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We survey the recent activities of the Odyssée Laboratory in the area of

the application ofmathematics to the design ofmodels for studying brain

anatomy and function. We start with the problem of reconstructing

sources inMEG and EEG, and discuss the variational approach we have

developed for solving these inverse problems. Thismotivates the need for

geometric models of the head. We present a method for automatically

and accurately extracting surface meshes of several tissues of the head

from anatomical magnetic resonance (MR) images. Anatomical con-

nectivity can be extracted from diffusion tensor magnetic resonance

images but, in the current state of the technology, it must be preceded by

a robust estimation and regularization stage.We discuss our work based

on variational principles and show how the results can be used to track

fibers in the white matter (WM) as geodesics in some Riemannian space.

We then go to the statistical modeling of functional magnetic resonance

imaging (fMRI) signals from the viewpoint of their decomposition in a

pseudo-deterministic and stochastic part that we then use to perform

clustering of voxels in a way that is inspired by the theory of support

vector machines and in a way that is grounded in information theory.

Multimodal image matching is discussed next in the framework of

image statistics and partial differential equations (PDEs) with an eye

on registering fMRI to the anatomy. The paper ends with a discussion

of a new theory of random shapes that may prove useful in building

anatomical and functional atlases.
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Introduction

The Odyssée laboratory is interested in developing a

detailed understanding of the neural computations under-

lying human visual perception. This interest arises from

several motivations. One is the desire to participate in the

increase of basic knowledge regarding one of the most

sophisticated sensory modality that supports action and

reasoning, another one is the hope that this quest will

eventually lead to breakthroughs in the way we interact

with computers.

To model human visual perception, it is necessary to observe

humans while they perform the act of seeing. This can be achieved

by using such imaging or measurement techniques as magnetic

resonance imaging (MRI), MEG, EEG to make qualitative and

quantitative measurements of the changes in the state parameters of

some volunteers’ brains. These measurements can then be used to

support the design and the test of neural mathematical and

computational models of human visual perception. In this article,

we focus only on the part of the problem that consists in processing

the data that are produced by some of the previous imaging

modalities.

The theory of partial differential equations (PDEs) is central

to the source reconstruction problem in MEG and EEG, and to

our work with diffusion tensor magnetic resonance imaging (DT-

MRI); it is also the core of our curve and surface evolution

work as applied to segmentation and warping. Differential

geometry plays an important role because we are dealing with

spaces with a natural Riemannian structure, for example, the

white matter (WM) through the diffusion tensor or the cortical

surface. Many of these PDEs derive from energy functionals

through the calculus of variation as in our work on multimodal

image matching. Last but not least, statistics are crucial to

correctly take into account the immense variability of the signals

and the shapes that arises when one attempts to blookQ at the

brain.



Fig. 1. BEM reconstruction of somatosensory sources from MEG data (CTF

Omega 151-channel, Hopital de la Salpetriere, Paris).
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Source reconstruction in MEEG

MEG and EEG (commonly called MEEG) record noninva-

sively the electromagnetic field resulting from electrical activity

inside the brain. Their high time resolution (of the order of 1 ms)

makes these two modalities very valuable for the functional

analysis of the human brain. Their drawbacks are (1) a relatively

poor spatial resolution (compared to fMRI) and (2) the need for

solving a delicate inverse problem for localizing the electrical

activity inside the brain.

This inverse problem is driven by a forward model, which

computes the electromagnetic field outside the head from a known

electrical activity profile inside the brain. The quality of the

reconstruction greatly depends on the forward problem, whose

accuracy must be controlled with great care. This problem obeys

the rules of electromagnetic propagation under the quasi-static

approximation (because at frequencies of interest and at spatial

scales smaller than the head, inductive and capacitive effects can be

ignored). In this case, the Maxwell equations relate the potential V

to the sources Jp for tissues of conductivity r through

j rjV Þ ¼ jJp;
�

ð1Þ

with a vanishing Neumann boundary condition on the scalp. The

magnetic field can be computed from the potential, for example,

through the Biot–Savart equation.

Of course, a good geometrical and physical model of the head

is crucial to solve properly this equation. Our group relies on two

different mesh-based strategies: the boundary element method

(BEM) that describes the head as a set of nested surfaces

delimiting domains each with a uniform, isotropic conductivity;

the finite (volume) element method (FEM) that can assign a

different conductivity to each tessel. The meshes describing the

head are naturally subject dependent and must be computed

beforehand from physiological data via anatomic MRI segmenta-

tion. As the head is a very complex object, an accurate

geometrical description signifies handling a huge number of

geometrical elements, on which the solution is discretized, and

the resulting computations can only be solved via iterative

methods (rather than a direct matrix inversion) using leading-edge

numerical methods.

