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ABSTRACT

Motivation: Discovery of host and pathogen genes expres-
sed at the plant-pathogen interface often requires the con-
struction of mixed libraries that contain sequences from both
genomes. Sequence identification requires high-throughput
and reliable classification of genome origin. When using
single-pass cDNA sequences difficulties arise from the short
sequence length, the lack of sufficient taxonomically relevant
sequence data in public databases and ambiguous sequence
homology between plant and pathogen genes.

Results: A novel method is described, which is independent
of the availability of homologous genes and relies on subtle
differences in codon usage between plant and fungal genes.
We used support vector machines (SVMs) to identify the pro-
bable origin of sequences. SVMs were compared to several
other machine learning techniques and to a probabilistic algo-
rithm (PF-IND, Maor et al, 2003) for EST classification also
based on codon bias differences. Our software (ECLAT) has
achieved a classification accuracy of 93.1% on a test set of
3217 EST sequences from H. vulgare and B. graminis, which
is a significant improvement compared to PF-IND (prediction
accuracy of 81.2% on the same test set). EST sequences with
at least 50 nt of coding sequence can be classified by ECLAT
with high confidence. EcLAT allows training of classifiers for
any host-pathogen combination for which there are sufficient
classified training sequences.

Availability: ~ EcLAT is freely available on the internet
(http://mips.gsf.de/proj/est ) or on request as a
standalone version.
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1 INTRODUCTION

The characterization of interactions between plants and their
pathogens is a major contemporary research area and has
its roots within agriculture and disease control. To analyze
genes expressed within plant defense mechanisms and patho-
gen virulence at the molecular level, cDNA libraries may be
constructed from either infected or challenged tissues. The
subsequent single-pass sequencing of these cDNAs produ-
ces expressed sequence tags (ESTs). There are currently over
100,000 ESTs within the public sequence databases clearly
annotated as coming from mixed plant-pathogen interactions.

Within the realm of comparative plant genomics and gene
identification there is a need to simply and reliably identify
and filter out the non-plant sequences. Although experi-
mental techniques can be applied for this purpose, they are
laborious and time-consuming and therefore become infeasi-
ble for large numbers of EST sequences. Hence efficient and
reliable computational EST classification methods are requi-
red. The canonical approach involves performing a BLAST
search against genetic databases such as GenBank to find a
significant unambiguous match that resolves either the plant
or pathogen origin of sequence. This approach is based on the
assumption that a plant sequence will be more homologous to
any other plant sequence than to a pathogen sequence due to
taxonomic proximity. However, it has been shown that biased
taxa representation in existing databases decreases reliability
of this homology approach (Koski and Golding, 2001).

An advanced method (Hsiang and Goodwin, 2003) tack-
les this problem by using a restricted database for homology
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search consisting of a single plant and fungal genome, eacpace by a functiop. SVM will then find a linear maximum-
closely related to the infected plant and the fungal pathogemargin hyperplane in this higher dimensional space. For
respectively. However in most cases this approach is limisolving this problem it is not necessary to directly define
ted by the lack of complete or adequate genome coveragthe mapping into higher dimensional space, but it is suffi-
for related organisms. Moreover difficulties in classificationcient to give the dot product of two instances in this space
are increased by the relatively high sequence homology ofBurges, 1998)K (z;, z;) = qb(xi)Tqﬁ(mj) is called a kernel
plant and fungal genes with conserved functions. Therefunction. Commonly used kernel functions comprise linear,
fore a method is desired which is independent of sequencgeolynomial, sigmoid and radial basis functions (RBF). For
homology and the availability of genomic sequences. our purpose we used an RBF kernel, as the linear kernel
A suitable approach to this task employs codon usage prdias been proven to be a special case of the RBF kernel
ferences which vary significantly between species (ShargKeerthi and Lin, 2003) and the sigmoid kernel appears to
et al, 1988) and are correlated to GC content at the thirdbehave like RBF for some parameters (Lin and Lin, 2003).
codon position (Kawabe and Miyashita, 2003; Fennoy andVioreover RBF has less hyperparameters than the polynomial
Bailey-Serres, 1993). A probabilistic algorithm based on thikernel and is less difficult numerically than both sigmoid and
observation is PF-IND (Maoet al, 2003), which compa- polynomial kernel. The radial basis function is defined by
res the actual number of occurrences of codons of different
types (G or C ending versus A or T ending) for particular
amino acids in an EST sequence with the expected number The parameters of the maximum-margin hyperplane are
of occurrences in plant and fungus respectively using Poissogalculated by solving a quadratic programming optimization
distribution. The resulting probabilities are used to classifyproblem (Boseet al.,, 1992) and there exist several speciali-
sequences as either plant or fungal. zed algorithms for solving this problem efficiently (Joachims,
In this paper we show that by applying standard maching 999: Platt, 1998).
learning algorithms, classification accuracy can be improved. . .
decisively compared to the simple probabilistic approach. W raining sequences
present a novel method for classification of EST sequenceé/e used a dataset of 3974 unigene sequences of various
based on support vector machines (SVM), which is indepenlengths from barleyH. vulgarg 1487 segs.) and blumeria
dent of homology criteria and relies only on codon usaggB. graminis 2487 segs.). Unigene sequences were chosen
differences. This method was used to train a classificatioito avoid redundancy and derived as follows. Public EST

