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The high failure rate of experimental medicines in clinical trials accentuates inefficiencies of current drug discovery processes
caused by a lack of tools for translating the information exchange between protein and organ system networks. Recently, we
reported that biological activity spectra (biospectra), derived from in vitro protein binding assays, provide a mechanism for
assessing a molecule’s capacity to modulate the function of protein-network components. Herein we describe the translation
of adverse effect data derived from 1,045 prescription drug labels into effect spectra and show their utility for diagnosing
drug-induced effects of medicines. In addition, notwithstanding the limitation imposed by the quality of drug label
information, we show that biospectrum analysis, in concert with effect spectrum analysis, provides an alignment between
preclinical and clinical drug-induced effects. The identification of this alignment provides a mechanism for forecasting
clinical effect profiles of medicines.

One of the key functions of preclinical drug discovery is the fine-
tuning of experimental medicines for modulating the information
flow in cellular protein networks and relating these changes to disease
intervention. The high failure rate of drug candidates in clinical trials,
however, accentuates inefficiencies of current processes and implicates
as main cause the incomplete translation of drug-induced effects on
proteins into medically useful effects on organisms1. The misalign-
ment between preclinical and clinical drug-induced effects is due, in
part, to the remarkable ability of organisms to compensate for the loss
or decline in function of specific proteins by rerouting the information
flow in protein networks2. At the organism level, protein network
perturbations, caused by inhibition or stimulation of the function
of individual network components, become visible as a pattern
of physical symptoms; it does not matter whether protein network
perturbations are caused by a disease or by the administration
of a medicine3–6.

In spite of these complexities, the high costs associated with failure
of experimental medicines in clinical trials underscore the need to
improve methods for translating drug-induced effects on proteins into
drug-induced effects on whole organisms7,8. Achieving this goal is a
formidable challenge because preclinical methods for structure-func-
tion analysis focus on determination of structure-effect relationships
of single protein network components and not on information
exchange between protein and organ systems networks. In addition,
no precise methods exist for comparing drug-induced effect informa-
tion of medicines obtained in clinical trails. Hence, the induction of
drug effects in clinical trials is highly variable and depends on age, sex,
physical condition, genetic variance in drug targets, regulation of
disease pathways, differences in metabolizing enzymes, dosage forms,
and routes of drug administration. In fact, different dosages of drugs

and routes of administration have been shown to not only affect the
magnitude of a clinical response but also the specific nature of a
response9. Complicating the translation of drug-effect observations
between different organisms, drug effects may vary from organism to
organism10, and drugs differentiated on the basis of in vitro informa-
tion may produce similar in vivo effects, but through entirely different
mechanisms11,12. Thus, quantitative comparisons of drug effects
between different medicines can generally only be made in clinical
trials where drug exposure and methods for ascertaining biological
effects have been defined. Notwithstanding these constraints, we
explore herein whether identification of specific drug-inducible effect
patterns using pattern recognition tools can provide information on
whole-organism, structure-response relationships of medicines13,14.
The experimental design of these investigations is shown in the
graphical abstract and in Supplementary Figure 1 online.

Recently we described the utility of preclinical drug-induced effect
patterns for investigating broad structure-response relationships. This
analysis method is based on the use of percentage inhibition values,
which we determined for medicines at a single, high concentration
(10 mM) for ninety-two proteins, representing a cross-section of the
ligand-accessible (‘druggable’) section of the proteome (Supplemen-
tary Table 1 and Supplementary Fig. 2 online)15,16. The translation of
percentage inhibition values into biological activity spectra (biospec-
tra) is used for expressing a medicine’s probability to induce a certain
pattern of protein network perturbations. Molecular property descrip-
tors generated from biospectra take advantage of the principle of
neighborhood behavior; measurements of the interaction of medicines
with individual screening targets also identify the probability that
these medicines will interact with other members of the gene families
represented by the ninety-two protein assays16. This neighborhood
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information is encoded in the shape of the spectrum (biospectrum).
Using spectral representations of proteome-centered molecular prop-
erty descriptors allows quantification of similarities between biospec-
tra (biospectral analysis) by applying principles of spectroscopy15. We
have previously shown that the comparison of biospectra yields precise
chemical structure information15 and identifies pharmacological simi-
larities between medicines16. Accurate assessment of structure-func-
tion similarities between medicines17 does not depend on information
from putative drug targets but rather on the discriminative properties
of molecular property descriptors16. Although the exact cause of this
perplexing observation is not certain18, it is notable that biospectra,
derived from percentage inhibition values determined for 92 proteins
at 10-mM drug concentrations, have proven effective for identifying
agonist and antagonist effect profiles of medicinal agents even in the
absence of information on putative drug targets16.