In our work, we use a distributed source model for the inverse

problem. This is notoriously ill posed due to the existence of

bsilent sourcesQ. Consequently, some constraints on the solution

must be added (minimum norm or minimum gradient solutions

are often chosen). The inverse problem is thus solved by

minimizing an energy term that is the sum of a data term and

a regularizing term taking the constraints into account. The

sources are iteratively updated by computing the gradient of the

energy. The computationally efficient way to compute the energy

gradient is to use the adjoint problem (Faugeras et al., 1999).

Note that, because the relationship (1) between the source term Jp
and the potential V is linear, the matrix that represents the adjoint

problem is simply the transpose of the matrix representing the

forward problem.

The BEM method takes advantage of the harmonicity of a

potential V satisfying Eq. (1) inside each compartment of

homogeneous conductivity. It uses the representation theorem to

reformulate the problem in terms of single-layer and double-layer

potentials defined on the interfaces between conductivities. It

requires only surface meshes, which are much easier to obtain than
volume meshes. A drawback in terms of numerical complexity is

that in the BEM the matrix representing the forward problem is

dense and requires a lot of memory to be computed and stored. To

alleviate this problem, we have introduced the fast multipole

method (FMM), an algorithm originally developed for N-body

gravitational field computations (Clerc et al., 2002). The FMM is a

multiresolution approach that approximates the electromagnetic

interaction between surface elements by performing multipole

expansions at coarse resolutions. It avoids matrix storage and

significantly reduces the computational burden of the matrix–

vector products: a matrix–vector product of dimension P is

performed in O(P log P) instead of O(P2). The computational

savings allow finer discretizations to be used, leading to more

accurate forward and inverse problem solutions.

Accuracy of the forward problem is also a major concern in

BEM, because the electrical sources are close to the discontinuities

in conductivity, causing the potential to have very sharp variations,

which are difficult to discretize. All the BEM methods used so far

in MEEG have used the same integral formulation (Geselowitz,

1967). However, this integral formulation, based on a double-layer

potential approach, is by no means the only one available. A

thorough analysis of integral formulations deriving from the

representation theorem has enabled us to propose a new

formulation, combining single- and double-layer potentials (Kybic

et al., 2003). This approach has three main advantages compared to

the previous BEM: it leads to symmetric matrices, it only couples

elements from adjacent surfaces, and its accuracy outperforms all

other surface methods (Adde et al., 2003), especially when the ratio

of conductivities between neighboring layers is high, as occurs

inside the head.

For the BEM inverse problem, the electrical sources are

constrained to be orthogonal to a known surface inside the cortex.

In this case, the problem is no longer ill posed and the intensity

field of the sources can be recovered, up to a constant, from

boundary measurements (Amir, 1994). The field to be recon-

structed is then simply the signed intensity of the source.

Fig. 1 shows the reconstruction of electrical sources, using the

BEM model, from measurements of a somatosensory evoked

magnetic field (experimental protocol presented in Meunier et al.,

2001 and data also used in David and Garnero, 2002).

The FEM method represents all the head-related quantities

(conductivities, potentials, sources) as piecewise linear functions

on the elements of the mesh describing the head. Obviously, this

restrictive model has a strong impact on the accuracy of the results

compared to the BEM method (in which no restriction is made on

the solution in the domains delimited by the surfaces). This has,

however, several advantages: anisotropy of conductivities can

easily be modeled for each volume element, the accuracy seems
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somewhat less sensitive to the closeness of the sources to the

conductivity discontinuity interfaces, the matrices generated by the

method are quite sparse leading to computation times that are much

smaller than those of the BEM method. It remains that constructing

accurate 3D meshes to model the head is somewhat difficult mainly

because the cortex is very thin and thus a lot of triangles are needed

to represent it correctly. The sources are restricted to belong to the

volume of the gray matter (instead of a surface for the BEM

method), but they can again be constrained in direction by forcing

them to be aligned with the (common) normal to the interfaces of

the gray matter.
Fig. 2. The skin/air, CSF/GM, and GM/WM interfaces of one of the

authors’ head.
Geometric modeling

Anatomical MRI segmentation

We have designed a method to automatically and accurately

extract surface meshes of several head tissues from anatomical

MRI images. The input of our algorithm is a T1-weighted MRI

image and the approximate intensities of the main head tissues: air,

skin, cerebrospinal fluid (CSF), gray matter (GM), and white

matter (WM). It robustly generates triangle meshes of the outer

skin interface, of the brain contour, and of the inner and outer

interfaces of the cortex. In the future, we plan to extend it to the

skull and to some subcortical structures of interest.

