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ABSTRACT
Motivation: A method for prediction of disease relevant
human genes from the phenotypic appearance of a query
disease is presented. Diseases of known genetic origin
are clustered according to their phenotypic similarity. Each
cluster entry consists of a disease and its underlying
disease gene. Potential disease genes from the human
genome are scored by their functional similarity to known
disease genes in these clusters, which are phenotypically
similar to the query disease.
Results: For assessment of the approach, a leave-one-out
cross-validation of 878 diseases from the OMIM database,
using 10672 candidate genes from the human genome,
is performed. Depending on the applied parameters, in
roughly one-third of cases the true solution is contained
within the top scoring 3% of predictions and in two-third of
cases the true solution is contained within the top scoring
15% of predictions.

The prediction results can either be used to identify
target genes, when searching for a mutation in monogenic
diseases or for selection of loci in genotyping experiments
in genetically complex diseases.
Contact: jan.freudenberg@uni-bonn.de

INTRODUCTION
Identification of genes, whose products play a role in
monogenic or genetically complex diseases, is a major
aim in the analysis of the human genome (International
Human Genome Sequencing Consortium, 2001; Venter et
al., 2001). In the genetic analysis of monogenic diseases,
mutations cosegregating with the disease phenotype are
searched directly in potentially disease relevant genes. In
the genetic investigation of complex diseases, associated
single nucleotide polymorphisms (SNPs) are searched
previous to actually disease causing mutations (Risch
and Merikangas , 1996). When testing for mutations or
genetic variations underlying human disease, investiga-
tions of both monogenic and complex diseases rely on
potentially disease relevant genes, termed in the following

as candidate genes. The term positional candidate is used
for genes, which are located in a genomic region, that is
considered suspicious by linkage analysis studies (Lander
and Kruglyak, 1995). The term functional candidate
is used for genes, which are assumed because of the
molecular role of the gene product.

In this paper, a similarity-based algorithm for functional
scoring of candidate genes, which may be relevant for
an arbitrary query disease, is introduced. The algorithm
starts from the assumption, that phenotypically similar
diseases are caused by similar molecular mechanisms.
Phenotypically similar diseases are defined by their
similar clinical features. For a query disease of unknown
genetic cause, clusters of phenotypically similar diseases
with known underlying disease genes are computationally
identified. Genes of similar function to the respective
known disease genes are then suggested as candidate
genes for the query disease.

The predictions can be used to home in to the more
presumable candidate genes, when searching for a muta-
tion in a monogenic disease. In genetically complex dis-
eases, high scoring candidate genes may be selected in
SNP-genotyping experiments and consecutive relative risk
scoring.

To our knowledge, only one other purely computational
method for prediction of disease relevant genes from the
clinical features of a disease has been published elsewhere
(Perez-Iratxeta et al., 2002). This other method uses text-
mining for linking disease phenotypes with underlying
molecular mechanisms.

MATERIALS AND METHODS
Computing phenotypic similarity between human
diseases
The OMIM-morbid map lists all diseases contained in the
OMIM-database (Hamosh et al., 2000). These diseases
are attributed manually according to their phenotypic
appearance, using the indices ‘periodicity’, ‘etiology’,
‘tissue’, ‘age of onset’ and ‘mode of inheritance’. Of
course attributes are not distinct for each disease entry and
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Table 1. Diseases from the OMIM database are indexed according to their
episodic occurrence, primary etiology, primary tissue, mode of inheritance
and age of onset. Here a set of four example entries is shown

Index
Disease

episodic etiology tissue onset inheritance

Epilepsy,
noctur-
nal
frontal
lobe
(600513)

yes regulatory,
metabolic

cns to pu-
berty

autosomal
dominant

Colorectal
cancer
(16806)

no neoplastic gastro-
intestinal

late
adult

autosomal
dominant

Arginin-
emia
(107800)

no metabolic cns, liver first
year

autosomal
recessive

Duchenne
muscu-
lar
dystro-
phy
(310200)

no degenerative muscles to pu-
berty

x-
chromosom

occasionally arbitrary decisions have to be made. A set of
examples of indexed diseases are shown in Table 1.

The index ‘episodic’ of a disease is a boolean variable,
indicating an episodic occurrence of a disease in contrast
to a linear progression. Typical examples of episodic
disease are bipolar affective disorder or epilepsy.

The index ‘etiology’ is based on clinical signs and
laboratory or pathological findings of a disease. The
attribute list includes the terms inflammatory, neoplastic,
degenerative, regulatory or metabolic. In cases where
no clear distinction can be made, multiple attributes are
allowed.