RESULTS
Comparison of clinical drug-induced effect spectra
Starting from the premise that the combined pharmacology of
currently prescribed medicines targets virtually every organ system
in the body, we examined if placebo-controlled drug-induced effect
(side effect) information appearing on drug labels could be used to
construct molecular property descriptors that encode chemical struc-
ture and organism response information. Exploration of the feasibility
of this approach relies on clinical side-effect data (extracted from
commercial drug labels) listed in the CEREP BioPrint database19 in
the form of COSTART (coding symbols for thesaurus of adverse
reaction terms) codes20. The scope of this investigation was limited to
side-effect information on 1,045 compounds, selected purely on the
basis of the availability of clinical effect data for these medicines.
Because of the potential for classification error in hierarchical cluster-
ing due to reporting bias of frequency and severity information on
drug labels, we converted side-effect data listed in the BioPrint
database into binary effect descriptor sets. These binary drug effect
representations allowed inclusion of seemingly contradictory effects or
effects noted in the ‘Frequency unknown’ or ‘Post-marketing reports’
categories of drug labels. Five hundred ninety-one effect categories
were selected. A value of 1 was assigned to COSTART fields listing
placebo-controlled frequency and severity information on side
effects. A value of 0 was assigned if a particular effect was not
documented in any one of the 591 effect categories21. These descriptor
sets were entered into hierarchical clustering using Ward’s method
and ‘row average’ as ordering function22. The classification results
obtained with 1,045 compounds and a binary effect descriptor set
consisting of 591 side effect categories (dataset I) are shown in
Figure 1. The similarity values obtained in the formation of
the y- and x-axis dendrograms (Fig. 1) are the products of hierarchical
clustering methods (see Methods). Thus, the y-axis dendro-
gram (Fig. 1a) disperses 1,045 binary effect spectra into smaller
groups, each containing medicines with similar effect pattern.
The similarity between effect patterns is measured using node
similarity values separating branches of the dendrogram. The scale
of these node similarity values varies from 0 to 4,000, with 0 being
most similar. Derived from the binary descriptor sets, these
node similarity values depend on the number of side effects
reported on the label of a medicine (information density). On the
x-axis (Fig. 1a) appear clusters of symptoms that characterize
drug-induced effects on the human body. Again, decreasing
values in node similarity indicate increasing confidence that a
particular symptom group is associated with the human body’s
response to medications.

Hierarchical clustering of binary drug effect descriptors
The x-axis dendrogram (Fig. 1) identifies symptom association
characterizing the human body’s response to medication. The two
side-effect clusters (indicated by the red numbers 1 and 2 in Fig. 1a,b)
represent a list of the most prevalent side effects appearing on the
1,045 drug labels. Symptom cluster 1 (far right of Fig. 1b) describes
drug effects on the gastrointestinal tract (GI). For example, nausea is
listed on 651 out of 1,045 drug labels. The frequency of side effects
associated with nausea in this grouping is shown in parenthesis:
emesis (526), headache (613), dizziness (550), asthenia (451), rash
(650), diarrhea (524) and abdominal pain (402). Combining associa-
tions of these symptoms creates a diagnostic pattern. For example, 492
drug labels list both nausea and emesis as most common side effects
(47% of the 1,045), and 130 drug labels list all eight symptoms as
drug-induced effects (12% of the 1,045). The next most prevalent
symptom cluster (red number 2; the adjacent x-axis grouping in
Fig. 1b) describes drug-induced effects on the immune system: allergic
reactions (471), urticaria (411), anaphylactic reactions (274), pruritus
(380), parasthesia (354), dyspepsia (345), edema (305), fever (339),
myalgia (270), arthralgia (220), leukopenia (360), thrombocytopenia
(339), anorexia (345), malaise (261), alopecia (249), anemia (234) and
liver function abnormalities (234). Again, these symptom clusters
create a diagnostic pattern. For example, 76 drug labels (7% of the
1,045) list all eight GI symptoms in combination with at least one of
the symptoms describing effects on the immune system.

Effect of information density on x-axis classifications
To investigate the effect of information density on x-axis classifications
of binary effect descriptors, we created six different effect descriptor
sets (I–VI) by changing descriptor length and data density (see
Methods). To assess if symptom classifications have diagnostic utility
and provide meaningful (reproducible) portrayals of whole-organism
responses, we monitored whether symptom associations would
remain intact using each of the six binary effect descriptors in
independent classifications. For example, symptom associations such
as palpitation, tachycardia, sweat, hypertension, vasodilatation and
hypotension, representing a section of the x-axis dendrogram
(Fig. 1a), maintained coherence using descriptor sets I–VI. Similarly,
other symptom associations characterizing organ-system specific
effects maintained coherence in each of these independent classifica-
tions. For example, the medicines known as tricyclic antidepressants
(trimipramine (5), nortriptyline (6), protriptyline (7) and imipramine
(8)) show a characteristic side-effect pattern and group together
(section YY in Fig. 1b). Only a portion of the effect profile is
shown (Fig. 1b). The y-axis dendrogram section XX (Fig. 1b)
shows a cluster of medicines containing the muscarinic antagonist
homatropine (2). As indicated previously, this section of the y-axis
dendrogram (Fig. 1b) lists medicines with side-effect profiles most
similar to homatropine (2). These medicines include the two mus-
carinic antagonists methylhomatropine (1) and cyclopentolate (4)
along with the pharmacologically distinct a adrenoreceptor agonist,
dipivefrin (3). All four of these are used in ophthalmic preparations23

