gaussian kernels
(the Gaussian kernels for compounds and the one for the
targets used the sameσ) was computed by the above
validation procedure, whereas early stopping was used for
finding an optimalNit.

3.4. Performance Measures.We use the lift to assess
the performance of the models. The lift measures how much

better than random we can order the compounds from active
to inactive. We do this by testing a model on an independent
test set and ordering (in decreasing order) the molecules by
the scores that we obtain for each of them. We select a subset
of this ordered list (from the highest ranking molecule
downward) and compute ratio of actives to the total number
of compounds in this subset. The higher this ratio, the better
is our algorithm at predicting which compounds are active.

Let a/n be the average fraction of actives in our database,
with a the total number of actives andn the total number of
compounds. In the selected subset,as is the number of actives
andns is the number of compounds in that subset. Then we
compute the lift by

In effect, it tells us how much better than chance our
algorithm performs. The lift that we compute is a single point
in an enrichment curve that corresponds roughly to an ROC
curve.29 The enrichment curve tracks the LIFT values across
different sizes of the subsets and provides a comprehensive
picture of the generalization capabilities of a learning
algorithm; it can also be transformed straightforwardly into
an ROC curve.30 Here, the subset is 30% of the database,
and we multiply the lift values by 100 to improve readability.

3.5. Multi-Task Neural Network. In this section, we
present the results obtained with the multi-task neural
network.

Table 1. Pairedt-Test of Biological Activity

pair of targets score

D-F 0.954
F-O 0.899
Q-X 0.893
I-J 0.845
K-L 0.814
A-W 0.791
B-X 0.718
L-O 0.526
A-O 0.509

Table 2. Multi-Target NNet Learning without Target Descriptorsa

target score 24 targets 12 targets 7 targets 3 targets

PLS 181 172 190 189
global 179 171 195 188
A 108 138
B 117 120
D 121 136 138 165
F 112 150 134 176
I 173 154 173
J 125 133 172
K 91 110
L 125 146
O 129 125 141 153
Q 127 125 153
W 110 122
X 123 136 141

a Lift over 30% of data.

Table 3. Multi-Target NNet Learning with Target Descriptorsa

target score 24 targets 12 targets 7 targets 3 targets

PLS 180 173 190 189
global 189 175 195 193
A 165 153
B 128 126
D 159 131 135 165
F 173 152 141 191
I 170 173 175
J 145 133 178
K 122 112
L 168 152
O 132 128 140 152
Q 127 129 153
W 112 131
X 137 129 143

a Lift over 30% of data.

lift )
as/ns

a/n
(9)
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3.5.1. Learning without Target Descriptors. Table 2
shows specific target performance of multi-target learning
on either all the 24 G1* targets or the three ensemble of
correlated targets, using no target descriptors. In this case, a
double cross-validation scheme was used for performance

measurement. We divide the entire data set into two sets:
one that will be used for training and validation and another
for testing. We select an optimal set of hyper-parameters by
performing (a usually 10-fold) cross-validation on the first
set and an estimate of the generalization error is computed

Figure 5. Effects of undersampling on NNet’s performance. Measured on the G1A and G1D targets in three scenarios: multi-target
learning with target descriptors, multi-target learning without target descriptors, and single-target learning.

Figure 6. Effects of undersampling on NNet’s performance. Measured on the G1F and G1H targets in three scenarios: multi-target learning
with target descriptors, multi-target learning without target descriptors, and single-target learning.

Figure 7. Effects of undersampling on NNet’s performance. Measured on the G1I and G1S targets in three scenarios: multi-target learning
with target descriptors, multi-target learning without target descriptors, and single-target learning.
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on the second set using these optimal hyper-parameters. This
procedure is repeated several times to provide variances of
the generalization error.

The PLS31 and global lift are computed by regrouping all
the actives together in a single active class. When checking

individual target performance, it deteriorates going from 3
to 24 targets. Without target descriptors, the model cannot
find a shared representation and solve conflicting examples.
It is also harder to model the remaining 12 targets not in the
subgroups, because they are farther from any other targets
(see Table 1).

3.5.2. Learning with Target Descriptors.Table 3 shows
specific target performance of multi-target learning with
biological target descriptors on the 24 targets or 3 subgroups
of targets (the same cross-validation scheme as in Section
3.5.1 is used).

By comparing Tables 2 and 3, we notice that the global
lift rises substantially when using target descriptors. The
neural network learns a shared representation from the group
of tasks that helps the undersampled task.

Table 3 also shows a well-shaped performance as we add
new targets. There are two factors that affect the performance
in this case. First, the individual choices of targets, when
small, has a direct impact on generalization. For instance,
the choice of three other targets would yield a very different
individual performance. Second, as we add more targets, the
shared representation theory picks up. As such, a majority
of individual targets get better prediction as we add more to
the 12 targets. Having 8 out of 12 targets showing this
behavior, despite the crude target descriptors we use, is a

Figure 8. Effects of undersampling on NNet’s performance.
Measured on the G1U target in three scenarios: multi-target learning
with target descriptors, multi-target learning without target descrip-
tors, and single-target learning.

