
Biological spectra analysis: Linking biological activity
profiles to molecular structure
Anton F. Fliri*, William T. Loging, Peter F. Thadeio, and Robert A. Volkmann*†

Pfizer Global Research and Development, Groton, CT 06340

Communicated by Larry E. Overman, University of California, Irvine, CA, October 25, 2004 (received for review September 4, 2004)

Establishing quantitative relationships between molecular struc-
ture and broad biological effects has been a longstanding chal-
lenge in science. Currently, no method exists for forecasting broad
biological activity profiles of medicinal agents even within narrow
boundaries of structurally similar molecules. Starting from the
premise that biological activity results from the capacity of small
organic molecules to modulate the activity of the proteome, we set
out to investigate whether descriptor sets could be developed for
measuring and quantifying this molecular property. Using a 1,567-
compound database, we show that percent inhibition values,
determined at single high drug concentration in a battery of in
vitro assays representing a cross section of the proteome, provide
precise molecular property descriptors that identify the structure
of molecules. When broad biological activity of molecules is rep-
resented in spectra form, organic molecules can be sorted by
quantifying differences between biological spectra. Unlike tradi-
tional structure–activity relationship methods, sorting of mole-
cules by using biospectra comparisons does not require knowledge
of a molecule’s putative drug targets. To illustrate this finding, we
selected as starting point the biological activity spectra of clotrim-
azole and tioconazole because their putative target, lanosterol
demethylase (CYP51), was not included in the bioassay array.
Spectra similarity obtained through profile similarity measure-
ments and hierarchical clustering provided an unbiased means for
establishing quantitative relationships between chemical struc-
tures and biological activity spectra. This methodology, which we
have termed biological spectra analysis, provides the capability not
only of sorting molecules on the basis of biospectra similarity but
also of predicting simultaneous interactions of new molecules with
multiple proteins.

biospectra ! proteome ! structure–function relationships

Organic molecules have the intrinsic capacity of both storing
and transmitting information. This ability provides the link

between chemical scaffold design and biological activity. Iden-
tification of structure features that allow differentiation between
effect and side-effect profiles of medicinal agents is currently
rate limiting in drug discovery (1). Current understanding of
structure–activity relationship (SAR) components evolved from
‘‘lock and key’’ models of protein–ligand interactions (2, 3). Each
protein family has its own sets of rules, which depend on dynamic
and structural aspects of ligand and ligand-binding site, for
identifying molecular properties that provide specific interac-
tions with proteins (4, 5). Current drug discovery methods
estimate biological response of potential medicinal agents by
constructing independent and linear models. Although these
models provide a link between specific biological targets and
therapeutic effects, the properties of natural signals are too
complex to expect that an independent set of descriptors would
be capable of forecasting broad biological responses (6). Hence
refinement of traditional SAR methods hinges on development
of nonlinear, multivariant models and availability of molecular
property descriptors that take into account chirality and dynamic
aspects not only of ligands but also of receptor targets (7).
Obviously, these models must also factor in the variance of
molecular property and biological response descriptors based on

differences in biological environments (8). Considering the
complexity of this requirement, computational solutions that
precisely link molecular structure to broad biological response
are currently not possible (9, 10). We report here an approach
to structure–function studies that is based on measurements of
the capacity of molecules to interact with the proteome (11).

Translation of Chemical Property Information into Biological
Activity Spectra
What emerges from investigations on the complexity of biolog-
ical response regulation is the obvious role that modularity plays
at every level, from genes to proteins to functions. Modular
structure design within protein families by using conserved
structure elements in the active site (11), for example, forms the
basis for 3D models, which drive SAR studies within protein
families. This strategy even succeeds in protein families whose
members have low sequence homology such as the cytochrome
P450 superfamily, which consists of !2,000 members distributed
across different organisms (12–15).

The investigation described below takes advantage of the
modularity concept for linking biological response and structure
design of molecules. Conservation of active site residues within
protein families is the reason that, at high ligand concentration,
the capacity of molecules to interact selectively with protein
targets is lost. Consequently, determination of percent inhibition
values for a molecule at single high drug concentrations not only
measures its interaction with a single target but also provides
information on a molecule’s broad interaction potential with a
large number of proteins represented in a gene family. Exam-
ining the ability of ligands to interact with proteins representing
a wide range of gene families of the ‘‘drugable’’ proteome (16)
under identical ligand concentration therefore provides an ef-
fective strategy for determining the interaction capacity of
molecules with this important section of the proteome (17–19).