and list conjunctivitis on the drug label as a drug treatment–related
effect (Fig. 1b). The ophthalmic a adrenoreceptor agonist dipivefrin
(3), which is a prodrug cleaved by acetylcholinesterases into epinephr-
ine, has a side-effect profile similar to ophthalmic muscarinic antago-
nists (compounds 1, 2 and 4)23, which is unexpected considering its
short half-life in vivo23. In light of observations indicating that
dipivefrin (3) is rapidly systemically absorbed upon topical ocular
administration, ophthalmologic preparations of it would be expected
to have a side-effect profile similar to that of epinephrine, which
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resides with other adrenergic drugs in cluster A (Fig. 2a). Side-effect
profile comparison demonstrates that local and systemic effects of
dipivefrin (3) are differentiable from those elicited by the ocular
administration of epinephrine.

Information density effect on side effect classification
The y-axis dendrogram (Fig. 1) shows that medicines are classified
according to similarity and frequency of side-effect information
appearing on respective drug labels. At the top of the y-axis dendro-
gram (Fig. 1a) are drug clusters that have few side effects (with most
of the 591 COSTART fields having values of 0) and at the bottom of
the y-axis dendrogram are clusters of drugs with numerous reported
effects. For example, anticholinergic compounds 1–4 residing in
cluster XX (Fig. 1a,b), have similar (but few) side effects, whereas
antidepressants 4–8 (cluster YY) have multiple side effects. Medicines
on proximal branches of the y-axis dendrogram are structurally related
and share similar pharmacology (Figs. 2 and 3).

Preclinical and clinical drug-induced effect comparison
To determine whether y-axis dendrogram relationships in effect
spectrum analysis provide a consistent portrait of the pharmacological
similarity of medicines, we investigated how the y-axis sorting of
medicines is affected by reporting bias, such as the listing of ‘drug
class’–associated effects on drug labels. Building on relationships
between molecular structure, pharmacology and functional response
of medicines established in previous studies15,16, we investigated
whether y-axis classifications obtained with binary effect descriptors
(Figs. 1–3) mirror classifications obtained with preclinical data. This
investigation required complete sets of preclinical and clinical data,
thereby limiting the scope of this experiment to 872 medicines
(Supplementary Table 2 online). In addition, to reduce the effect of
information density in binary effect descriptor classification, we used
effect spectra containing 240 COSTART fields (Supplementary
Table 3 online, data set VI), because these constructs provided the
best consensus between classifications produced by effect spectra sets
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Figure 1 Classification of side effect information for 1,045 medicines. (a) Hierarchical clustering of 1,045 binary-encoded clinical effect spectra, consisting

of 591 side effects, using Ward’s Method22. The dendrogram at left divides these 1,045 medicines into clusters using node similarity values to identify

effect spectrum similarity. The branching of this dendrogram reflects similarity between classifications. This similarity scale ranges from 0–4,000; lower

values translate into the greatest effect spectrum similarity. The colors indicate presence of side effects (populated COSTART fields are blue) or absence of

side effects (white). The y-axis dendrogram layout indicates that these classifications depend on side-effect profile similarity and the frequency of side-effect

information reported for medicines (fewest side effects at top left; most side effects at bottom right). The x-axis dendrogram identifies how often individual

symptoms appear in associations. (b) A portion of the dendrogram (Fig. 1a) using 26 drug-induced effect categories (containing the most common side
effects of medicines) to visualize the discrete side-effect pattern of anticholinergic (cluster XX, containing medicines 1–4) and antidepressant medicines

(cluster YY, containing medicines 5–8).
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I–VI. Thus, we performed two independent classifications: one asses-
sing biospectral similarity using the unweighted pair group method
with arithmetic mean (UPGMA) for clustering preclinical data (bios-
pectra), and the other assessing effect spectrum similarity using Ward’s
method for the clustering of binary clinical effect spectra. Hierarchical
clustering of these independent drug-induced effect descriptor sets is
described in Methods.

Seven classes of medicines, denoted A–G (Fig. 2a,b), illustrate the
substance of these classification results. A more detailed comparative
analysis has been conducted for the group of sedative medicines in
cluster D (Fig. 2a,b). For the purpose of clarity, Figure 2a,b omits data
on 832 compounds and shows classification information on only forty
medicines representing seven pharmacological classes: (i) adrenergics
(group A; four medicines), including epinephrine (9) and metarami-
nol (10); (ii) antiinflammatory corticosteroids (group B; eight med-
icines), including hydrocortisone butyrate (11) and bethamethasone
diproprionate (12); (iii) anticholinergics (group C; five medicines),
including methantheline (13) and methscopolamine (14); (iv) hypno-
tic anxiolytics (group D; nine medicines), including triazolam (15)
and zopiclone (16); (v) antihistamines (group E; four medicines),