The index ‘tissue’ is compiled as a subset of the terms:
central nervous system, peripheral nervous system, eye,
lens, cornea, ear, heart, lung, kidney, gastro-intestinal,
liver, bone-marrow derived cells, endocrine tissue, con-
nective tissue, muscle, skin and bone. For each disease in-
stance tissues are listed, where disease signs are primarily
recognized, due to tissue damage or impairment of organ
function. Secondary changes due to the course of a disease
are ignored as much as possible. If necessary, multiple at-
tributes are allowed here as well.

The mode of ‘inheritance’ indicates, whether a disease
is inherited in autosomal-dominant, autosomal-recessive,
x-chromosomal, mitochondrial or complex manner.

The age of ‘onset’ of a disease refers to the age, when
symptoms are generally first noticed. Here the attributes in
utero, first year of live, up to puberty, early adulthood (up

to 50 yrs) and late adulthood (above 50 yrs) are applied.
Cases, where no clear mode of inheritance or age of onset
is known, are left without these attributes.

The most stringent definition of similarity requires
identical attributes for each index. However, this would
separate many diseases, which are phenotypically similar
to a high degree. For example, clinical subtypes of
a disease rely on different phenotypes, consecutively
resulting in non-identical indexing. Therefore a more
relaxed definition of similarity between two diseases D1
and D2 is invented, which can be expressed by the
following similarity function:

sim(D1,D2) :=
∑

wi · sim(D1.indexi , D2.indexi )

with the weights wi specifying the contribution of a
single index to the total similarity score. The weights are
adjusted, that the similarity between two diseases scales
to the interval [0..1[. The following similarity functions
are applied for comparing the individual indices:

sim(D1.episodic,D2.episodic) :=

{
1 if D1.episodic = D2.episodic

0 if D1.episodic �= D2.episodic

sim(D1.inheritance,D2.inheritance) :=

{
1 if D1.inheritance = D2.inheritance

0 if D1.inheritance �= D2.inheritance

sim(D1.onset,D2.onset) :=

{
1 if D1.onset = D2.onset

0 if D1.onset �= D2.onset

sim(D1.etiology,D2.etiology) :=

{
1 if D1.etiology = D2.etiology

0 if D1.etiology �= D2.etiology

p if D1.etiology ≈ D2.etiology

sim(D1.tissue,D2.tissue) :=

{
1 if D1.tissue = D2.tissue

0 if D1.tissue �= D2.tissue

q if D1.tissue ≈ D2.tissue

As mentioned above, indexing of diseases according to
their etiology and tissue does allow multiple attributes.
Partial matches indicated by ≈ between two sets of
attributes are scored as p and q from the interval [0..1].

Phenotypically similar diseases are grouped into clus-
ters, using a complete linkage strategy. Thus the required
similarity between each pair of diseases within a same
cluster is specified by a given threshold. In order to im-
prove the quality of the disease clusters, diseases regarded
similar, are placed next to each other as a starting condi-
tion of the clustering algorithm.

In the following analysis, all weights in the above
proposed disease similarity function are kept fixed. The
respective value is searched by a human expert, manually
assessing the resulting intra-cluster similarity of diseases.

Scoring candidate genes for a disease of unknown
genetic cause
After diseases of known genetic origin are clustered
according to their phenotypic similarity, candidates from
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Fig. 1. Outline of the reasoning process: The clusters contain phe-
notypically similar diseases and their known respective underlying
disease genes. For a query disease, all similar clusters are identified.
Scores of candidate genes as related to known disease genes within
these clusters are summed up. Top scoring candidate genes are taken
as more probable candidates for the respective query disease.

the human genome are scored for these clusters. Thereto
annotations of candidate genes are compared to the
annotations of knowns disease genes, underlying diseases
in a cluster. Thus annotations of disease genes in a
phenotypic similarity cluster link a query disease to
candidate genes, which are not connected to the disease
yet. By combining the similarity score between the query
disease and the clusters with the candidate gene scores as
related to the respective clusters, candidate genes relevant
for a query disease are identified. The reasoning process is
outlined in Figure 1.

In the presented analysis, scoring of candidate genes
relies on recent efforts, that provided Gene Ontology
annotations for the human genome (Apweiler et al., 2001).
Gene Ontology (GO) is a controlled vocabulary of terms,
describing the biological roles of molecular entities and
their relationships (Gene Ontology Consortium, 2000).
Totally, we obtain a set of 10 672 GO-annotated candidate
genes.