For characterizing the interaction capacity of molecules with
the proteome, percent inhibition values are treated as a contin-
uum of data points and not as independent observations (9,
20–22). From this perspective, individual percent inhibition
values are not interpreted in terms of biological response
significance but instead are used to describe the interaction
capacity of a molecule with the proteome. Representation of this
molecular property as a biological activity spectrum has several
important consequences. First, biospectra provide a uniform
description of this molecular property, which integrate SAR
determinants of both ligand and ligand-binding sites. A second
feature is that biospectra derived from percent inhibition values
at single ligand concentration are normalized and directly com-
parable. As a result, spectroscopic methods can be used to
compare interaction capacities of molecules with the proteome
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across a wide range of structure classes. Biospectra similarity
between molecules is measured by using similarity measures such
as Euclidean distance, cosine correlation, city block distance, or
Tanimoto coefficient. For the SAR study presented below,
biospectra similarity was determined by using cosine correlation.
The other similarity measures provided similar results.

Methods
To probe the utility of biological activity spectra as an intrinsic
molecular property descriptor, we selected a portion of the
BioPrint database‡ of Cerep (Rueil-Malamaison, France) (23)
for our investigation. We used 1,567 structurally diverse mole-
cules and 92 ligand-binding assays for constructing a data set
containing complete percent inhibition values at 10 !M ligand
concentration. Primary screening at 10 !M was carried out in
duplicate. Additional screening was carried out at 10 !M ligand
concentration if results varied by more than 20%. The 92 assays
were selected to represent a cross section of the drugable
proteome as shown in Fig. 1 (16–19). The 1,567-compound data
set represented the complete list of molecules in the BioPrint
database that had percent inhibition values for all of the 92
assays. The compounds and assays used for this investigation are
listed in Data Sets 1 and 2, which are published as supporting
information on the PNAS web site. DECISIONSITE 7.2 (Spotfire,
Somerville, MA) was used for hierarchical clustering and profile
similarity searches.

Results and Discussion
To ensure that direct structure–activity information would not,
in any way, affect the outcome of our assessment of the general
utility of biospectra as molecular property descriptors, the
biological activity spectra of clotrimazole (1) and tioconazole (2)
(Fig. 2) were selected as a starting point for our investigation

because sterol 14"-demethylase (CYP51), the putative drug
target (15) of these antifungal agents, is not part of the 92-protein
bioassay suite. Fig. 2 shows the biological activity profiles for
clotrimazole and tioconazole by using the suite of in vitro assays
described above and listed in Data Set 2. Biological activity data
for these two molecules can be represented in several ways: (i)
a table listing the percent inhibition values of 1 and 2 in each of
the assays (Fig. 2A); (ii) a two-dimensional spectra representa-
tion of percent inhibition values, e.g., percent inhibition values
for each molecule in the 92 bioassays (Fig. 2B); (iii) a one-
dimensional comparison of percent inhibition values by using a
heat map representing individual percent inhibition values with
a coloring scheme (Fig. 2C).

Biospectra Similarity. The capacity of clotrimazole and tiocon-
azole to interact with the proteome is reflected in the biological
activity spectrum constructed from individual percent inhibition
values for these 92 bioassays obtained at 10 !M drug concen-
tration (Fig. 2). Experience with physicochemical spectra
teaches that spectra similarity parallels structure similarity.
Hence it is generally accepted that molecules with identical
structure have identical spectra and that spectra similarity
between molecules decreases with decreasing structure similar-
ity. There are two methods commonly used for spectra compar-
ison. One method for establishing biospectra similarity between
molecules is based on direct biospectra profile comparison.
Operationally, this method rank orders compounds in the da-
tabase by using similarity scores [similarity to profile (SP)
scores], obtained by comparing the biospectra of every molecule
in the database with the biospectrum of a reference compound.
The second method, which is not biased, identifies spectra
similarity [by using the confidence in cluster similarity (CCS)
scale] based on hierarchical clustering. Hierarchical clustering
identifies the best possible matches between compound pairs in
the entire database (optimal overall fit), whereas profile search-
ing identifies the compound that is most similar to the reference
profile (best reference fit). Conducting a profile search using
biospectra of clotrimazole (1) (Fig. 2) as entry point revealed
three biospectra of greatest similarity in the entire 1,567-
compound database: tioconazole (2) with a similarity (SP) rating
of 0.79 and two other related azoles, 3 and 4, the former with a
similarity rating of 0.81 and the latter with a rating of 0.79.
Remarkably, this biospectra similarity search identifies mole-
cules that all have antifungal activity and hence identifies
molecules with similar biological response capacity.