2
K(zi,xj) = exp(—[| i — x5 [|7),7 > 0.

scheme to discriminate between EST sequencesffomul-  sequences from bo#. graminisandH. vulgarewere cluste-
gare and B. graminisand can easily be extended to otherred and assembled within the Sputnik EST analysis pipeline
plant-pathogen pairs. (Rudd et al., 2003). The Hashed Position Tree clustering
algorithm (Heumann and Mewes, 1996) was used to cluster
2 METHODS sequences using a similarity threshold of 0.7 and 100 network

; iterations to describe a cluster. Sequence assembly was per-
Support Vector machines ) i formed using CAP3 (Huang and Madan, 1999) with default
The use of Support Vector Machines (SVM) is a prevalentyarameters. For each of the derived unigenes regions of likely
technllque for data classification based on linear decision r“'%ding sequence (CDS) were identified by a BLASTX com-
(Vapnik, 1995; Burges, 1998; Boseral, 1992). SVMstake narison against a non-redundant sequence database. Best
as input i.i.d. (independent and identically distributed) trai- natches exceeding the arbitrary expectation threshold of 1e-
ning samplesz1, y1), ..., (zn, yn) Wherez; represents the 15 were filtered and probable cds was collated in species
sample attributes angl € {1, +1} the class. _ specific datasets. These collections of sequences were used
SVMs will then find a hyperplane separating the trai-y, gerive a species specific codon usage and hexanucleotide
hing instances by their classes and maximizing the distancgyopapility tables with the FrameFinder application (Slater,
from the closest examples to the hyperplameaXimum-  2000) to predict a single uninterrupted cds for each of the

margin hyperplang The classification of a sample will be nigenes. Short sequences were excluded (threshold of 21
determined by the sign of the function bp).

fx)=wlz+b Sequence attributes

wherew and b are the parameters of the hyperplane. TheFor each sequence in the data set_codon frequencies are com-
ted from its beginning up to the first stop codon. To account

examples closest to the hyperplane are called support vectdpd! .

and are crucial for training. for some codons missing by ran_dom, pseudocounts are used.
For many training sets it will not be possible to separate! N€ frequency for a given codaris computed as

samples by a linear function in the original feature space, ne+1

S0 training instances are mapped into a higher dimensional Fle) = Y e Codons et + 64
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Table 1. Training procedurei = 1 for frame model; = 2 for class model  to classify the six possible frames as being correct or incor-
rect. As every frame is classified independently, it does
happen occasionally that all frames are classified as being
Let T be the set of all training instances incorrect or more than one frame is classified as being cor-
rect. In this case the reading frame with the largest predicted
margin is chosen. Having selected the coding frame, scaling
on the original attribute values is applied again, this time
using the scaling parameters for classification. Afterwards
this frame is classified by the SVM model for discriminating
between plant and fungus origin. See table 2 for a summary
of the steps involved.

1. For each attribute; compute
® max;;j — maxser a;(t)

® min;; < minyer a;(t)
2. Scale training instances usingax;; andmin,; for attributea ;
3. Calculate support vectors using scaled training instances

Software
h denotes the absolut ber of ¢ ECLAT is an implementation of the described method and is
wherén; denotes e absolute number of 0CCUITeNces of g, 4 apje online fittp://mips.gsf.de/proj/est ).

