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ABSTRACT
Motivation: Discovery of host and pathogen genes expres-
sed at the plant-pathogen interface often requires the con-
struction of mixed libraries that contain sequences from both
genomes. Sequence identification requires high-throughput
and reliable classification of genome origin. When using
single-pass cDNA sequences difficulties arise from the short
sequence length, the lack of sufficient taxonomically relevant
sequence data in public databases and ambiguous sequence
homology between plant and pathogen genes.
Results: A novel method is described, which is independent
of the availability of homologous genes and relies on subtle
differences in codon usage between plant and fungal genes.
We used support vector machines (SVMs) to identify the pro-
bable origin of sequences. SVMs were compared to several
other machine learning techniques and to a probabilistic algo-
rithm (PF-IND, Maor et al., 2003) for EST classification also
based on codon bias differences. Our software (ECLAT) has
achieved a classification accuracy of 93.1% on a test set of
3217 EST sequences from H. vulgare and B. graminis, which
is a significant improvement compared to PF-IND (prediction
accuracy of 81.2% on the same test set). EST sequences with
at least 50 nt of coding sequence can be classified by ECLAT

with high confidence. ECLAT allows training of classifiers for
any host-pathogen combination for which there are sufficient
classified training sequences.
Availability: ECLAT is freely available on the internet
(http://mips.gsf.de/proj/est ) or on request as a
standalone version.
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1 INTRODUCTION
The characterization of interactions between plants and their
pathogens is a major contemporary research area and has
its roots within agriculture and disease control. To analyze
genes expressed within plant defense mechanisms and patho-
gen virulence at the molecular level, cDNA libraries may be
constructed from either infected or challenged tissues. The
subsequent single-pass sequencing of these cDNAs produ-
ces expressed sequence tags (ESTs). There are currently over
100,000 ESTs within the public sequence databases clearly
annotated as coming from mixed plant-pathogen interactions.

Within the realm of comparative plant genomics and gene
identification there is a need to simply and reliably identify
and filter out the non-plant sequences. Although experi-
mental techniques can be applied for this purpose, they are
laborious and time-consuming and therefore become infeasi-
ble for large numbers of EST sequences. Hence efficient and
reliable computational EST classification methods are requi-
red. The canonical approach involves performing a BLAST
search against genetic databases such as GenBank to find a
significant unambiguous match that resolves either the plant
or pathogen origin of sequence. This approach is based on the
assumption that a plant sequence will be more homologous to
any other plant sequence than to a pathogen sequence due to
taxonomic proximity. However, it has been shown that biased
taxa representation in existing databases decreases reliability
of this homology approach (Koski and Golding, 2001).

An advanced method (Hsiang and Goodwin, 2003) tack-
les this problem by using a restricted database for homology

Bioinfor matics © Oxford University Press 2004; all rights reserved. 

 Bioinformatics Advance Access published December 7, 2004



Friedel et al

search consisting of a single plant and fungal genome, each
closely related to the infected plant and the fungal pathogen
respectively. However in most cases this approach is limi-
ted by the lack of complete or adequate genome coverage
for related organisms. Moreover difficulties in classification
are increased by the relatively high sequence homology of
plant and fungal genes with conserved functions. There-
fore a method is desired which is independent of sequence
homology and the availability of genomic sequences.

A suitable approach to this task employs codon usage pre-
ferences which vary significantly between species (Sharp
et al., 1988) and are correlated to GC content at the third
codon position (Kawabe and Miyashita, 2003; Fennoy and
Bailey-Serres, 1993). A probabilistic algorithm based on this
observation is PF-IND (Maoret al., 2003), which compa-
res the actual number of occurrences of codons of different
types (G or C ending versus A or T ending) for particular
amino acids in an EST sequence with the expected number
of occurrences in plant and fungus respectively using Poisson
distribution. The resulting probabilities are used to classify
sequences as either plant or fungal.

In this paper we show that by applying standard machine
learning algorithms, classification accuracy can be improved
decisively compared to the simple probabilistic approach. We
present a novel method for classification of EST sequences
based on support vector machines (SVM), which is indepen-
dent of homology criteria and relies only on codon usage
differences. This method was used to train a classification
scheme to discriminate between EST sequences fromH. vul-
gare and B. graminisand can easily be extended to other
plant-pathogen pairs.