If C is a candidate gene from the human genome having
n GO-annotations GOA, the score of C for a disease
cluster having m entries, is computed as the average ratio
of the number of each GO-annotation of cluster disease
genes identical to the candidate’s GO-annotation and the
number of the respective GO-annotation in all disease
genes, scaled by the size of the cluster.

score(C ,Cluster ) : =
∑

G O A

#G O Ai ∈Cluster
#G O Ai

n · m

The score estimates, how well the cluster is separated
from other clusters by features shared between the candi-
date gene with disease genes within the cluster, compared
to features shared between the candidate gene and all other
disease genes.

For a query disease D, we define the set SimClustersD
as all these clusters, which are regarded similar to D.
Subsequently the score of a candidate C from the human
genome for a query disease D is computed as the sum over
all scores of the candidate C for all SimClustersD .

score(C ,D) : =
∑

SimClustersD

score(C, SimClusterD j )

This score estimates the degree of association between
an annotated candidate gene and a query disease as the
sum over all similarity scores between the candidate and
clusters containing diseases, which are phenotypically
similar to the query disease.

The similarity between a query disease D and a disease
cluster is computed as the average similarity between the
disease D and all m diseases Dk contained in the cluster:

sim(D,Cluster ) : =

∑
Dk∈Cluster

sim(D, Dk)

m

This similarity score corresponds to an average-linkage
score, using the above similarity measure.

Computing functional similarity between disease
genes
A functional similarity score between two disease genes
G1, G2 is needed for validation of our underlying
assumption. This functional similarity between two genes
is computed as the average specificity Sp() of their shared
n GO-annotations GOA:

sim(G1,G2) : =
{

1 if G1 = G2∑
G O Ai

Sp(G O Ai )

n

Due to the hierarchical nature of GO, different levels of
detail of an GO-annotation roughly relate to the hierarchy
levels of respective GO-terms. So the hierarchy level of a
GO-term is used as the specificity of an annotation in the
given formula. We are aware, that the hierarchy level of a
GO-term is not in complete accordance with its specificity.
Thus applying the hierarchy level of a GO-term as its
specificity may give only an estimate of an ideal score.
However, the defined score is sufficient for our needs (see
below).

Constructing a test set for assessment of disease
gene predictions
As described above, disease entries from the OMIM
database are indexed according to their clinical phenotype
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Fig. 2. The number of phenotypic similarity clusters is shown
for different required pairwise within cluster-similarity. Thresholds
are scaled linear to the interval [0..1]. As expected, the number
of obtained clusters increases sharply with the required minimum
similarity.

for the presented experiments. The sample of indexed en-
tries, where a certain underlying gene has been annotated
by GO-terms, contains 878 entries. Each entry consists of
a disease and an underlying disease relevant gene. This set
of disease entries is taken as test-set for assessment of our
method. Thus totally 878 known disease genes are to be
identified from the above mentioned 10672 GO-annotated
genes.

RESULTS
Testing the underlying assumption
The algorithm starts from the assumption, that phenotyp-
ically similar diseases are caused by similar molecular
mechanisms. This assumption relates to the observation
by Jiminez-Sanchez et al. (2001), who show that func-
tionally similar genes, when mutated, have a characteristic
pattern of human disease.

To assess the assumption that phenotypically similar
diseases are caused by similar molecular mechanisms, a
complete linkage clustering of disease entries from the
OMIM-database with respect to their phenotypic indices
is performed, as described above. In an analog fashion,
a complete linkage clustering of disease entries with
respect to the functional similarity of their underlying
disease genes is performed. Consecutively each disease
entry belongs to a unique phenotypic similarity cluster as
well as a unique functional similarity cluster. Of course
both size and content of the clusters depend on the
required similarity between entries within a cluster. As
expected, the total number of both the phenotypic disease
similarity clusters (Figure 2) and the functional disease
gene similarity clusters (data not shown) increases with
more stringent within cluster similarity required.