]?OOLOH.Z'T heregortla for.?acth seq_ll_Jr(]ance 6:{ gbttrtlbutes are den:e consists of a web-frontend and Java packages. Compu-
ortraining and classitication. 1hose atributes are compute ng of support vector machines is done using the freely

for each of the six possibI(_—:- frames (_)f_a sequence separately ailable software package LIBSVM (Chang and Lin, 2001),

e\%ich provides implementations for support vector classifi-
cation, regression and distribution estimation based on the
algorithms SMO (Platt, 1998) and SVMLight (Joachims,

Trainin I
g : o . 1999). For communication between the frontend and the Java
There are two parts in building a classification model. Toapplication a XML format has been defined.

begin with a support vector model is calculated to distin-

guish between correct and wrong frames in a sequence. THaontend The user interface consists of two HTML input
training instances for computing this model are chosen aforms for classification and training mode respectively. The
follows. From half of the original sequences (chosen ranserver is based on Tomcat as container. For handling of inco-
domly) the correct frame is used, whereas from the otheming requests JSP and Java are used. All request parameters
half a randomly chosen wrong frame is used. This is donere first stored in a Java Bean, tested for validity (e.g. correct
to ensure that correct and incorrect frames are representagquence format) and transformed into the XML format defi-
equally in the training instances. First the maximum andned as internal data interface. After processing the request,
minimum values for each attribute over all training instancesan XSL template and a modified version of the tag libraries
are determined. These values are then used to scale trainin§the Jakarta projechftp://jakarta.apache.org )
instances such that all attribute values lie betweérand1l.  are used to transform XML result data into HTML for
Afterwards they are stored for later use in classification. Aftepresenting it to the user.

scaling the instances, the support vectors are computed using ) )
a RBF kernel. Application layer Classes have been implemented in Java

The second step is then to learn a classifier for separatin{y" data storage, training and classifying as well as managing
the two possible classes (plant and fungus). In this case onfj)® Process. For support vector cllassmcatmn Java |mplgmen—
the correct frame of each sequence is used for training. Agtions of LIBSVM are used, which allows for fast training
before maximum and minimum values for each attribute arénd classification.
calculated and the training instances are scaled appropriately
to lie in the interval[—1, 1]. Then support vectors are cal-
culated in the same fashion as before. Table 1 describes tH@ble 2. Classification procedure.
general procedure for each of the two steps.

frame and five incorrect frames.

. i Let ¢ be an unclassified sequence
Classification
Classifying a sequence also consists of two parts. First thp
coding frame is determined and then classified as being g
plant or fungus origin. To determine the correct frame the
sequence’s attributes are first scaled using the pre-computg¢d 4.
scaling parameters for frame determination. (Note that noy 5 Classify frame using SVM model
the attributes will no longer necessarily lie in the range of
[—1, 1].) Following scaling the first SVM model is then used

1. Calculate codon frequencies for each frame
2. Scale frames withnin,; andmaz1;,j € [1, 64]
3. Determine correct frame using SVM model

=2

Scale correct frame withhing; andmazxo;, j € [1, 64]
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Table 3. Estimates for classification accuracy of machine learning algorithms using repeat holdout with stratificatiobanhetidblumeriadata set.
Results for the different holdout splits were averaged. Accuracy is defined as the number of correctly classified instances divided by the total number of
instances. No abstaining on instances is applied yet, thus error rate and accuracy sum up to one.

Algorithm
Accuracy (in %)
SVM ASNN Random Forest Naive Bayes JRip J4.8 PF-IND
Average 92.9 92.4 88.9 87.8 85.9 82.2 82.0
Standard Deviation 0.6 0.5 1.0 0.9 18 1.6 0.9

The application starts by parsing the XML input to deter-  Table 4. Estimates for classification accuracy using different
mine the mode (training or classification) which is to be subsets of attributes. Abbreviations: CF=cod9n frequencies,
performed. If training mode is chosen, the training sequences %GC3=percentage of synonymous codons ending at G or C,

: . ! FP=probability of fungus origin of sequence (%GC3 and FP com-
are read. For each of the training sequences codon frequen- pteqd separately for each amino acid). Results for the ten random
cies are computed for all six frames. These attributes are used holdout splits were averaged.
to perform training as described above. Additional unclassi-

fied sequences can be classified afterwards using the trained

i . . Attributes Accuracy (in %)
model. To estimate performance of the trained classifier ten-
fold-cross-validation can be chosen. This will slow down the Type # Average Standard Deviation
training process as ten additional training rounds have to be
performed, each with a training set nine tenths the size of the CF 64 93.5 0.8
original training set. %GC3 18 88.9 0.5
In classification mode all unclassified sequences are read kP 18 62.6 2.6
) . CF+%GC3 82 93.5 0.6
from the XML input. Codon frequencies are computed for CE+EP 82 93.1 05
each frame of each sequence. This information is then used o,cc3+FP 36 88.6 08
to classify the sequence by the presented method. In doing all 100 92.9 0.6

this, the user has the choice to apply either the online availa-
ble model forH. vulgareandB. graminisor to use a model
previously trained with ELAT for any other plant-fungus

air.
P et al, 2003) was evaluated, an algorithm designed specifi-

cally to separate ESTs from mixed plant-fungus EST-pools.