including tripelennamine (17) and diphenhydramine (18); (vi) diure-
tics (group F; three medicines), including hydroflumethiazide (19) and
bendroflumethiazide (20) and (vii) antidepressants (group G; eight
medicines), including cyclobenzaprine (21) and maprotiline (22).
Pharmacological clusters A–G are evenly distributed across the entire
y-axis side-effect dendrogram (Fig. 2a), thereby representing medicines
with the least and the most reported side effect information. The effect
spectrum similarity range for compounds in clusters A–G is shown at
right in Figure 2a. For example, the node similarity measuring the
effect spectrum similarity between triazolam (15) and zopiclone (16)
in group D has a value of 26.6. We compared node similarity values for
medicines in clusters A–G and found that the five medicines in group
C (node similarity ¼ 0.9) had the highest effect spectrum similarity of
all the medicines in groups A–G. This assessment is based on the
comparison of the node similarity values for all five medicines in
group C. The node similarity value of these five compounds exceeds
the node similarity value determined for methantheline 13 and
methscopolamine 14 (node similarity ¼ 0.9), which is the pair of
medicines with the lowest effect spectrum similarity in this group. For
comparison, the biospectral similarity between medicines in individual
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Figure 2 Comparison of preclinical and clinical drug-induced effect similarity of 40 medicines. (a) Classification of 872 medicines’ binary side effect

spectra (240 side effects) using Ward’s method22 as hierarchical clustering method. Highlighted are seven clusters (A–G) arranging the effect spectrum

similarity of 40 medicines in groups. Node similarity values measuring side-effect profile similarity between medicines in clusters A–G are indicated at right,

and numbers in parentheses denote number of compounds in each effect cluster. Low node similarity values indicate high effect spectrum similarity.

(b) Dendrogram relationship for 872 medicines using preclinical drug-induced effect data (biospectra) produced by the UPGMA clustering method.

Confidence in cluster similarity values measuring biospectral similarity between medicines in cluster A–G (indicated at right) reflect proximity of medicines in

the y-axis dendrogram. Compounds with the highest confidence in cluster similarity score (CCS) have the highest biospectral similarity15. (c) Illustration of
two representative structures from each of clusters A–G.
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clusters A–G (preclinical effect spectra) is shown in Figure 2b and is
expressed using confidence in cluster similarity values (CCS) produced
by the UPGMA algorithm15. In biospectra comparison, identical
biospectra have a CCS value of 1 (refs. 15,16). For example, the
biospectral similarity between medicines appearing in clusters A–G
(Fig. 2b) ranges from a CCS value of Z0.263, for the biospectra of
hydroflumethiazide (19) and bendroflumethiazide (20) (group F), to a
CCS value of Z0.917 for the biospectra of cyclobenzaprine (21) and
maprotiline (22) in group G. We compared CCS values for medicines
in clusters A–G (Fig. 2b) and found that medicines in group G had the
highest biospectral similarity. Again, the neighborhood of medicines in
cluster G is defined by comparing the CCS values of medicines in
cluster G with the CCS value separating the pair of medicines with the
lowest biospectra score (in group G, this CCS value is 0.917). We
compared node similarity values between drug-induced effect spectra
in individual clusters A–G (Fig. 2a) and found that the clinical effect
profile similarity between compounds in clusters A–G (Fig. 2a) was
mirrored in the preclinical drug-induced effect profile similarity of
medicines in clusters A–G (Fig. 2b). This observation indicates that
compounds residing in each of the individual clusters A–G not only
have the greatest clinical effect spectrum similarity (Fig. 2a) but also
have the greatest biospectral similarity (Fig. 2b).

Identification of diagnostic side effect patterns
Of the seven medicine classes (Fig. 2), the hypnotic-anxiolytic
medicines shown at the center of the y-axis dendrogram in group D
(Fig. 2a) showed the lowest effect spectrum similarity among medi-
cines in clusters A–G (node similarity value for D was 26.6). From the
biospectral similarity of compounds in cluster D (Fig. 2b), we
identified a corresponding CCS value of Z0.502. Previous observa-
tions using biospectral analysis indicate that biospectra comparison
yielding similarity values below a threshold (CCS Z 0.8) may not
provide reliable structure-function information15,16. Thus, a strong
association between structure and effect should not necessarily be
expected for compounds in cluster D. Accordingly, the dendrogram
section (Fig. 2b) with CCS Z0.502 contains ten additional medicines
omitted in the illustration (Fig. 2) because the effect spectra associated
with these ten additional medicines fell outside the node similarity
criterion (node similarity ¼ 26.6) used to illustrate the neighborhood
relationship of medicines in effect spectra dendrograms (Fig. 2a) and
biospectra dendrograms (Fig. 2b). To examine the relevance of the
relationship between biospectral similarity (CCS values) and effect
spectrum similarity (node similarity values), we investigated the entire
cohort of medicines in the biospectral similarity range CCS Z 0.502,
containing the medicines shown in group D (Fig. 2b). This particular
dendrogram segment is shown in Figure 3a.