2 METHODS
Support Vector machines
The use of Support Vector Machines (SVM) is a prevalent
technique for data classification based on linear decision rules
(Vapnik, 1995; Burges, 1998; Boseret al., 1992). SVMs take
as input i.i.d. (independent and identically distributed) trai-
ning samples(x1, y1), . . . , (xn, yn) wherexi represents the
sample attributes andyi ∈ {−1,+1} the class.

SVMs will then find a hyperplane separating the trai-
ning instances by their classes and maximizing the distance
from the closest examples to the hyperplane (maximum-
margin hyperplane). The classification of a sample will be
determined by the sign of the function

f(x) = wTx+ b

wherew and b are the parameters of the hyperplane. The
examples closest to the hyperplane are called support vectors
and are crucial for training.

For many training sets it will not be possible to separate
samples by a linear function in the original feature space,
so training instances are mapped into a higher dimensional

space by a functionφ. SVM will then find a linear maximum-
margin hyperplane in this higher dimensional space. For
solving this problem it is not necessary to directly define
the mapping into higher dimensional space, but it is suffi-
cient to give the dot product of two instances in this space
(Burges, 1998).K(xi, xj) = φ(xi)

T
φ(xj) is called a kernel

function. Commonly used kernel functions comprise linear,
polynomial, sigmoid and radial basis functions (RBF). For
our purpose we used an RBF kernel, as the linear kernel
has been proven to be a special case of the RBF kernel
(Keerthi and Lin, 2003) and the sigmoid kernel appears to
behave like RBF for some parameters (Lin and Lin, 2003).
Moreover RBF has less hyperparameters than the polynomial
kernel and is less difficult numerically than both sigmoid and
polynomial kernel. The radial basis function is defined by

K(xi, xj) = exp(−γ‖ xi − xj ‖2), γ > 0.

The parameters of the maximum-margin hyperplane are
calculated by solving a quadratic programming optimization
problem (Boseret al., 1992) and there exist several speciali-
zed algorithms for solving this problem efficiently (Joachims,
1999; Platt, 1998).

Training sequences
We used a dataset of 3974 unigene sequences of various
lengths from barley (H. vulgare, 1487 seqs.) and blumeria
(B. graminis, 2487 seqs.). Unigene sequences were chosen
to avoid redundancy and derived as follows. Public EST
sequences from bothB. graminisandH. vulgarewere cluste-
red and assembled within the Sputnik EST analysis pipeline
(Rudd et al., 2003). The Hashed Position Tree clustering
algorithm (Heumann and Mewes, 1996) was used to cluster
sequences using a similarity threshold of 0.7 and 100 network
iterations to describe a cluster. Sequence assembly was per-
formed using CAP3 (Huang and Madan, 1999) with default
parameters. For each of the derived unigenes regions of likely
coding sequence (CDS) were identified by a BLASTX com-
parison against a non-redundant sequence database. Best
matches exceeding the arbitrary expectation threshold of 1e-
15 were filtered and probable cds was collated in species
specific datasets. These collections of sequences were used
to derive a species specific codon usage and hexanucleotide
probability tables with the FrameFinder application (Slater,
2000) to predict a single uninterrupted cds for each of the
unigenes. Short sequences were excluded (threshold of 21
bp).

Sequence attributes
For each sequence in the data set codon frequencies are com-
puted from its beginning up to the first stop codon. To account
for some codons missing by random, pseudocounts are used.
The frequency for a given codonc is computed as

F (c) =
nc + 1∑

c′∈Codons nc′ + 64
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Table 1. Training procedure:i = 1 for frame model,i = 2 for class model

Let T be the set of all training instances

1. For each attributeaj compute
• maxij ← maxt∈T aj(t)

• minij ← mint∈T aj(t)

2. Scale training instances usingmaxij andminij for attributeaj

3. Calculate support vectors using scaled training instances

whereni denotes the absolute number of occurrences of a
codoni. Therefore for each sequence 64 attributes are derived
for training and classification. Those attributes are computed
for each of the six possible frames of a sequence separately so
that every sequence provides 6 training instances, one correct
frame and five incorrect frames.