Our method guarantees some topological properties of the

meshes, such as spherical topology, absence of self- or mutual

intersections. These properties are crucial in some applications

such as cortex unfolding or source reconstruction in MEG and

EEG with the BEM or the FEM.

Our method is a successful combination of hidden Markov

random field (HMRF) classification (Zhang et al., 2001) and of

active contour segmentation with the topology preserving level set

method (Han et al., 2003).

The former is a statistical approach to classify voxels into a few

tissue classes chosen a priori. The tissue distribution is modeled by

a Markov random field (MRF) encouraging neighboring voxels to

have the same class labels, while the observed intensity of each

tissue class is modeled by a Gaussian distribution. The labels of the

voxels are estimated with a maximum a posteriori (MAP) criterion.

The problem translates into the minimization of an energy

function, but an exact minimization is computationally unfeasible

due to the huge number of unknowns. As a consequence, a greedy

strategy yielding a suboptimal solution, such as the iterated

conditional modes (ICM) algorithm, is preferred. The parameters

of the model are the mean and the variance of each tissue class and

a bias field accounting for the inhomogeneities in the RF field. In

our method, this bias is taken as affine against intensities and

smooth and nonparametric over space. An initial estimate of the

tissue parameters is provided by the user. Iteratively, class labels

are estimated by MAP, then the tissue parameters and the bias field

are updated with the expectation-maximization (EM) algorithm.

The output is a classification of image voxels, the mean/variance of

each tissue class, and a bias-corrected image.

The ability to automatically handle topology changes is a long

claimed advantage of the level set method over explicit deformable

models, but is often not desirable in biomedical image segmenta-

tion, where the topology of the target shape is prescribed by

anatomical knowledge. A topology preserving variant of the level

set method has been proposed in Han et al. (2003) to overcome
this problem: the level set function is evolved with a modified

update procedure based on some concepts from digital topology,

then the final mesh is obtained with a modified topology-

consistent marching cubes algorithm. This method ensures that

the resulting mesh has the same topology than the user-defined

initial level set. We have extended this method to evolve several

nested level sets while preventing mutual intersections. Contrarily

to some methods for explicit deformable models based on

repulsion forces, our method guarantees the absence of intersec-

tions and is computationally cheaper than checking mesh-to-mesh

intersection.

We apply successively the HMRF classification and active

contour segmentation with the topology preserving level set

method to benefit from the advantages of both methods while

discarding their respective drawbacks. We first run the HMRF

classification. This statistical approach is powerful with regards

to automatic parameter estimation but it is not subvoxel accurate

and disregards topology. Hence, we feed the resulting output

into an active contour segmentation task. We first fit a set of

nested topology preserving level sets to the labeled image to

alleviate the sensitivity of active contour segmentation to the

position of the initial contour. Then we drop the labels and we

evolve the level sets according to the intensities of the bias-

corrected image. Because the image inhomogeneities have been

removed, the interfaces between the different tissues can be

found easily and robustly by driving each level set with an

adequate intensity threshold. Moreover, the thresholds that best

separate the intensity distributions of the tissues can be

computed from the tissue parameter estimated during the HMRF

classification.

Our method is used routinely to obtain the surfaces that are

needed in the BEM or FEM source localization techniques from

MEG and EEG. The cortical surface in Fig. 1 was extracted with

this segmentation tool. For an illustration of the technique, see

Fig. 2.