All 19 medicines with CCS Z 0.502 (Fig. 3a) have sedative-
hypnotic and anxiolytic pharmacology, and all have benzodiazepine-
like structures (Supplementary Fig. 3 online), with the exception
of the sedative-hypnotic zopiclone (16). Consistent with previous
observations15,16, medicines with the highest biospectral similarity
(medicines 28 and 29, 30 and 31, and 33 and 34) have the highest
structure similarity (Supplementary Fig. 3). The classification pro-
duced by the clustering of 872 drug-induced effect spectra containing
these 19 medicines is shown in Figure 3b,c. The y-axis placement of
these 19 medicines (Fig. 3b,c) provides information on the clinical
effect spectrum similarity of these medicines and the corresponding x-
axis dendrogram (Fig. 3b,c) lists the effect of these 19 drugs on organ
systems. Cursory examination of the y-axis dendrogram (Fig. 3b and
Supplementary Fig. 3) indicates that data density and side effect
similarity drive effect spectra classifications for these medicines. The

effect of data density is particularly evident in the y-axis (Fig. 3b),
dispersing these 19 medicines into subgroups with low (L), medium
(M) and high (H) data density. The side-effect similarity between
these 19 medicines is easily recognized if one inspects the correspond-
ing x-axis dendrogram regions, denoted as C1–C4 (Fig. 3b) and C1–C3

(Fig. 3c). Thus, diazepam (27), midazolam (32) and flumazenil (37),
residing in y-axis dendrogram section H (Fig. 3b), have an average of
16 symptoms reported in x-axis dendrogram sections C1, C2 and C3

(Fig. 3c). In contrast, clordiazepoxide (24), oxazepam (26), lormeta-
zepam (36) and lorazepam (28), residing in the y-axis dendrogram
section L (Fig. 3b), have on average only five symptoms reported in
the x-axis dendrogram sections C1, C2 and C3 (Fig. 3c). Conversely,
zopiclone (16) and 11 of its neighbors (15, 23, 25, 29, 30, 31, 33, 34,
35, 38 and 39) residing in y-axis dendrogram section M (Fig. 3b) have
on average ten symptoms reported in x-axis dendrogram sections C1,
C2 and C3. Figure 3c indicates that irrespective of y-axis dendrogram
placement in group L, M and H, each of these 19 medicines exhibits
one or more of the symptoms identified in x-axis clusters C1, C2 and
C3 (Fig. 3b,c).

A detailed representation of these symptom associations (enlarged
x-axis dendrogram section C1–C3) is shown (Fig. 3c). Accordingly, all
19 drug labels list somnolence as a side effect, 12 list somnolence in
combination with nervousness, and 13 drug labels list agitation and
confusion in combination with somnolence. These symptom associa-
tions create a diagnostic pattern. Presence of somnolence in each of
these characteristic symptom patterns indicates an association
between side-effect pattern similarity and primary pharmacology24,25.
Notably, this diagnostic pattern is recognizable even in cluster L
(Fig. 3b), which contains medicines with only five symptoms in
dendrogram sections C1, C2 and C3. This observation indicates that
these 19 medicines, identified by biospectral similarity CCS Z 0.502,
not only have the same primary pharmacology but also produce very
similar effects on organ system networks, as indicated by the shared
characteristic side-effect pattern. Notably, the presence of drug target
information is not necessary for assessing pharmacologically relevant
neighborhood behavior. For example, deletion of the GABA A
benzodiazepine receptor from the biospectra of 872 medicines and
repeating UPGMA clustering with truncated biospectra does not affect
the close biospectra association between medicines 27, 28, 29, 30, 31
and 32, although the CCS value determining biospectral similarity for
these compounds decreases from a CCS value of 40.682 (value for
the biospectral similarity between these compounds (Fig. 3a and
Supplementary Fig. 3)) to a value of CCS 4 0.531 for the truncated
form. All six of these medicines have somnolence and agitation as
common side effects, and five of them list nervousness, GI disturbance
and confusion as additional symptoms. Again, identification of
biospectral similarity aids in the identification of diagnostic symptom
patterns and illustrates the close relationship between primary phar-
macology and side-effect similarity of these six medicines. Although
this experiment points out that low confidence in cluster similarity
values diminishes the reach of biospectral analysis in neighborhood
assessment, it also shows that the identification of diagnostic side
effect patterns shared by compounds in specific biospectra clusters
greatly aids assessment of meaningful neighborhood behavior by
providing independent information on neighborhood properties.