Training
There are two parts in building a classification model. To
begin with a support vector model is calculated to distin-
guish between correct and wrong frames in a sequence. The
training instances for computing this model are chosen as
follows. From half of the original sequences (chosen ran-
domly) the correct frame is used, whereas from the other
half a randomly chosen wrong frame is used. This is done
to ensure that correct and incorrect frames are represented
equally in the training instances. First the maximum and
minimum values for each attribute over all training instances
are determined. These values are then used to scale training
instances such that all attribute values lie between−1 and1.
Afterwards they are stored for later use in classification. After
scaling the instances, the support vectors are computed using
a RBF kernel.

The second step is then to learn a classifier for separating
the two possible classes (plant and fungus). In this case only
the correct frame of each sequence is used for training. As
before maximum and minimum values for each attribute are
calculated and the training instances are scaled appropriately
to lie in the interval[−1, 1]. Then support vectors are cal-
culated in the same fashion as before. Table 1 describes the
general procedure for each of the two steps.

Classification
Classifying a sequence also consists of two parts. First the
coding frame is determined and then classified as being of
plant or fungus origin. To determine the correct frame the
sequence’s attributes are first scaled using the pre-computed
scaling parameters for frame determination. (Note that now
the attributes will no longer necessarily lie in the range of
[−1, 1].) Following scaling the first SVM model is then used

to classify the six possible frames as being correct or incor-
rect. As every frame is classified independently, it does
happen occasionally that all frames are classified as being
incorrect or more than one frame is classified as being cor-
rect. In this case the reading frame with the largest predicted
margin is chosen. Having selected the coding frame, scaling
on the original attribute values is applied again, this time
using the scaling parameters for classification. Afterwards
this frame is classified by the SVM model for discriminating
between plant and fungus origin. See table 2 for a summary
of the steps involved.

Software
ECLAT is an implementation of the described method and is
available online (http://mips.gsf.de/proj/est ).
It consists of a web-frontend and Java packages. Compu-
ting of support vector machines is done using the freely
available software package LIBSVM (Chang and Lin, 2001),
which provides implementations for support vector classifi-
cation, regression and distribution estimation based on the
algorithms SMO (Platt, 1998) and SVMLight (Joachims,
1999). For communication between the frontend and the Java
application a XML format has been defined.

Frontend The user interface consists of two HTML input
forms for classification and training mode respectively. The
server is based on Tomcat as container. For handling of inco-
ming requests JSP and Java are used. All request parameters
are first stored in a Java Bean, tested for validity (e.g. correct
sequence format) and transformed into the XML format defi-
ned as internal data interface. After processing the request,
an XSL template and a modified version of the tag libraries
of the Jakarta project (http://jakarta.apache.org )
are used to transform XML result data into HTML for
presenting it to the user.

Application layer Classes have been implemented in Java
for data storage, training and classifying as well as managing
the process. For support vector classification Java implemen-
tations of LIBSVM are used, which allows for fast training
and classification.

Table 2. Classification procedure.

Let t be an unclassified sequence

1. Calculate codon frequencies for each frame

2. Scale frames withmin1j andmax1j , j ∈ [1, 64]

3. Determine correct frame using SVM model

4. Scale correct frame withmin2j andmax2j , j ∈ [1, 64]

5. Classify frame using SVM model
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Table 3. Estimates for classification accuracy of machine learning algorithms using repeat holdout with stratification on thebarley/blumeriadata set.
Results for the different holdout splits were averaged. Accuracy is defined as the number of correctly classified instances divided by the total number of
instances. No abstaining on instances is applied yet, thus error rate and accuracy sum up to one.