To allow high-throughput analysis the method described in
3 RESULTS Maor et al., 2003 was re-implemented using the same codon
. . . . usage frequencies, we compared the predictions of the ori-
Comparison of different machine learning ginal implementation and our version for several sequences.
algorithms and PF-IND Not only did we get the same predictions for those sequences,
Several machine learning algorithms as well as a probabilibut also the same scores for all frames. Thus the original and
stic algorithm were compared concerning their performanceur version of PF-IND calculated the same results for this test
on discriminating plant from fungal ESTs. Performance wasand both implementations do not differ.
measured in terms of prediction accuracy using the mixed For evaluation three kinds of attributes were calculated for
barley/blumeria data set described before but including onlgach sequence: codon frequencies (64 attributes), %GC3 (18
sequences longer than 100 bp. Accuracy is defined as the pettr.) and fungus probabilities (18 attr.). Codon frequencies
centage of correctly classified instances. For this comparisowere computed as described in the methods section. %GC3
performance was calculated only on the correct frame. Théor an amino acid denotes the ratio of occurrence of GC-
machine learning algorithms applied to the task comprise@nding codons to overall occurrence of the amino acid they
support vector machines (LIBSVM, Chang and Lin, 2001),are coding for. These attributes were included since the main
artifical neural networks (ASNN, Tetko, 2002, available source of variation in codon bias are the levels of C and
online at http://www.vcclab.org ), random forests G-ending codons (Fennoy and Bailey-Serres, 1993; Kawabe
(WEKA implementation, Witten and Frank, 2000), Naive and Miyashita, 2003). Fungus probabilities describe the pro-
Bayes (WEKA), decision trees (J4.8 from WEKA), Rule bability that a given number of GC- and AT-ending codons
learning (JRip from WEKA). Additionally PF-IND (Maor coding for the same amino acid will occur in an EST from
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Table 5. Estimates for classification accuracy oEaT and PF- When we tried probabilities of plant origin of sequence or

IND in predicting the correct reading frame. Results for the ten ratios of both instead these results did not improve.
random holdout splits were averaged.

Prediction of the correct reading frame

Accuracy (in %) To assess ELAT’s capability of predicting the correct rea-

Algorithm Average Standard deviation ding frame the first step of the classification procedure was
evaluated separately. For that purpose frame prediction per-

ECLAT 97.7 0.4 formance of ELAT was determined on the previously des-

PF-IND 71.4 0.7 cribed 10 holdout splits and compared to PF-IND predictions

(see table 5). Analysis showed that AT predictions of the
correct frame were highly reliable (average prediction accu-
racy of 97.7%) whereas PF-IND predicted the frame of only
71.4% of the sequences correctly.

the fungus species. This was a similar approach to PF-IND,

but without previous selection of amino acids. These probaPerformance in discriminating plant and fungal

bilities were estimated using Poisson distribution and codogequences

usage frequencies obtained from the online database si§O far the accuracy of each of the two steps of thm A&
http://\_NWW.kazusa.or.Jp/codon/. Note that_ the Iqst two typesmethodology has been examined separately. To estimate per-
of attributes were computed for each amino acid separately, ance of the complete procedure tenfold cross-validation

excluding meth|0nf|ne and tryptophager.] » " i was repeated ten times. Tenfold cross-validation consisted
To estimate performance repeated holdout with stratificags pjitting the barley/blumeria data set randomly into ten

tion was applied on the data set. The holdout procedur arts and then alternatingly using one part for testing and

consisted of splitting the data randomly into training apd t€Sthe remainder for training, excluding sequences shorter than
sets. One third of the data set was chosen for testing anflyy ,cleotides from the data set (leaving 3217 sequences).
the remainder for training. The additional use of strat|f|cat|on-|-he average accuracy in predicting the origin of sequence

ensured that both classes were represented the same propQjflss 93 194 for ELAT. As 10-fold cross-validation provided
ons in both training and test sets. With each machine learnin prediction for each single instance in the data set, per-

algorithm a classifier was learned from the training set an ormance of PF-IND was estimated on all barley/blumeria

performance was estimated on the test set. This was repeatgg, ;ances longer than 100 bp, which resulted in an estimated
10 times with different random splits to decrease any bias duﬁrediction accuracy of 81.2% for PF-IND

to a particular sample choice. For PF-IND no training was
necessary as precomputed codon frequencies were used, tﬁ%pendence of classification performance on
to make performance comparable only sequences from th§

respective test sets were classified. Table 3 shows the aveanuence length

rage results for the ten holdouts. No significant differences' N length of an EST sequence determines the accuracy of
between the performances of support vector machines arféf classification. In short sequences it will not be possi-
artificial neural networks were detected using a paired t-tesPl€ to estimate the underlying codon frequencies correctly,

therefore both performed equally good on the given data set2S Only few codons occur at all. In this case pseudocounts
will dominate the calculated codon frequencies. To study this