A second profile search, using the biospectra of tioconazole
(2) (Fig. 2) as entry point, revealed the following additional
molecules (azoles) with high similarity ranking: 3 [similarity (SP)
ranking of 0.92], 4 (0.90), 5 (0.84), 6 (0.86), 7 (0.78), 8 (0.79), and
9 (0.87). The results obtained in these two biospectra profile
searches were compared with results obtained by hierarchical
clustering using the unweighted pair-group method (UPGMA).
The same similarity measure was used for profile searching and
hierarchical clustering. Comparison between these independent
spectra comparison methods (comparing SP and CCS values)
indicates that biospectra spectra similarity parallels structure
similarity and biological response similarity. Accordingly, if the
spectra profile similarity [profile (SP) similarity values] ranking
between molecules is !0.8, then the molecules retrieved in a
profile search are structurally and pharmacologically closely
aligned. Likewise, hierarchical clustering identifies structurally
and pharmacologically closely related molecules, if molecules in
a cluster exhibit a confidence in cluster similarity ranking (CCS)
of !0.8. The results of profile searching and hierarchical clus-
tering merge, e.g., identify molecules as most similar if profile
search ranking or CCS value are !0.8 (see Fig. 4A). Examination
of the biospectra similarity of these and other molecules in the
database reveals that structure similarity relationships (visual

‡BioPrint is a commercial database, which is available to subscribers and contains data on
!2,500 drugs and drug-like molecules.

Fig. 1. A cross section of the drugable proteome. Proteins are clustered on
the basis of sequence homology. Proteins in close proximity in this dendro-
gram are members of the same gene family and share sequence similarity and
structure similarity in regulatory and ligand-binding domains. Cerep’s Bio-
Print database‡ (23) consists of !100 in vitro assays. Forty-two of the 92 assay
constituents used in our studies (shown in red) are G-protein-coupled recep-
tors (GPCRs). The rest encompass a wide range of functionally diverse proteins
representing a number of protein superfamilies.
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inspection) erode when similarity (SP) rankings or CCS values
are "0.80.

Hierarchical Clustering of the 1,567 Biospectra. The hierarchical
clustering of 1,567 compounds and 92 bioassays is shown in Fig.
3A. Hierarchical clustering of the biospectra of 1,567 molecules
listed in Cerep’s BioPrint database, using the UPGMA algo-
rithm and cosinus correlation as similarity measurement, pro-
vides two SAR dendrograms. The dendrogram depicted on the
y axis provides similarity assessments of molecules based on their
capacity to interact with the proteome (biospectra similarity).
The ‘‘biological activity’’ similarity between these molecules can
be ascertained by considering the organization of the y-axis
dendrogram. This organization captures the biological response
similarity of these molecules. Accordingly, molecules on proxi-
mate branches of the y-axis dendrogram in Fig. 3 have closely
related biological activity spectra and closely related pharma-
cology. The x-axis dendrogram, on the other hand, clusters
proteins on the basis of ligand-binding site similarity. This
property determines the appearance and organization of bio-
logical activity spectra. Biological activity spectra are organized
on the basis of the capacity of ligand-binding domains to
differentiate between ligands (25). The ligand-binding domain
similarity between the 92 proteins is objectively ascertained
through hierarchical clustering. Hierarchical clustering orga-
nizes the layout of the x-axis dendrogram and provides an
unbiased mean for biological spectra comparisons between
organic molecules.

Assessment of Biological Activity Profile Similarity. The dendrogram
flanking the y axis of Fig. 3A shows the binning of 1,567
molecules into clusters based on biospectra similarity. The
biospectra similarity between molecules is measured with CCS
values resulting from hierarchical clustering. Inspecting the
structures of molecules grouped in the y-axis dendrogram in Fig.
3A reveals that the clustering of compounds based on biospectra
similarity measurements separates these molecules into distinct
structural series and pharmacology classes. Accordingly, mole-
cules on proximate branches of the y-axis dendrogram in Fig. 3A
exhibiting a CCS ranking of #0.8 are structurally closely related.
This empirically determined CCS value is in agreement with
biospectra similarity rankings obtained through direct spectra
comparison (profile searching) studies shown above. Fig. 3A
organizes 73 clusters containing 317 compounds with a score of
#0.80 confidence range. Each of these clusters identifies struc-
turally and pharmacologically closely related molecules. Thirty-
three clusters in this database contain 109 compounds with CCS
values #0.90, indicating molecules whose biospectra profiles are
even more closely aligned.