Algorithm
Accuracy (in %)

SVM ASNN Random Forest Naive Bayes JRip J4.8 PF-IND

Average 92.9 92.4 88.9 87.8 85.9 82.2 82.0
Standard Deviation 0.6 0.5 1.0 0.9 1.8 1.6 0.9

The application starts by parsing the XML input to deter-
mine the mode (training or classification) which is to be
performed. If training mode is chosen, the training sequences
are read. For each of the training sequences codon frequen-
cies are computed for all six frames. These attributes are used
to perform training as described above. Additional unclassi-
fied sequences can be classified afterwards using the trained
model. To estimate performance of the trained classifier ten-
fold-cross-validation can be chosen. This will slow down the
training process as ten additional training rounds have to be
performed, each with a training set nine tenths the size of the
original training set.

In classification mode all unclassified sequences are read
from the XML input. Codon frequencies are computed for
each frame of each sequence. This information is then used
to classify the sequence by the presented method. In doing
this, the user has the choice to apply either the online availa-
ble model forH. vulgareandB. graminisor to use a model
previously trained with ECLAT for any other plant-fungus
pair.

3 RESULTS
Comparison of different machine learning
algorithms and PF-IND
Several machine learning algorithms as well as a probabili-
stic algorithm were compared concerning their performance
on discriminating plant from fungal ESTs. Performance was
measured in terms of prediction accuracy using the mixed
barley/blumeria data set described before but including only
sequences longer than 100 bp. Accuracy is defined as the per-
centage of correctly classified instances. For this comparison
performance was calculated only on the correct frame. The
machine learning algorithms applied to the task comprised
support vector machines (LIBSVM, Chang and Lin, 2001),
artifical neural networks (ASNN, Tetko, 2002, available
online at http://www.vcclab.org ), random forests
(WEKA implementation, Witten and Frank, 2000), Naive
Bayes (WEKA), decision trees (J4.8 from WEKA), Rule
learning (JRip from WEKA). Additionally PF-IND (Maor

Table 4. Estimates for classification accuracy using different
subsets of attributes. Abbreviations: CF=codon frequencies,
%GC3=percentage of synonymous codons ending at G or C,
FP=probability of fungus origin of sequence (%GC3 and FP com-
puted separately for each amino acid). Results for the ten random
holdout splits were averaged.

Attributes Accuracy (in %)

Type # Average Standard Deviation

CF 64 93.5 0.8
%GC3 18 88.9 0.5
FP 18 62.6 2.6
CF+%GC3 82 93.5 0.6
CF+FP 82 93.1 0.5
%GC3+FP 36 88.6 0.8
all 100 92.9 0.6

et al., 2003) was evaluated, an algorithm designed specifi-
cally to separate ESTs from mixed plant-fungus EST-pools.
To allow high-throughput analysis the method described in
Maor et al., 2003 was re-implemented using the same codon
usage frequencies, we compared the predictions of the ori-
ginal implementation and our version for several sequences.
Not only did we get the same predictions for those sequences,
but also the same scores for all frames. Thus the original and
our version of PF-IND calculated the same results for this test
and both implementations do not differ.

For evaluation three kinds of attributes were calculated for
each sequence: codon frequencies (64 attributes), %GC3 (18
attr.) and fungus probabilities (18 attr.). Codon frequencies
were computed as described in the methods section. %GC3
for an amino acid denotes the ratio of occurrence of GC-
ending codons to overall occurrence of the amino acid they
are coding for. These attributes were included since the main
source of variation in codon bias are the levels of C and
G-ending codons (Fennoy and Bailey-Serres, 1993; Kawabe
and Miyashita, 2003). Fungus probabilities describe the pro-
bability that a given number of GC- and AT-ending codons
coding for the same amino acid will occur in an EST from
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Table 5. Estimates for classification accuracy of ECLAT and PF-
IND in predicting the correct reading frame. Results for the ten
random holdout splits were averaged.

Accuracy (in %)

Algorithm Average Standard deviation

ECLAT 97.7 0.4
PF-IND 71.4 0.7

the fungus species. This was a similar approach to PF-IND,
but without previous selection of amino acids. These proba-
bilities were estimated using Poisson distribution and codon
usage frequencies obtained from the online database site
http://www.kazusa.or.jp/codon/. Note that the last two types
of attributes were computed for each amino acid separately,
excluding methionine and tryptophane.