Diffusion tensor estimation

The basic principles of diffusion MRI and the formalism of

the diffusion tensor have been introduced in Basser et al. (1994),

LeBihan and Breton (1985), and LeBihan et al. (1986). The key

concept is that the random motion of water molecules, called

diffusion, reflects the structure of the underlying biological

tissues at a microscopic scale, well beyond the usual image

resolution. This opens the possibility of recovering a detailed

geometric description of the anatomical connectivity between

brain areas. We are attempting to get closer to this challenging

goal.
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The estimation of a 3 � 3 symmetric positive definite tensor at

each voxel from diffusion-weighted data uses the Stejskal–Tanner

equation (Stejskal and Tanner, 1965). Many approaches have been

derived to estimate the tensor. Minimal approaches (Westin et al.,

2002) are very sensitive to noise and outliers. Outlier-related

artifacts can be combatted by using more measurements and robust

estimators as in Mangin et al. (2002). However, the resulting

tensors may not be positively definite. We have proposed in

Tschumperlé and Deriche (2003) to incorporate such priors as

tensor positivity and spatial regularity into a variational formula-

tion of the estimation problem on the manifold of positive definite

tensors.

Diffusion tensor regularization

We have studied the regularization of noisy diffusion tensor

data. There exist two main classes of techniques. Nonspectral

methods are based on a direct anisotropic smoothing of the

diffusion weighted data (Vemuri et al., 2001) or consider each

tensor as six scalar coordinates. This method suffers from the fact

that the eigenvalues tend to diffuse faster than eigenvectors.

Spectral methods process the eigen elements of the tensors.

Eigenvalue smoothing is typically performed by a vector-valued

anisotropic PDE (Tschumperlé and Deriche, 2001, and references

therein) satisfying the maximum principle to preserve positiveness.

However, these approaches are plagued by the fact that all vectors

are defined up to a change of direction, resulting in a computational

explosion (Coulon et al., 2001).

We recently proposed an alternative to the previous spectral

techniques called the fast isospectral method (Chefd’hotel et al.,

2004). It builds flows acting on a given sub-manifold of the linear

space of matrix-valued functions and preserving some constraints.

The constraints (orthogonality, invariance of eigenvalues,. . .) can
be expressed in terms of Lie groups and homogeneous spaces.

Results of nonspectral smoothing and isospectral flow on diffusion

tensors estimated in the genu of the corpus callosum are shown in

Fig. 3.

Fiber tractography

The main idea most classical algorithms for brain connectivity

mapping rely on (Mori et al., 1999; Moseley et al., 1999;

Pierpaoli et al., 1996, and references therein) is that water

diffusion in many regions of the white matter is highly

anisotropic and thus the orientation of the principal eigenvector

is that of the predominant axonal direction. All these line

propagation techniques however fail whenever they enter a

region of low anisotropy, the estimate of the curve tangent

becoming highly unreliable.
Fig. 3. (Left to right) (Left) Raw tensors in the genu of the corpus callosum and r

flow. Data courtesy of CEA-SHFJ/Orsay. We thank J.F. Mangin and J.B. Poline
To overcome this problem, we have introduced a physically

motivated distance function in the white matter through stochastic

processes and differential geometry. In our approach, the white

matter is seen as a 3-manifold M and fibers become geodesics

(Lenglet et al., 2004) of this manifold. There is a fascinating

connection between the diffusion tensor, Brownian motion, and the

Eikonal equation. If C is the concentration of water molecules, it

can be shown that it satisfies the equation

BC

Bt
¼ j DjCð Þ ¼ LC ð2Þ

When D is the identity, L is the Laplace operator, the diffusion is

isotropic. A Brownian motion in Euclidean space (e.g., R3) is

entirely defined by its initial distribution and the conditional

probability p of finding a molecule at x at time t given that it was at

x0 at time 0. For an unbounded anisotropic homogeneous medium,

p is the minimal fundamental solution of Eq. (2).

These notions have their counterparts when moving from the

Euclidean space to a Riemannian space M. In particular, an

isotropic diffusion on M is governed by a differential operator, the

Laplace–Beltrami operator, which defines the geometry of M. In

effect, it is possible to consider an anisotropic diffusion in the

Euclidean space (governed by the diffusion tensor D) as an

isotropic diffusion in R3 seen as a Riemannian space with metric

tensor G = ( gij) equal to D�1. It is therefore natural to consider the

intrinsic distance d in the space of the brain white matter to any

voxel x0 as defined by this Riemannian metric. It verifies the

intrinsic Eikonal equation

jjdj2 ¼ Bd

Bxi

Bd

Bxj
gij ¼ 1; ð3Þ

with ( gij) = G�1. In Lenglet et al. (2004), we propose a level-set

formulation and the associated numerical scheme to solve Eq. (3).