A portion (23 compounds) of the entire data set, containing
clotrimazole (1), tioconazole (2), and related molecules 2–9, is
shown in Fig. 3B. Compounds 2–9 are antifungal agents with
similar structural motifs (Fig. 4A). The cluster of molecules 2–9
(‘‘azole’’ cluster) shown in Figs. 3B and 4 is prototypical of the
other clusters in the 1,567-compound database that have a
confidence in cluster similarity value of #0.80. Inspection of Fig.

Fig. 2. Biological activity spectra of antifungal agents clotrimazole and tioconazole. These spectra were constructed by using 92 bioassay data points from
Cerep’s BioPrint array.‡ The bioassay proteins, listed in Data Set 2, are located on the x axis. Associated percent inhibition values (A), determined at 10 !M drug
concentrations for each compound, are described in the two-dimensional spectra view shown in B and as a heat map shown in C, which presents the same
information and layout for the x axis and uses a coloring scheme for expressing percent inhibition values. A white to green to black gradient expresses values
between 0% and 100% inhibition. This coloring scheme is applied to all heat maps shown in this publication.
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4A reveals that dendrogram sections C and D resolve structurally
less similar molecules into subgroups containing molecules 2–5
and another containing 6–9, and these are further resolved into
groupings providing tightly associated structures. The closer the
confidence in similarity value approaches unity in these sub-
groups, the greater the structural similarity. Accordingly, in the
azole cluster shown in Fig. 4A, the biospectra of molecules 6 and
7 have a CCS value of 0.94. This is the highest biospectra
similarity score within this group of antifungal imidazole deriv-
atives and identifies two structures that differ by only a single
atom: chlorine versus a bromine atom in the thiophene moiety
of the azole nucleus. A CCS score of only 0.77 was obtained in
the biospectra comparison of clotrimazole (molecule 1) and
tioconazole (molecule 2). These values indicate that these mol-
ecules have significant structural differences.

The fact that high CCS values correlate tightly with molecular
structure similarity has obvious implications. A major one is the
ability of approaching structure–function studies from either
direction (predicting structure from function or predicting func-
tion from structure). Experience with physicochemical spectro-
scopic methods such as NMR, IR, or mass spectrometry teaches
that similarity relationships between molecules and spectra are
exchangeable and, as a result, chemical structure can be assigned
by using spectra as input and spectra can be predicted by using
molecular structure information as input.

Predicting Biospectra by Using Molecular Structure Information. For
testing the inverse process, using chemical structure information
for determining biospectra of molecules, four compounds, 10–
13, were added to the 1,567-compound database to assess the
forecasting capabilities of this methodology. Compounds 10–13
were omitted in the first analysis, shown in Fig. 4A, because they
did not have a complete data set: they lacked percent inhibition
values for either bradykinin B2 or the enzyme P55fyn receptors
in the 92-protein assay suite. Visual comparison of the structures
of 10–13 with molecules 2–9 (shown in Fig. 4) reveals a strong
structural similarity between these molecules. Based on this
assessment and the observations described above, the biospectra
profiles of molecules 10–13 are expected to be more closely
aligned to those of molecules 2–9 than any of the other 1,559
remaining compounds in the database. For this reason, the CCS
values for 10–13 and compounds 2–9 in the azole cluster are
projected to exceed CCS values of 0.8 and hence only one of the
73 clusters with CCS values #0.8 in Fig. 4 should include
molecules 2–13.