To estimate performance repeated holdout with stratifica-
tion was applied on the data set. The holdout procedure
consisted of splitting the data randomly into training and test
sets. One third of the data set was chosen for testing and
the remainder for training. The additional use of stratification
ensured that both classes were represented the same proporti-
ons in both training and test sets. With each machine learning
algorithm a classifier was learned from the training set and
performance was estimated on the test set. This was repeated
10 times with different random splits to decrease any bias due
to a particular sample choice. For PF-IND no training was
necessary as precomputed codon frequencies were used, but
to make performance comparable only sequences from the
respective test sets were classified. Table 3 shows the ave-
rage results for the ten holdouts. No significant differences
between the performances of support vector machines and
artificial neural networks were detected using a paired t-test,
therefore both performed equally good on the given data set.

Comparison of different subsets of attributes
concerning prediction accuracy
We evaluated the attribute types described before separately
and combined in regard to performance as instance attributes
for support vector classification on the same random trai-
ning and test splits as above (see table 4). Using only codon
frequencies as sequence attributes resulted in an average clas-
sification accuracy of 93.5%, which was significantly better
than using the complete attribute set. (Significance was tested
with paired t-tests). Additional use of %GC3 or fungus pro-
babilities with codon frequencies did have no significant
effect on prediction performance. Contrary to codon frequen-
cies the subset containing exclusively probabilities of fungal
origin performed poorly with a prediction accuracy at 62.8%.

When we tried probabilities of plant origin of sequence or
ratios of both instead these results did not improve.

Prediction of the correct reading frame
To assess ECLAT ’s capability of predicting the correct rea-
ding frame the first step of the classification procedure was
evaluated separately. For that purpose frame prediction per-
formance of ECLAT was determined on the previously des-
cribed 10 holdout splits and compared to PF-IND predictions
(see table 5). Analysis showed that ECLAT predictions of the
correct frame were highly reliable (average prediction accu-
racy of 97.7%) whereas PF-IND predicted the frame of only
71.4% of the sequences correctly.

Performance in discriminating plant and fungal
sequences
So far the accuracy of each of the two steps of the ECLAT

methodology has been examined separately. To estimate per-
formance of the complete procedure tenfold cross-validation
was repeated ten times. Tenfold cross-validation consisted
of splitting the barley/blumeria data set randomly into ten
parts and then alternatingly using one part for testing and
the remainder for training, excluding sequences shorter than
100 nucleotides from the data set (leaving 3217 sequences).
The average accuracy in predicting the origin of sequence
was 93.1% for ECLAT. As 10-fold cross-validation provided
a prediction for each single instance in the data set, per-
formance of PF-IND was estimated on all barley/blumeria
sequences longer than 100 bp, which resulted in an estimated
prediction accuracy of 81.2% for PF-IND.

Dependence of classification performance on
sequence length
The length of an EST sequence determines the accuracy of
its classification. In short sequences it will not be possi-
ble to estimate the underlying codon frequencies correctly,
as only few codons occur at all. In this case pseudocounts
will dominate the calculated codon frequencies. To study this
effect, different sequence intervals were analyzed in relation
to the resulting accuracy. Repeated 10-fold cross-validation
was performed with sequence length boundaries of 50, 100,
200, 300, 400 and 500 base pairs for testing. Results of this
analysis can be seen in table 6. The same intervals were used
in estimating the performance of PF-IND.

ECLAT predictions became less precise for shorter
sequences, but still for sequence lengths between 50 and 100
the origin of a sequence could be determined with an average
accuracy of 90%. The highest prediction accuracies were
achieved for sequences between 300 and 500 bp , whereas for
sequences longer than 500 bp accuracies decreased slightly.
PF-IND performance also increased with sequence length,
but for sequences longer than 500 base pairs classification
accuracy dropped as low as 71.8%. We examined if PF-IND
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Table 6. Estimates for classification accuracy of ECLAT and PF-IND for different sequence length intervals. Estimates were performed by repeated 10-fold
cross-validation. Results for the ten repeats were averaged.