Computing neural fibers as geodesics in the region of the splenium

of the corpus callosum yields the results presented in Fig. 4. The

main advantage of this method over line propagation techniques is

that it is not influenced by locally isotropic areas.
Statistical modeling

Superresolution in fMRI

In functional magnetic resonance imaging (fMRI), a major goal

is to maximize the image spatial resolution. The decrease in SNR

induced by the decrease of voxel size can be obviated by the use of

higher magnetic fields implying much higher equipment costs, an

increased inhomogeneity, and hence larger distortion artifacts in

the images. To overcome these problems, one possible solution is
egularized fields by (Middle) a nonspectral method, (Right) our isospectral

for providing us with the data.



Fig. 4. Inferred geodesics in the splenium of the corpus callosum (red, low

anisotropy; blue, high anisotropy).
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to use superresolution techniques that allow us to generate a high

resolution volume from a set of low resolution ones. These

techniques have already been used in different image processing

applications. For anatomical MR images, superresolution can be

used in 2D FT MR imaging in the image space, that is, in the slice

direction, see Greenspan et al. (2002), Peled and Yeshurun (2001),

and Roullot et al. (2000) who proposed a superresolution approach

for 3D volumes.

Our aim is to investigate how these techniques can be applied

to process long fMRI sequence and improve the activation maps

(Kornprobst et al., 2003; Peeters et al., 2004). The approach is

based on two steps. The first is the acquisition protocol. Images

are acquired at a low resolution using alternate shifts of the

image slice stack over half-a-slice thickness, generating two

separate slice-shifted overlapping volumes. The second is a

variational superresolution reconstruction technique that com-

bines recent work on edge preserving PDEs (see Aubert and

Kornprobst, 2002 for a review) and convergence rate studies

(Nikolova and Ng, 2001). Experiments on synthetic and real data

(see Fig. 5) clearly establish the interest of using such techniques

in this context.
Fig. 5. Comparisons between activated areas for different reconstructions in a syn

activated areas for the horizontal meridian (red–yellow) and the vertical merid

Department of Radiology, K.U. Leuven, Medical School, Leuven, Belgium.
fMRI modeling

fMRI is a rich source of data that is hard to analyze without the

help of models. This is because it is only an indirect measure of

brain activity based on brain oxygenation and many confounders

such as subject movements, respiratory and heart artifacts,

temperature drift, machine noise are known to corrupt the signal.

The models can be weak as in the case of exploratory methods

such as PCA, ICA, or clustering, or strong as in the case of the

general linear model (GLM) where the shape of the hemodynamic

response is assumed to be known.

We have contributed to the latter by developing a class of

flexible models that attempt to extract coherent, that is, task-related

or autocorrelated, patterns from each voxel time course (Thirion

and Faugeras, 2003a). This is achieved by decomposing each voxel

time course as the sum of a pseudo-deterministic term that captures

all the information in the signal that is related to its past values or

to the experimental paradigm and a stochastic part that is the

nontask-related part. The pseudo-deterministic part is obtained by

applying the minimum description length (MDL) method and can

be very efficiently estimated. If we note X n(t) the fMRI time

course at voxel n, this analysis results in the decomposition

X n tð Þ ¼ zn tð Þ þ e n tð Þ;

zn being the pseudo-deterministic part, en the stochastic part. This

univariate analysis is followed by a multivariate one that over-

comes some of the difficulties encountered in PCA (resp. ICA) (the

assumption that structures of interest in the data are uncorrelated in

the temporal and (resp. or) spatial domain, the fact that the

experimental paradigm is not taken into account). This is achieved

by defining a generalized covariance matrix j whose eigenvectors

represent the spatial modes of coherent dynamic activity in the

data. j is built from a kernel Kr that depends upon the scale

parameter r. Two voxels X i and X j are represented by the signals

zi and z j. The correlation cc(z i,c j) can be thought of in terms of

shared information between the time courses. r penalizes the
thetic case (Left) and a real visual experiment (Right). The latter shows the

ian (blue–green). Real data were generated in the MR Research Center,
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correlations of the values of cc that are far from 1. To that effect we

multiply the usual covariance matrix Kl(z i,z j) by the function

exp cc
z i;z jÞ � 1

r

� ��
. As described in Thirion and Faugeras (2003a),

the number of eigenvectors kept in the final description can be

determined by a variant of the MDL criterion.