Repeating the hierarchical clustering process as described
before but, in this instance, using 1,571 instead of 1,567 mole-
cules (by including molecules 10–13) creates a new complete
linkage map. The azole section of the new linkage map shown in
Fig. 4B contains, as anticipated, molecules 2–13. Remarkably,
not only is the inclusion of 10–13 in the dendrogram of Fig. 4B

Fig. 3. Hierchical clustering of 1,567 compounds by using percent inhibition values. (A) A heat map and x-axis and y-axis dendrograms obtained for the complete
SAR matrix. Over 140,000 data points with a dimension 92 # 1,567 (assays # molecules) resides in the heat map. (B) A portion (23 molecules in 92 assays) of the
heat map containing clotrimazole (1) and tioconazole (2), which were described in Fig. 2. The data are organized by using two classification schemes
(dendrograms): one with horizontal orientation on top (x-axis dendrogram) and the other with vertical orientation on the left side (y-axis dendrogram).
Receptors appearing in the x-axis dendrogram are color coded according to memberships in designated protein superfamilies: blue, G-protein-coupled receptors;
pink, enzymes; green, ion channels; purple, transporters; orange, receptors; black, steroid receptors. Providing an unbiased organization of biospectra of
individual molecules (shown on the y axis). The x-axis dendrogram clusters proteins into groups based on interaction profile similarity between proteins by using
the percent inhibition values of 1,567 molecules as the measure. Proteins with similar percent inhibition value distribution (similar ligand-binding domain
characteristics) appear on proximate branches of the x-axis dendrogram. The y-axis dendrogram, on the other hand, clusters molecules on the basis of similarity
ranking obtained by comparing biospectra by using the UPGMA algorithm (molecule comparison). Biospectra similarity between clusters and individual
molecules is measured by using confidence in CCS values. Clusters to the right of the red line of the y-axis dendrogram have CCS values !0.80. A similar scoring
method for comparing molecular structure based on IR spectra similarity has been described by Varmuza et al. (24).
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predictable, but in addition, where molecules 10–13 specifically
reside in dendrogram 4B and how closely these molecules are
associated with other members of the cluster can also be
rationalized. For projecting the evolution of the dendrogram
shown Fig. 4B, one matches up molecules 10–13 with those most
similar in structure (differing by the least number of atoms) in
Fig. 4A (26). Predictions of bioactivity profiles, dendrogram
relationships, and CCS values are based on competition exper-
iments involving molecules 10–13 and compounds 2–9. The
starting point for these calculations is the dendrogram section in
Fig. 4A derived from the y-axis dendrogram shown in Fig. 3B.
Displacement of molecules from this (and other) clusters takes
place if a new hierarchical cluster is projected to yield a higher
CCS value in biospectra similarity competition.

Predicting the Evolution of the Dendrogram in Fig. 4B. Accordingly,
to project how the added molecules 10–13 integrate with the
molecules residing in Fig. 4A, the following individual structure
comparisons were made. Molecules 10 and 11 were first singled
out because of their structural similarity to molecule 3 in
dendrogram section C of Fig. 4A. In fact, by examining the
structures of molecules residing in this section, one recognizes
that molecule 3, which is aligned with 4 in Fig. 4A, is actually
structurally more similar to molecules 10 and 11 than to molecule
4. This is because molecules 10 and 3 differ by only a single atom;

molecule 10 has sulfur instead of an oxygen atom in the ether
linkage, whereas molecules 3 and 4 (clustered in Fig. 4A with a
CCS of 0.93) have greater structural diversity (a chlorophenyl
group in 3 is replaced by a thiophene moiety in 4). Likewise,
molecule 11 is structurally more similar to molecule 3 than to
molecules 2, 4, 5, and 10. Once more, molecule 11 differs from
molecule 3 by only a single atom (a chlorine atom is substituted
for a hydrogen atom on the phenyl ring of the benzyl group) and
11, in turn, differs only by two atoms from 10 (oxygen for a sulfur
atom and chlorine for a hydrogen atom). These comparisons
establish a close structural relationship between molecules 3, 10,
and 11. Inspection of the CCS values in Fig. 4A indicates that the
displacement of molecule 4 by either molecule 10 or molecule 11
in the cluster pair of 3 and 4 shown in Fig. 4A requires a CCS
value that exceeds 0.93 because that value serves as the standard
for the association of 3 and 4. Whether 10 or 11 is more closely
aligned with 3 is not obvious; however, the assessment of
structural similarity predicts a cluster for molecule 3, 10, and 11
(with 4 being displaced) and that one of the molecule pairs 3 and
10 or 3 and 11 has a CCS value !0.93. In addition, because the
structure comparisons made above indicate that molecules 10
and 11 are structurally less similar to each other than they are to
molecule 3, the prediction would be that molecule 3, 10, and 11
have a dendrogram relationship where one molecule pair, 3 and
10 or 3 and 11, is projected to have a CCS value of #0.93 and