Assessing the relevance of biospectra classifications
The biospectra deletion experiment described above indicates that the
identification of diagnostic clinical effect patterns coinciding with the
determination of biospectral similarity provides a mechanism for
calibrating CCS values and the relevance of biospectra classifications.
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This neighborhood property determination is an entirely empirical and
unbiased operation. The identification of characteristic drug-induced
symptom patterns provides a medical diagnosis for medicines
residing within a certain biospectral similarity range (neighborhood)
and identifies the pharmacological relevance of biospectra classifica-
tions. This relationship, quantified in biospectrum and effect spectrum
analysis, allows the translation of drug-induced effects on protein
networks into drug-induced effects on organ systems. This capability
has application in the drug design process. For example, if one were
interested in targeting the GABA A benzodiazepine receptor to dis-
cover sedative-hypnotic medicines with reduced side-effect liabilities,
modern drug design would go about this task by identifying chemical
structures that have high affinity for the GABA A receptor25. Currently,
there are no guiding principles that subsequently would help drug
discovery scientists differentiate between drug design choices on the
basis of clinical effect predictions. Structural diversity proponents, for
example, might predict that zopiclone-like compounds would differ
from those of benzodiazepines (Supplementary Fig. 3) and hence
favor selection of a zopiclone-like structure on the grounds of
structural dissimilarity with benzodiazepines. Biospectrum analysis,
on the other hand, projects that zopiclone (16) would produce clinical
effects similar to those of benzodiazepines (those in the 0.502
biospectra cluster). The retrospective analyses (Figs. 2 and 3), affirmed

by recent clinical experience, suggest that zopiclone (16) indeed shares
pharmacology and side-effect similarity with benzodiazepines25,26.

Comparing neighborhood behavior over a pharmacology range
To investigate whether unbiased neighborhood assessments could be
extended over the entire pharmacological range, we identified the
distance matrices defining the similarity between each combination of
biospectra pairs represented in the 872-compound database. We then
repeated the same process using the clinical effect spectra to determine
effect spectrum similarity matrices (distance matrices) between the
same medicines. These calculations using R statistical software and
Manhattan (or City Block) distance are described in Methods27,28. We
then randomly sampled compounds in the 872-compound dataset
and identified each sample’s nearest neighbor using (i) the biospectra
distance matrix and (ii) the effect spectra distance matrix. The result
of this sampling experiment is shown in Figure 4a.

Accordingly, the y-axis (Fig. 4a) demonstrates the effect spectrum
similarity (distance) between any pair of randomly sampled medi-
cines, and the x-axis mirrors the biospectral similarity (distance) for
the same pair of medicines. Increasing y-axis values (Fig. 4a) there-
fore translate into a decrease in effect spectrum similarity between
two medicines. Likewise, increasing x-axis values (Fig. 4a) translate
into a decrease in biospectral similarity between two medicines. The
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Figure 3 Comparison of biospectra and effect spectra of 19 sedative-hypnotic medicines. (a) Hierarchical clustering using the biospectra of 872 medicines.

Shown is a cluster containing 19 medicines with CCS 4 0.502. Medicines are numbered and color-coded. The four medicines numbered in green have had

the fewest side effects reported, medicines numbered in red have had the most side effects reported, and those in blue have had an average number of side

effects reported on drug labels. The structures of these medicines are shown in Supplementary Figure 3. (b) Effect spectrum classification of 872 medicines

using binary side effect spectra (240 side effects) and Ward’s method22. Effect spectrum similarity values (node similarity values) obtained are indicated in

the y-axis dendrogram at left. For clarity, only the dendrogram sections containing the 19 side effect spectra of interest are shown. Three clusters containing

medicines with high, low and medium numbers of side effects reported are indicated by L, M and H. Medicines in section M are shown in blue, those

in dendrogram section L are shown in green and those in section H are shown in red. (c) A subset of the characteristic side-effect pattern shown in b

containing 32 side effects (somnolence is attributed to the primary pharmacology of these medicines and is highlighted in red).
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correlation between these two independent similarity assessments
(Fig. 4a) using a trend line (in red) indicates that preclinical effect
spectrum similarity is mirrored in clinical effect spectrum similarity.
Inspecting the trend line indicates existence of neighborhood behavior
wherein medicines within a certain biospectral similarity distance
range also reside in neighborhoods with similar effect spectra distance
ranges. Accordingly, compound pairs that have the highest biospectral
similarity (highest confidence in cluster similarity values) also have the
greatest side effect spectrum similarity.

In order to assess if the correlation (Fig. 4a) was due to random
chance, we conducted a control experiment (Fig. 4b) in which
distances between medicines were randomly sampled in the effect
spectrum similarity matrix and plotted on the y-axis (Fig. 4b). Next, a
second round of random sampling was used to independently identify
a different pair of compounds in the biospectral similarity matrix,
thereby neglecting the coupling of information associated with neigh-
borhood behavior. The distance between this second pair of com-
pounds was again plotted on the x-axis (Fig. 4b). The corresponding
trend line (Fig. 4b) shows that, in this case, we did not observe any
correlation between distance parameters, indicating that the correla-
tion between neighborhood behaviors (Fig. 4a) is not the product of
random chance. We repeated the random sampling 100 times, and the
outcome of both of these experiments was not affected (Supplemen-
tary Fig. 4 online). These results indicate that that the correlation
between neighborhood behaviors extends throughout all pharmaco-
logical classes represented in our 872-medicine database.