We have also explored the use of clustering in the analysis of

fMRI data. The problem of choosing the number of clusters can be

addressed by the information bottleneck (IB) approach developed

for vector quantization (Tishby et al., 1999) that deals explicitly

with a tradeoff between quantization and data fidelity through an

information theoretic formulation. Our approach assumes that X n(t)

has been projected in the space spanned by R regressors gr:

Xn Tð Þ ¼
XR
r ¼ 1

cnr gr tð Þ þ en tð Þ;

for example, by the GLM. The vectors cn are modeled as Gaussian

random variables with known mean and covariance. The IB method

can be formulated as follows. Given the set of voxels X, the set of

interest G (the set of possible values for c) and the normal densities

p(CjX = x), find the fuzzy clusters n that maximize compression

while retaining most of the information on p(CjX). This leads to the
minimization with respect to n of the function I(X,n) � bI(n,C),

where I(X,n) is the mutual information between the data set X and

its compressed representation, I(n,C) is the mutual information

between the compressed representation and the variable of interest,

and b a positive scalar. The IB method finds its roots in statistical

physics and b plays the role of an inverse temperature: a high value

freezes the system into a hard clustering while a small one heats the

system and ultimately fuses all clusters into a single one. The

minimization can be done by an EM algorithm. The results are

sensitive to the choice of b, but this choice can be made in a
Fig. 6. (a) Simulated time courses for the three foci shown in b. (c) Feature value

method.
principled manner as explained in Thirion and Faugeras (2003c).

We illustrate the method with a synthetic example. We simulate one

slice of fMRI data with N = 1963 voxels and three foci of 21 pixels.

Independent Gaussian noise is added to all voxels so that the SNR is

0.5 in the activated areas. The simulated paradigm has two

conditions, the simulated time courses and the spatial maps are

shown in Figs. 6a and b. By keeping only the effects of interest, we

obtain a 2D feature-space. The estimated feature values at each

voxel are represented in Fig. 6c. The IB method yields four clusters.

The corresponding probability density function (pdf’s) p(cjn) are
shown in Fig. 6d. For comparison, we have applied a C-Means and

a fuzzy-C-Means algorithm with an initial number of clusters equal

to 4 and never obtained the results shown in Fig. 6d. More statistical

approaches for modeling fMRI data can be found in the thesis of

Thirion (2003), which is written in English.

Cortical filtering and applications to retinotopy

Delineating the cortical visual areas is a bcalibrationQ experiment

for any study of the human cortical visual system. Beyond

estimating the area borders, the retinotopic mapping process

provides information linking the actual visual field and the cortical

surface. Our method derives from previous work (Sereno et al.,

1995). It is fast—the whole retinotopic map being acquired in about

15 mn of functional image acquisition—semi-automatic, and shows

an excellent intra- and intersubject reproducibility as shown in

Wotawa et al. (2003). The stimuli are a wedge, coding for polar

angle maps and a ring, coding for eccentricity maps. The functional

analysis scheme is based on a frequency analysis, which allows a

continuous and accurate response phase estimation. The only

requirement on the hemodynamic response is that it be linear with

respect to the stimulation. The main steps are the computation of a
s showing one big cluster and two big ones. (d) pdf’s produced by the IB



Fig. 7. Retinotopic polar angle and eccentricity maps projected on an

inflated left hemisphere.

Fig. 9. (Left) The geometric distortion between anatomical MR (purple) and

functional MR data (green). (Right) The geometric distortion shown left has

been mostly compensated for.
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statistical map to determine the voxels activated by our periodic

stimuli, followed by a phase estimation, including a voxel-based

hemodynamic delay estimation. The phase links the voxel activity to

its preferred stimulus position. The results, values of eccentricity,

and polar angle at each suprathreshold voxel are then projected on

the cortical surface model derived from a high-resolution anatomical

image. The model is finally inflated to facilitate the visualization

(see Fig. 7). Part of the processing for obtaining these results is spent

on smoothing the fMRI data. The way this is done is important. The

classical approach, for instance in SPM, is to smooth the whole

volume of data by convolving it with a 3D Gaussian kernel. This

may have two undesirable effects: mixing voxels from different

anatomical tissues, affecting the analysis sensitivity and blending

signals across sulci, reducing the spatial discrimination power. We

have used instead such interfaces as the one shown in Fig. 2 and

replaced the 3D isotropic filtering with a 3D anisotropic filtering in

the vicinity of the white matter–gray matter boundary (diffusion is

encouraged in directions parallel to this boundary, discouraged

otherwise), another example of the Laplace–Beltrami operator. The

difference between the two methods is shown in Fig. 8.