If the assumption that phenotypically similar diseases
are caused by similar molecular mechanisms holds true,

Table 2. Error probabilities of dependence between disease entry member-
ships in phenotypic similarity clusters and functional similarity clusters. The
top line shows the required within cluster phenotypic similarity, the left line
shows the required within cluster functional similarity. A stable region in
parameter space showing high significance is found in the central part of the
table

similarity threshold 0.57 0.64 0.71 0.78 0.85

0.27 0.16 0.85 0.12 0.66 0.67

0.36 0.18 0.06 0.003 0.02 0.17

0.45 0.12 0.04 0.02 0.004 0.12

0.54 0.53 0.40 0.11 0.004 0.13

0.63 0.69 0.96 0.20 0.12 0.59

Table 3. Different thresholds are applied for computing the similarity
between a query disease and the respective disease clusters (top row). The
fraction of diseases from the 878 diseases in the test set, where at least one
cluster is recognized as similar, is shown in the bottom row

similarity
threshold

0.64 0.71 0.78 0.85 0.92

fraction of
diseases

0.99 0.98 0.97 0.92 0.66

membership of disease entries in both types of clusters
are dependent on each other. To evaluate this dependency,
the actual counts of disease entries are recorded in a
n x m contingency table. A chi-square test of statistical
independence between phenotypic cluster memberships
and functional cluster memberships is performed.

In Table 2, error probability values for rejection of
the null hypothesis of independence between the mem-
berships of disease entries in phenotypic similarity and
functional similarity clusters depending on different
similarity thresholds are tabulated. A stable region in pa-
rameter space is detected, where the assumption appears
to be significant. Using the similarity definitions given
above, this regions contains the phenotypic similarity
thresholds [0.64..0.78] combined with the functional
similarity thresholds [0.36..0.45].

Prediction of disease-relevant genes
GO-annotated candidate genes can be scored for a query
disease, if at least one disease cluster is recognized as
similar to a query disease. This means, if for certain
parameter values no disease cluster at all is recognized as
similar to a query disease, no candidate genes are scored
for this disease. Table 3 shows for different similarity
thresholds the fraction of diseases, where at least one
disease cluster is recognized as similar. The threshold
similarity between a query disease and a cluster is set to
be the required similarity within a cluster respectively.
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Predictions appear to be most powerful in cases,
where different members of a disease family are
caused by mutations in different genes. For exam-
ple, different forms of colorectal neoplasms are re-
lated to Beta Catenin (IPI00017292), Bax Protein
(IPI00023992), APC Protein (IPI00012391), Tumoranti-
gen P53 (IPI00025087), PMS Protein Homolog1
(IPI00005541), PMS1 Protein Homolog 2 (IPI00005543),
Transforming Protein N-Ras(IPI00000005), Tranform-
ing Protein P21B (IPI00000010), Colorectal Mutant
Cancer Protein (IPI00011957), DNA Mismatch Re-
pair Protein MLH1 (IPI00011957), DNA Mismatch
Repair Protein MSH2 (IPI00017303), Chloride Anion
Exchanger (IPI00031036), TGF-Beta Receptor Type II
(IPI00020431) and the Tumor Suppressor Protein DCC
(IPI00016422). Mutations in the respective genes may
produce different phenotypes of intestinal neoplasms.
Both the disease phenotype and disease genes functions
are clearly similar to each other. The same holds true
for other diseases, such as epilepsy, cardiomyopathy or
peripheral neuropathy.

At the other end of the spectrum, prediction results
appear to be poor for syndromal phenotypes, such as
Wiskott–Aldrich Syndrome, Beckwith–Wiedemann Syn-
drome or Prader–Willi Syndrome. This may be either due
the partly understood causal mechanisms or weak pheno-
typic indexing because of the more complex phenotype.
However, no general rule can be recognized, on what kind
of diseases the systems succeeds or fails in either case.

Benchmarking prediction of disease-relevant genes
A leave-one-out cross validation is performed on the
above described test-set. This means for each disease,
clusters of phenotypic similar diseases are recomputed,
disregarding the respective test disease. The respective
underlying disease gene is regarded as unknown and the
above set of 10 672 GO-annotated candidate genes is
scored by our method.

Predictions are then ordered according to their scores in
a descending manner. Top scoring genes may be taken as
more probable candidates for a query disease.

In Figure 3 the cumulative sum of true predictions
contained in a candidate set is plotted over the threshold
size of the candidate set. Different curves relate to
different cluster similarity threshold parameters.

The diagonal shows number of true predictions, if can-
didate genes were picked by chance alone. The difference
of the plotted curves and the diagonal relates to the aver-
age amount of information, which is gained about candi-
date genes by our method. Using high stringent thresholds
obtains high numbers of true predictions in a relatively
small sized candidate set. Thus high stringent thresholds
give the most confident predictions. However, in a signif-
icant fraction of diseases, no candidates are scored at all.
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Fig. 3. The cumulative sum of true solutions contained in the
candidate set is plotted over its threshold size. Totally 878 test
diseases are to be predicted from 10672 candidate genes. Different
curves show different required cluster similarity thresholds. The
diagonal indicates the number of correct predictions contained in
the candidate set by chance alone.