Sequence length (in bp)

[21,50] [51,100] [101,200] [201,300] [301,400] [401,500] ≥ 500

# sequences 431 326 748 768 646 502 553
ECLAT

Average accuracy (%) 78.8 90.0 90.6 92.2 95.6 95.7 94.4
Standard deviation (%) 0.9 0.9 0.4 0.4 0.3 0.5 0.5
PF-IND
Accuracy (%) 71.9 81.6 81.0 83.5 86.7 81.1 71.8

results for long sequences could be improved by recalcula-
ting codon usage based only on long sequences, however
classification accuracy did not increase.

Performance on EST sequences from GenBank
The performance of ECLAT and PF-IND additionally was
tested on EST sequences from GenBank. These sequences
were deposited in Genbank in the second part of 2003 or
later and did not overlap with the training set used to deve-
lop the method. The second test set contained 931 sequences
from blumeria and and 9312 sequences from barley. The
composition of the test set mirrored the taxa bias in EST data-
bases towards plant EST sequences. Furthermore a minimum
sequence length threshold of 100 bp was applied again. The
results are shown in table 7.

In this test classification accuracy for blumeria was com-
parable to previous results for ECLAT and increased for
PF-IND, whereas for barley classification accuracy dropped
significantly for both ECLAT and PF-IND. We also tested
if classification accuracy could be increased by abstaining,
i.e. not classifying sequences for which no frame is classi-
fied as correct. Indeed, this did raise classification accuracy
by more than 6% for barley and almost 5% for blumeria.
However, around 19% of the sequences remained unclas-
sified. Contrary to that only 1.3% of the barley/blumeria
unigene sequences remained unclassified when using tenfold
cross-validation with abstention, which was not done in the
previous tests.

Application to different organism pairs
To test if our methodology is also applicable to a wider range
of biological targets, we used a second data set containing
EST sequences from cotton (G. arboreum, 2028 seqs.) and
cotton root knot nematode (M. incognita, 2040 seqs.). This
training set was derived using the same method as before, so
the methodology remains consistent with what has already
been done. The prediction accuracy of a model trained on
this data set as estimated by 10-fold cross-validation is about
87.3%. This result clearly indicates that the methodology is

Table 7. Estimates for classification accuracy of ECLAT (with and
without abstention) and PF-IND on EST sequences from GenBank.

Accuracy (in %)

Algorithm H.vulgare B.graminis

ECLAT 81.0 91.9
ECLAT with abstention 87.6 96.5
PF-IND 56.6 90.1

also applicable to other systems, such as plant/nematode.
Since the classification performance is lower compared to
the barley/blumeria analysis, we can conclude that the codon
compositions of both these species are similar and their ESTs
are more difficult to separate.

4 DISCUSSION
Previous approaches to the prediction of species origin for
sequences from mixed plant-pathogen EST collections have
utilized homology based methods. The objective of ECLAT

was to provide an easy to use interface for high-throughput,
automatic classification of ESTs derived from pathogen-
infected plants, which does not rely on the existence of
homologous sequences in public databases. Differences in
codon frequencies between plant and fungi have already
proven to be a reliable basis for fast computational EST clas-
sification (Maoret al., 2003). In this paper, we demonstrated
that utilization of machine learning methods (SVMs) could
improve results decisively compared to the existing probabi-
listic algorithm PF-IND. Analysis of sequences longer than
100 bp from a mixed barley-blumeria EST dataset showed
an accuracy of averagely 93% for ECLAT compared to 81%
for PF-IND. For a second test set containing sequences from
Genbank both classifiers performed worse than in previous
tests. This drop in accuracy can be explained by vector con-
taminations or low quality regions within EST sequences
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deposited in databases. Further detrimental effects may result
from high redundancy within EST databases as well as the
fact that many of the tested EST sequences may not contain
a coding sequence at all. In fact, it could be shown that clas-
sification accuracy could be increased further by abstaining
from classifying sequences where no frame was predicted as
correct. This suggests that for a large fraction of ESTs, the
observed codon frequencies deviate from the expected due
to a lack of coding sequence or contamination. This viola-
tes basic assumptions of both ECLAT and PF-IND. Therefore
before using ECLAT care should be taken to remove vector
contaminations and to assess sequence quality.