Multimodal image matching

One of the problems that is often encountered in the analysis of

fMRI data is that of registering it with the anatomy. This is difficult

because, as shown in Fig. 9, there are significant geometric

distortions between the two volumes and the intensities of

corresponding areas rarely match (not visible in this figure). We

discuss these two points next. The geometric distortion cannot in

general be described by a simple global transformation rigid, that

is, rotation plus translation, or nonrigid, that is, affine. To model

the distortion one is therefore led to call upon some general

deformation flow represented by a largely arbitrary vector field h.
Fig. 8. Left: original activation; Middle: 3 mm 3D isotropic smoothing, leading to

Beltrami smoothing.
The different intensities in corresponding areas preclude the use of

the usual sum of squared differences (SSD) as an error criterion to

guide the search for the deformation flow. One must revert to more

sophisticated, that is, statistical, ways of measuring similarities in

intensity distribution. Such measures as the cross-correlation, the

correlation ratio, or the mutual information have been successfully

used in the literature (Ayache, 2003; Viola and Wells, 1997).

Our contribution has been to clearly pose the problem of the

estimation of h as that of minimizing an energy functional I hð Þ on
a well-defined functional space F . The energy functional is the

sum of dissimilarity term J hð Þ and a regularization term R hð Þ.
The first term is based upon the idea of modeling the two images

I1(x) and I2(x) as samples of two random processes and of

estimating the joint probability density function (pdf) of the vector

(I1(x),I2(h(x))). From this pdf, one can then compute any of the

above statistical measures as functions of the field h. The

regularization criterion takes into account the idea that this field

cannot vary arbitrarily and therefore enforces some regularity. This

is done by choosing R hð Þ to be a function of the first order

derivative of h. The nest step is to precisely define the functional

space h belongs to. It turns out that the form of the regularization

term is determinant and implies that we work in the Sobolev space

F ¼ H1
0 \ H 2. After showing that there exist minimizers of I hð Þ

in F , we turn the problem of finding them into one of solving a

semi- linear abstract initial value problem that can be written as

dh

dt
� Ah tð Þ ¼ F h tð ÞÞ; t N 0; h 0ð Þ ¼ h0 a H :ð ð4Þ

In this equation, the time has been introduced to reflect the fact that

we start from an initial deformation flow h0 and look for the

corresponding stationary solution of Eq. (4). A is a spatial

differential operator arising from the Euler–Lagrange equation of
false activation on the opposite bank of the sulcus; Right: 3 mm Laplace–



Fig. 10. (Left) The mean of eight silhouettes of corpus callosum (middle,

thick line). (Right) From top to bottom, the first three principal modes of

variation for the eight sample shapes. They are the solutions of Eq. (6) for

k = 1, 2, 3.
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the regularization term R hð Þ. The function F in the right-hand side

arises from the dissimilarity term J hð Þ. Because J hð Þ involves the
pdf of the vector I1 xð Þ; I2 h xð Þð Þð Þ, F is nonlocal, that is, its value at

x depends upon the values of the current deformation flow h(t) at

other points. This implies that Eq. (4) is not a PDE but a functional

equation, in effect an ordinary differential equation (ODE) in the

unknown h that lives in the functional space F . This makes the

analysis of the registration problem significantly more difficult

than in the case of the SSD criterion where Eq. (4) is a PDE.

Within this general framework, we have (a) shown that there

exist minimizers of I hð Þ in F , (b) computed the function F for the

previous statistical criteria, (c) proved the existence and uniqueness

of a solution of Eq. (4) using the theory of analytical semigroups of

operators, and (d) proved that the limit when tYl of the solution

of Eq. (4) satisfies the Euler–Lagrange equations of I hð Þ. The
implementation of the method has been done in the context of a

recent thesis (Hermosillo, 2002). The theoretical results are in

Faugeras and Hermosillo (2004), with preliminary work reported

in Hermosillo et al. (2002). An example of the kind of results that

can be achieved is shown in Fig. 9. The code is used routinely by

Fize et al. (2003) in Leuven in their work on monkey fMRI.