If a medium stringent threshold is used for definition of
phenotypic similarity, both a high number of true positive
members in the candidate sets as well as high fraction of
predicted test diseases is achieved. Low stringent thresh-
olds are able to score the set of candidate genes for the all
test diseases, but the quality of the respective predictions
is reduced.

Using high stringent thresholds, in about one-third of
predicted diseases (193 of 580) the true solutions is
contained within the top scoring 1.5% of candidates (160
of 10 672). Using medium stringent thresholds, in about
one-third of cases (284 of 851) the true solutions is
contained within the top scoring 3% of candidates (321
of 10 672) and in two-third of cases (568 of 851) the
true solutions is contained within the top scoring 15%
of candidates (1600 of 10 672). Thus most confident
predictions are obtained based on small sets of highly
similar diseases to a query disease. If such highly similar
diseases are not available, sensible results can still be
obtained using relaxed similarity thresholds.

CONCLUSION AND FUTURE WORK
We present a new approach for prediction of disease
relevant human genes: a query disease is linked to its
potentially underlying disease genes, using known genetic
causes of similar diseases. Therefore a similarity measure
between the phenotypes of two diseases is defined.
Diseases of known genetic origin are then clustered
according to their phenotypic similarity. Each cluster entry
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consists of a disease and the respective underlying disease
gene. Candidate genes are scored for each cluster, by
comparing features of the candidate gene to features of
disease genes in the cluster. Candidate genes relevant for
a query disease are identified by combining these scores
with the similarity between the query disease and the
disease clusters.

Improvement of the presented method may result from
more detailed and revised phenotypic indexing of dis-
eases, as well as a more systematic search of the parameter
space, to optimize the applied similarity functions. In
the presented validation study, clusters of phenotypically
similar diseases are computed in an automatic fashion.
Instead, manual editing of disease clusters may lead
to improved results, because more detailed biomedical
knowledge can be applied.

Presently large scale approaches investigating genetic
variation underlying genetic disease are under way
worldwide (Heil et al., 2002). As shown here, it is
possible to significantly decrease the amount of required
experimental resources by including easily accessible
knowledge into an experimental set-up. However, com-
putational prediction of disease relevant genes must be
regarded as an extremely hard problem, with probably no
biomedical optimal solution attainable at all. More than
ever, one cannot expect to predict these genes with high
confidence by one single method. Instead, information
about candidate genes gained by different independent
methods has to be combined. Evidence independent
to our predictions is given for example as positional
information, which is experimentally generated by family
linkage studies. These studies are successful to a point,
where a relatively high number of positional candidate
genes remain. Consecutively preference might be given
to these candidates, which are both predicted by the
presented method and which are supported by linkage
studies. However, it has to be kept in mind, that positional
evidence is probabilistic by its nature.

The presented work has been made possible by the high
quality annotations of the human genome and proteome,
provided by the NCBI (Hamosh et al., 2000) and the EBI
(Apweiler et al., 2001). We expect further improvement
of the method with the further increase of quantity and
quality of the human genome annotation. An optimistic
bias in the presented benchmarking surely results from the
fact, that known genes underlying disease in the OMIM
database tend to have been the subject of more empirical
research and are more likely to be well annotated.
However, our approach is not restricted to GO-annotations
of candidate genes. Instead, experimental data could
be used as annotating features, linking candidate genes
and known disease genes. For example gene expression
patterns could be used as features, to score a candidate
for a disease cluster. This approach would extend the

gene expression analysis method proposed by Zien et al.
(2000), who score high order knowledge about molecular
pathways with respect to expression data.

Since most knowledge gathered in OMIM relates to
monogenic diseases, one may ask, whether prediction of
candidate genes for complex diseases is out of reach for
our approach. This is true in the sense, that predictions
presently rely on the diseases gathered in OMIM. How-
ever, also monogenic forms of complex diseases can give
important clues to the underlying mechanisms.

A lot of research in bioinformatics is based on the fact,
that biological data can be grouped with respect to mean-
ingful similarities. In this context, clustering of human dis-
eases according to a combination of both clinical appear-
ance and underlying molecular mechanisms still needs fur-
ther exploration. So it might also be interesting, to draw
explicit molecular knowledge from the disease clusters.
The presented work should be seen as a small step of on-
going work, using computational methods to relate human
diseases to their molecular basis.
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