DISCUSSION
Classification of drug-induced effect patterns can demonstrate mean-
ingful relationships between preclinical and clinical drug-induced
effect information on medicines. This is shown using independent
preclinical and clinical data, different classification methods (UPGMA,
Ward) and different similarity measures in drug-induced effect spectra
classifications (cosine correlation, half-square euclidean distance,
Manhattan distance). The information obtained in effect spectrum
comparisons is consistent with primary pharmacology, structural
similarity and preclinical effect observations of medicines. Binary
representations of side effects, collected at early stages of clinical trials,
circumvents problems associated with reporting of side effects, and
classification of these effect spectra yields information on the drug-
induced effect signatures (pharmacology) of medicines. Effects of
classification error on analysis outcome (bias in effect spectrum
analysis) can be investigated easily using bioassay deletion experi-
ments, which assist in identifying meaningful relationships between
preclinical and clinical drug-induced effect patterns. Quantification of

this relationship, in turn, allows forecasting of clinical effects of
medicines29. Refinements in analysis tools and increasing the quality
of clinical (in vivo) and preclinical (in vitro) effect databases will
undoubtedly improve the ability of this methodology to capture and
organize the information necessary to translate drug-induced effects
on proteins into medically useful effects on organisms.

Lack of tools to translate medicinally useful interactions between
protein and organ systems networks into new drug designs limits the
efficiency of drug discovery. Identification of medicinally useful
molecular structures has hitherto been difficult, as molecular proper-
ties that ensure optimal drug target interactions are often not those
that provide therapeutically useful effects. Here we report that the
alignment of preclinical and clinical effect spectra provides a mechan-
ism for linking side effects, molecular structure and primary pharma-
cology of medicines. By determining structure-effect relationships
between interacting networks, this approach facilitates the translation
of complex biological response information into drug designs.
Although current data quality provides only rough estimates for the
relationship between structure designs (encoded in biospectra) and
broad clinical effects on medicines (encoded in effect spectra), the
forecasting capability of this method is limited in principle only by
size, completeness and availability of clinical and preclinical effect
data. Despite obvious data quality concerns, binary side effect spectra
are useful for estimating broad clinical effect profiles of medicines.
This should provide incentives for clinical investigators to expedite the
creation of public databases containing not only clinical, preclinical
and drug safety information on marketed medicines, but also Phase I
and Phase II data of failed experimental drugs. In addition, standar-
dizing reporting requirements of clinical and preclinical effect data
and creation of more comprehensive databases should improve the
appreciation of the unique relationship between molecular structure
and in vivo response of medicines. Quantifying these relationships will
ultimately lead to a better understanding of the information exchange
between protein and organ system networks and will assist in the
generation of new medicines that affect organ system functions in a
therapeutically useful way.

METHODS
Biological activity spectra. A portion of the CEREP BioPrint database19 was

used for our investigation. A total of 1,045 medicines and 92 ligand-binding

assays were used to construct the dataset of biospectra containing complete

percentage inhibition values at a ligand concentration of 10 mM. Primary

screening at 10 mM was carried out in duplicate. Additional screening was

carried out at a ligand concentration of 10 mM if results varied by more than

20%. The 92 assays were selected to represent a cross-section of the druggable

proteome15,16. The assays and compounds used for this investigation are shown

Figure 4 Association between biospectral and

side effect similarity for 25 medicines: an

independent assessment of similarity distance

relationships between side-effect and biospectral

profile similarity for compounds in the 872-

medicine database. (a) Using dataset VI (872

compounds/240 binary effect descriptors), the

distance matrix determining the effect spectrum

similarity between each medicine in the dataset

was produced using R statistical software and

Manhattan distance as similarity measure27,28. The distance matrix determining the biospectral similarity between each medicine in the entire dataset was

created in the same manner. Twenty-five medicines were randomly selected, and the similarity (distance) between their respective side effect profiles was

plotted against the similarity (distance) between the same medicine’s biospectra. The linear interpolation (red line) was then plotted in order to show a

correlation between the drug biospectra and side effects (R ¼ 0.79). (b) In order to assess the possibility that the correlation in a could be due to random

chance, a duplicate experiment was performed using the same approach. However, in this case, both similarity distances were randomly selected through
independent (uncoupled) sampling. These results (R ¼ 0.2) show that the correlation observed in a is not due to random chance.
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in Supplementary Tables 1 and 2. Spotfire Decision Site 7.2 was used for

hierarchical clustering. Hierarchical clustering of biological spectra was per-

formed using the UPGMA algorithm and cosinus correlation as similarity

measurement. The UPGMA method fragments data contained in the database

into a hierarchical structure by representing the similarity between different

database fragments in the form of a tree representation. Dendrograms are

obtained by iteratively splitting the database into smaller subsets by placing

each biospectrum initially into a unique cluster and then computing for each

pair of clusters some value of dissimilarity or distance using cosinus correlation

as a similarity measure. In every step, clusters with the minimum distance in

the current clustering are merged until all biospectra are contained in one

cluster. This process creates neighborhood groups of biospectra, in which

biospectra with the highest similarity are most closely associated, based on local