Fig. 4. Hierarchical clustering of biospectra provides the azole section of this linkage map using 1,567 molecules in hierarchical clustering (see Fig. 3) (A) and
the new y-axis dendrogram section containing azole derivatives 1–13 and using 1,571 molecules in hierarchical clustering, resulting from the addition of 10–13
to the database (B).
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the remaining, either 10 or 11, a CCS value of #0.91 because this
value will compete with the CCS value given for the biospectra
comparison between structurally less similar molecules (2 and
molecules 3 and 4) in Fig. 4A.

Furthermore, by examining the structural similarity of mole-
cule 2 in relation to molecules 3, 4, 5, 10, and 11, one recognizes
that molecule 2 is structurally more similar to molecule 4 than
to molecules 3, 5, 10, or 11. Again, molecules 2 and 4 differ by
only one atom (a chlorine versus a hydrogen atom in the
thiophene moiety of molecule 4). Fig. 4A lists a CCS value of 0.91
for these molecules. The CCS value of 0.91 should remain intact.
In addition, the CCS value of 0.86 for the clustering of 2, 3, and
4 with 5 dictates the dendrogram relationship between clusters
containing molecule pair 2 and 4 and molecules 3, 10, and 11.
The CCS value separating these clusters is projected to be #0.86
to compete successfully with the value obtained for the biospec-
tra comparison of cluster 3, 10, and 11 with structurally less
similar molecule 5 in Fig. 4A.

Comparing dendrogram section C (Fig. 4A) with dendrogram
section E (Fig. 4B) indicates that the predictions made above are
accurate: not only are the anticipated alignments of molecules in
the new azole cluster correct but so too are the CCS values
obtained for individual clusters. Accordingly, confidence in
cluster similarity values in combination with chemical structure
similarity assessments accurately predicts biological activity pro-
files and dendrogram relationships of previously not-tested
molecules (27). This analysis can be extended to molecules 12
and 13, whose structural similarity with molecules 1–11 is less
pronounced. Comparing biospectra and CCS values of structur-
ally related molecules (biospectra comparison of molecules with
CCS values !0.80 in Fig. 3A), provides a wealth of information
for drug design. Determination of differences in CCS values
(delta CCS, or differences between other similarity measures) in
biospectra competition experiments provides, for example, qual-
itative and quantitative assessment of ‘‘bioequivalence’’ of struc-
ture fragments (bioisosteres).

The experiments described above indicate that the informa-
tion content stored in biospectra matches the information con-

tent of physicochemical descriptors and that biospectra are
precise descriptors of molecular properties capable of differen-
tiating molecules on the basis of single atom pair differences. The
accurate differentiation of structurally similar molecules is based
on standardized descriptions of the capacity of molecules to
interact with the proteome and not on information on the
putative drug target. This approach in structure–function studies
enables consideration of wide response determinants and does
not require representation of response as a linear combination
of independent relationships. Moreover, simple rules provide
accurate projections for establishing response–structure rela-
tionships, based on y-axis dendrogram clusters of structurally
related molecules in Fig. 3A. As a result, biological spectra
analysis permits precise assessment of molecular properties
relevant to structure–function relationships not only for indi-
vidual molecules but also for clusters of compounds embedded
in chemical series.

Summary. Comparing biological activity profiles of molecules
assayed at a single ligand concentration provides an unbiased
means for establishing quantitative relationships between chem-
ical structure and broad biological effects without using infor-
mation on affinities for putative drug targets. Being able to
measure and quantify structural similarity of organic molecules
by using biological molecular property descriptors has significant
implications in many areas of science. For medicinal chemists,
understanding the biological consequence of structural changes
in a molecular series is essential to the drug discovery process.
For combinatorial chemists, understanding the relationship be-
tween new synthetic libraries and existing molecules is crucial.
Herein we have shown a paradigm that uses the unique structural
properties of the proteome to order organic molecules. This
method is f lexible and is capable of incorporating diverse
databases of molecules and proteins. Biological spectra analysis
(biological spectroscopy) has significant implications for systems
biology and drug discovery. Biological activity profiles are
precise indicators not only of molecular properties such as
molecular structure but also of the biological response capacity
of molecules.
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