Statistical shapes

The variability of anatomical structures from individual to

individual is quite large within the human species. It is even larger

when one attempts to compare anatomy and function in different

but closely related species, for example, human and nonhuman

primates. This variability hints at two main areas of mathematics,

topology for defining meaningful shape metrics, and statistics for

defining meaningful notions of shape variability, for example, with

respect to an average shape. The Odyssée Laboratory has been

actively pursuing both objectives. In the area of shape metrics, we

have been studying a set of shapes S that are defined as subsets X
of a set of Rn (in practice n = 2 or 3) with a regular (i.e., C 2)

boundary BX whose curvature is upper bounded by a positive

number 1/h0. h0 is also a lower bound on the pinch distance of this

boundary and is lower than the distance between two pixels of the

grid on which the shapes are defined. The question of measuring

the similarity between two shapes in S builds upon the seminal

work of Delfour and Zolésio (2001), who have introduced new

families of sets, complete metric topologies, and compactness

theorems. We prove in Charpiat et al. (2004) that three of the most

important metrics, including the Hausdorff distance, are topolog-

ically equivalent in S. We also propose to use them to define a way

to continuously deform, that is, warp, a shape onto another one.

The way to pose this problem is to define a bdissimilarityQ measure

E(C1, C2) between two shapes C1 and C2 to show that the gradient

jE(C1, C2) can be defined in a reasonable manner and to solve the

following initial value problem

dC
dt

¼ �jE C;C2Þn; C 0ð Þ ¼ C1a S;ð ð5Þ

Note the similarity between Eqs. (4) and (5). One difficulty with

this approach is that the metric appears in the definition of E.

Therefore, the gradient jE is not well defined because the metric

is not differentiable. We have therefore constructed classes of

smooth (i.e., whose gradient is well defined) approximations of the

metric based upon the idea of replacing the sup and min operators

that arise in the definition of the distance function to a set and in

the Hausdorff distance between two sets by averages taken on the
boundaries of the shapes. We prove that these approximations can

approximate the metric arbitrarily well and compute the gradient of

the corresponding dissimilarity measures. This defines a warping

algorithm between two shapes that can be seen as an infinitesimal

gradient descent to minimize E. We prove that there exist

minimizers of E(C1, C2). This approach can be seen as the

opposite of that consisting in first building a Riemannian structure

on the set of shapes, that is, going from an infinitesimal metric

structure to a global one. This is mostly dealt with in Klassen et al.

(2004), Miller and Younes (2001), Trouvé (1998), and Younes

(2003). The problem with these approaches, beside that of having

to deal with parameterizations of the shapes, a difficult problem

that is avoided in ours, is that there exist global metric structures on

the set of shapes (like those we have considered) that are useful and

relevant to the problem of the comparison of shapes but that do not

arise from an infinitesimal structure.

Eq. (5) defines a generic bshape warperQ that can be used to

address the second objective above, that is, the definition of the

empirical mean and covariance of a set of shape examples. The

empirical mean of N shapes C1,. . .,CN is defined as any shape Ĉthat

achieves a local minimum of the function l: S Y Rþ defined by

C Y lðC;C1; N ;CN Þ ¼
1

N

X
1¼ 1; N ;N

E2 C;CiÞ;ð

and we prove that there exists at least one mean. An algorithm for

the effective computation of a mean is proposed in Charpiat et al.

(2004) and an example of the mean of eight silhouettes of corpus

callosum is shown in Fig. 10 (left). The empirical covariance of N

shapes is slightly more difficult to define. From a mean Ĉ, we
compute the gradients jE(Ĉ, Ci), i = 1,. . .,N. These are functions

defined on Ĉ that we use to define a positive symmetric N � N

matrix that supports our notion of empirical covariance. Its

eigenvectors and eigenvalues are used to define the analog of the

principal modes vk, k = 1,. . .,N of variation of the mean shape Ĉ.
The variability of the mean shape with respect to the kth mode is

obtained by solving the following initial value problem

dC
dt

¼ Fvkn; C 0ð Þ ¼ Cˆ a S: ð6Þ

As an example, the first mode of variation for the above eight

sample shapes is shown in Fig. 10 (right).
Conclusion

We have shown that some large pieces of fairly sophisticated

mathematics are very useful for modeling the types of signals that

are currently used for observing the brain bin vivoQ. We are

presently exploring two fascinating areas. One is the combination
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of these modalities (MEEG, MRI) into a more robust and more

accurate meta-sensor. Another one is the introduction of models of

the activity of the assemblies of neurons that the sensory modalities

are trying to measure in the processing of the signals they deliver.
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