Figure 9. Effects of undersampling on JRank’s performance. Measured on the G1A and G1D targets in three scenarios: multi-target
learning with target descriptors, multi-target learning without target descriptors, and single-target learning.

Figure 10. Effects of undersampling on JRank’s performance. Measured on the G1F and G1H targets in three scenarios: multi-target
learning with target descriptors, multi-target learning without target descriptors, and single-target learning.
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remarkable observation. This result is in line with collabora-
tive filtering expectations. It has supported our research on
multi-target learning.

3.5.3. Undersampled Learning with Target Descriptors.
Given the positive results with target descriptors, we tried
to measure the performance of the network with the
undersampling method. Figures 5-8 show the details of
undersampling the seven most correlated targets with the
neural network. We test our algorithm with and without target
descriptors and compare with single target learning. We see
that the lift rises quickly when doing single target learning
and that multi-target learning without target descriptors lags
far behind. Depending on the target, multi-target learning
with target descriptors falls in between. For G1I, we even
see a slight range of undersampling where multi-target
learning beats single target learning.

3.6. JRank.Encouraged by the results obtained with the
multi-target neural network, we performed the same type of
experiments with JRank. We found that using a combination
of identity and Gaussian kernels produced the best results.
The correlation kernel did not seem to capture too well the
similarities between pairs of targets or pairs of compounds
(a possible reason is that the simple linear correlation

coefficients between either targets or compounds are not
sufficient to capture any similarity measure between them).

Figures 9-12 contain the results obtained with this
algorithm. This time it seems that in most of the cases multi-
target learning with target descriptors is at least as good as
single-target learning or multi-target learning without de-
scriptors and that, in one case (Figure 9), it seems to perform
better than either of them.

By comparing Figures 5-8 with Figures 9-12 and by
analyzing Table 4 (which contains lift values at the 0.8
undersampling fraction for each algorithm, corresponding
roughly to a 5-fold cross-validation result), we clearly see
that JRank scores much higher than the neural network on
the smaller fraction of undersampling. Clearly, JRank is to
be preferred in a multi-target setting. We also notice that
JRank performs quite well even in a simple single-target
scenario and therefore can be used in a stand-alone fashion.

4. DISCUSSION

Building a virtual screening model for a new target is a
difficult task. We developed a special kind of neural network
that used a collaborative filtering approach to address the
problem. We were disappointed by the poor results. We
nevertheless developed the current target descriptors, which
need a minimal knowledge of the 3D structure of the target.
These target descriptors helped to improve predictive per-
formance and suggested that adding new targets helped the
learning.

On the other hand, the receptor descriptors that we used
throughout our experiments are in a preliminary form and
we did not verify or optimize them extensively. Such

Figure 11. Effects of undersampling on JRank’s performance. Measured on the G1I and G1S targets in three scenarios: multi-target
learning with target descriptors, multi-target learning without target descriptors, and single-target learning.

Figure 12. Effects of undersampling on JRank’s performance.
Measured on the G1U target in three scenarios: multi-target learning
with target descriptors, multi-target learning without target descrip-
tors, and single-target learning.

Table 4. Comparison of Multi-Target NNet Learning with Target
Descriptors and JRanka

target score multi-target NNet JRank

A 183 196
D 159 179
F 173 200
H 200 201
I 170 154
S 264 265
U 79 137

a Lift over 30% of data.
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optimizations should take into account the ratio between the
number of features and the number of targets.

We then implemented and evaluated a kernel-based
algorithm, JRank, to address our multi-task problem. We
presented evidence that JRank is better than our neural
network architecture in both single and multi-task settings.
We also found that multi-task learning with JRank never
performs significantly worse than single task learning. This
result is markedly better than for our neural network
architecture.

It is quite clear that our work is not finished here: the
results of JRank (and, more frequently, the neural network
results) do not always clearly outperform single-target
learning and that might be a dis-incentive for using it.

5. CONCLUSIONS

In this paper, we have validated our hypotheses concerning
multi-target learning on a family of biological targets. We
have shown that, for a certain ensemble of targets, adding
more targets can markedly improve the generalization
performance of our algorithms. We have also shown a multi-
task learning algorithm whose generalization performance
is, on average, at least as good as the one of standard single-
target learning. Moreover, it seems that the target (receptor)
descriptors are quite important in improving the generaliza-
tion abilities of a multi-target algorithm.

We demonstrated the performance of JRank, a kernel
perceptron algorithm, in a scenario in which activity rates
have to be predicted for a target for which there is insufficient
screening data. JRank’s predictions in a multi-target setting
were at least as good as its predictions in a single-target
setting, and in some cases, they outperformed the single-
target results. This is a very encouraging result that validates
our general approach and calls for future work on refining
it. The goal here would be for JRank to beat single-target
models for a longer range of undersampling for all targets.
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