distance information. For example, the distance (dissimilarity) between three

clusters a1, a2 and a3, which each contain n1, n2 and n3 number of records,

upon association of clusters a2 and a3 into a new cluster termed a4 is calculated

as sim(a1, a4) ¼ (a � sim(a1, a2)) + (b � sim(a1, a3)), where ‘sim’ is the

similarity between two indexed clusters, a ¼ n2/(n2 + n3), and b ¼ n3/(n2 +

n3). The cosine correlation ranges from +1 to –1, where +1 is the highest

correlation. Complete opposite profiles have a correlation of –1. The dendro-

gram similarity between biospectra derived through UPGMA clustering is

measured by using confidence in cluster similarity values, where 1 is the highest

and 0 is the lowest confidence value. Biospectra classifications (Figs. 2 and 3)

were produced using the biospectra of 872 medicines in UPGMA clustering.

Biospectra deletion experiments were carried out by eliminating percentage

inhibition values for the GABA A benzodiazepine receptor from the 92-bioassay

array suite and repeating hierarchical clustering with truncated biospectra (91

bioassays) as described above.

Effect spectra. Clinical response data, which was derived from clinical response

data reported from commercial drug labels listed in the CEREP BioPrint

database19, was used for our investigation. In total, 1,045 medicines and B800

COSTART20 codes were used for constructing six datasets. Side-effect data was

converted into binary effect descriptor sets with a value of 1 assigned to

populated COSTART fields. Those include reported (with or without frequency

and/or severity), expected and post-marketing reports. A value of 0 was

assigned if a particular effect was not documented. To investigate effects of

information density and preclassification bias on classification, six separate

datasets (I–VI) were generated by changing descriptor length and data density.

Eliminating the most- and least-populated COSTART fields from set I, which

had 591 field descriptors, generated descriptor sets II and III (Supplementary

Table 3). Thus, binary drug effect descriptor set II was generated using 583

COSTART fields, eliminating the eight most common side effects from

descriptor set I (nausea, emesis, headache, dizziness, asthenia, rash, diarrhea

and abdominal pain, which appear at the far right of the x-axis dendrogram

(Fig. 1) and represent B4,000 data points). Binary drug effect descriptor set III

(240 fields) was generated by eliminating, from the 583 fields of set II, the most

sparsely populated COSTART fields (containing o0.01% of the data; far left on

the x-axis dendrogram of Fig. 1). Elimination of compounds from the data set

of 1,045 fields provided an additional means for assessing the effect of clinical

data density on cluster analysis. Hence, by removing 173 compounds from the

1,045-field datasets (I, II and III), datasets IV, V and VI, containing 872

compounds (Supplementary Table 3), were generated. These 173 compounds

were eliminated because they did not have complete preclinical datasets

(biospectra), which were required for the analysis shown in Figure 2a.

Hierarchical clustering using Ward’s method and average ordering function

provided classifications for each of these binary side effect descriptor sets I–VI

(ref. 22). Again, Ward’s hierarchical clustering method splits the database into a

hierarchical structure in which the similarity between different database

fragments is expressed in form of a tree representation. For each pair of

clusters in this dendrogram, a value of dissimilarity or distance is computed

using half-square euclidean distance as similarity measure. For example, the

distance (dissimilarity) between three clusters a1, a2, a3, which each contain n1,

n2 and n3 number of records upon association of clusters a2 and a3 into a new

cluster termed a4, is calculated as sim(a1, a4) ¼ (a � sim(a1, a2)) + (b �
sim(a1, a3)) – (c � sim(a2, a3), where ‘sim’ is the similarity between two

indexed clusters, a ¼ (n1 + n2)/(n1 + n2 + n3), b ¼ (n1 + n3)/(n1 + n2 + n3),

and c ¼ n1/(n1 + n2 + n3). The half-square euclidean distance is always Z0.

The measurement would be 0 for identical profiles and high for profiles that

show little similarity.

Statistics. All hierarchical clustering of biospectra and adverse event data were

conducted using Spotfire analysis tools. The clustering algorithms for each

dataset were UPGMA (using cosine distance as similarity measurement)

and Ward’s method, respectively. All calculations and graphs (Fig. 4) were

made using R statistical software. Distance matrices (Manhattan distance

calculation27,28) were calculated for the selected medicine’s biospectral

profile and were plotted against the distance matrices of the same medicine’s

side-effect profile.

Bioinformatics. Protein domain analysis in the graphical abstract and in

Supplementary Figure 2 was based on the network topology of the mamma-

lian proteome. Biological functions were assigned to each gene network using

findings extracted from the scientific literature and were imported into the

Ingenuity Pathway Analysis software (Ingenuity Systems). The biological

functions assigned to each network are ranked according to the significance

of that biological function to the network. The networks are shown graphically

as nodes (genes/gene products) and edges (the biological relationships between

the nodes). Human, mouse and rat orthologs of a gene, although stored

as separate objects in the knowledge base, are represented as a single node

in the network.

Note: Supplementary information is available on the Nature Chemical Biology website.
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