Currently ECLAT only provides a pre-built model for the
plant-fungus pair barley and blumeria, but the design of the
software allows extensions to more organism pairs, as it does
not rely on any specific characteristics of barley and blume-
ria except for codon bias differences. Researchers have the
possibility to train ECLAT specifically for plant-fungus pairs
of interest using EST sequences from their laboratories. In
general, we believe that it will be impossible to specify some
objective criteria to predict the accuracy of EST separation “a
priori”. Nevertheless, it is always possible to develop a new
classifier using the available data and test its performance
with cross-validation to decide if the proposed methodology
can or cannot be applied in each particular case.

The use of two additional types of attributes derived from
codon frequencies proved to have a neutral or even detri-
mental effect on prediction accuracy. The results suggest that
both types of attributes hardly contribute any new informa-
tion compared to the original codon frequencies. Furthermore
the slightly but significantly lower accuracy on the complete
attribute set implies overfitting effects. None of the additional
attribute sets taken separately did perform as well as codon
frequencies. Unexpectedly the probabilistic attributes perfor-
med very poor, although a good algorithm based on these
probabilities exists (Maoret al., 2003). The exclusion of
those attributes provided model simplicity, which is desired
to reduce overfitting effects, without decreasing overall pre-
diction accuracy. In the future further attribute types should
be considered which are not dependent of codon frequencies
such as occurrences of short sequence motifs or GC-content.

Several standard machine learning algorithms were evalua-
ted on the task of training models to classify EST sequence
data. Here support vector machines and artificial neural net-
works proved to be equally capable, but support vector
machines, at least the used implementation, had the advan-
tage of speed, which becomes an important factor when
learning with large training sets. Unfortunately SVMs pro-
duce “black box” models, i.e. the reason for misclassification
of sequences in most cases is unclear. Nevertheless, some
tendencies can be observed, such as a negative correlation
between the absolute value of the margin of a sequence and
its probability to be classified. PF-IND could establish the
origin of 94 of 100 test sequences in a previous test (Maor

et al., 2003), whereas on the 3217 sequences from barley
and blumeria used for our estimates its prediction accuracy
reached only 82% on average.

Although programs exist for predicting correct reading fra-
mes in ESTs, ECLAT does not use any of these, but instead
applies machine learning techniques, reaching an accuracy
of 98%. Of course, the task here has been simplified as
only two organisms have to be considered. Nevertheless trai-
ning data for each of the two classes (correct vs. incorrect
frame) are heterogeneous since they contain sequences from
both organisms. The high classification accuracy therefore
suggests, that the difference in codon usage is more severe
between correct and incorrect frames than between orga-
nisms. A possible explanation could be that incorrect frames
contain codons which are never or rarely observed for the
correct frames. Since the same problem is relevant for both
plant and fungi, the algorithm correctly identifies the coding
frames for both of them.

The prediction accuracy of both ECLAT and PF-IND incre-
ases with sequence length but decreases again for sequences
longer than 500 bp. Yet the drop in prediction accuracy for
very long sequences is much more pronounced for PF-IND.
This is consistent with the observation that quality within
EST sequences rapidly degrades as length exceeds an opti-
mum of approximately 400 nt (Rudd, unpublished data). For
sequences of less than 50 nt the distribution of codon fre-
quencies deteriorates to a uniform distribution with peaks for
only a few codons, thus making classification difficult.

ECLAT assists in the rapid and automatic analysis of
ESTs. Nevertheless ECLAT should not replace BLAST ana-
lysis, which gives additional hint to gene function, but be
used complementarily to validate BLAST results and give
predictions when no close homolog can be found.

Although ECLAT was developed primarily for the pur-
pose of classification of sequences from mixed plant-fungus
EST-pools, our tests have shown that these methods are also
applicable to other pairs of evolutionarily distinct organisms
such as plant/nematode. Alternative applications of ECLAT

may comprise automatic prediction of high and low expres-
sed genes, since gene expression levels and codon bias are
positively correlated (Duret and Mouchiroud, 1999), or the
detection of putative alien sequences in a genome, which
have originated from horizontal transfer events.
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