) ) ) effect, different sequence intervals were analyzed in relation
Comparison of different subsets of attributes to the resulting accuracy. Repeated 10-fold cross-validation
concerning prediction accuracy was performed with sequence length boundaries of 50, 100,
We evaluated the attribute types described before separated0, 300, 400 and 500 base pairs for testing. Results of this
and combined in regard to performance as instance attributesialysis can be seen in table 6. The same intervals were used
for support vector classification on the same random traiin estimating the performance of PF-IND.

ning and test splits as above (see table 4). Using only codon ECLAT predictions became less precise for shorter
frequencies as sequence attributes resulted in an average clasguences, but still for sequence lengths between 50 and 100
sification accuracy of 93.5%, which was significantly betterthe origin of a sequence could be determined with an average
than using the complete attribute set. (Significance was testeatcuracy of 90%. The highest prediction accuracies were
with paired t-tests). Additional use of %GC3 or fungus pro-achieved for sequences between 300 and 500 bp , whereas for
babilities with codon frequencies did have no significantsequences longer than 500 bp accuracies decreased slightly.
effect on prediction performance. Contrary to codon frequenPF-IND performance also increased with sequence length,
cies the subset containing exclusively probabilities of fungabut for sequences longer than 500 base pairs classification
origin performed poorly with a prediction accuracy at 62.8%.accuracy dropped as low as 71.8%. We examined if PF-IND
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Table 6. Estimates for classification accuracy af AT and PF-IND for different sequence length intervals. Estimates were performed by repeated 10-fold
cross-validation. Results for the ten repeats were averaged.

Sequence length (in bp)

[21,50] [51,100] [101,200] [201,300] [301,400] [401,500] > 500
# sequences 431 326 748 768 646 502 553
EcLAT
Average accuracy (%) 78.8 90.0 90.6 92.2 95.6 95.7 94.4
Standard deviation (%) 0.9 0.9 0.4 04 0.3 0.5 0.5
PF-IND
Accuracy (%) 71.9 81.6 81.0 83.5 86.7 81.1 71.8

results for long sequences could be improved by recalcula-Table 7. Estimates for classification accuracy ofCEaT (with and
ting codon usage based 0n|y on Iong sequences howevewithout abstention) and PF-IND on EST sequences from GenBank.
classification accuracy did not increase.

Accuracy (in %)

Performance on EST sequences from GenBank
The performance of E&AT and PF-IND additionally was
tested on EST sequences from GenBank. These sequencés
were deposited in Genbank in the second part of 2003 or ECLAT . . 810 919
) . . CLAT with abstention 87.6 96.5
later and did not overlap with the training set used to deve- prnD 56.6 20.1
lop the method. The second test set contained 931 sequences
from blumeria and and 9312 sequences from barley. The
composition of the test set mirrored the taxa bias in EST data-

bases towards plant EST sequences. Furthermoreamlmmuglrpso applicable to other systems, such as plantinematode.

sequence length threshold of 100 bp was applied again. Th§ince the classification performance is lower compared to

results are shown in table 7. . .
: . . the barley/blumeria analysis, we can conclude that the codon
In this test classification accuracy for blumeria was com- 2 . L i
; . compositions of both these species are similar and their ESTs
parable to previous results forcEAT and increased for re more difficult to separate
PF-IND, whereas for barley classification accuracy droppeé‘ P ’
significantly for both ELAT and PF-IND. We also tested
if classification accuracy could be increased by abstainingd DISCUSSION
i.e. not classifying sequences for which no frame is classiPrevious approaches to the prediction of species origin for
fied as correct. Indeed, this did raise classification accuracgequences from mixed plant-pathogen EST collections have
by more than 6% for barley and almost 5% for blumeria.utilized homology based methods. The objective ofLET
However, around 19% of the sequences remained unclasvas to provide an easy to use interface for high-throughput,
sified. Contrary to that only 1.3% of the barley/blumeria automatic classification of ESTs derived from pathogen-
unigene sequences remained unclassified when using tenfalefected plants, which does not rely on the existence of
cross-validation with abstention, which was not done in thehomologous sequences in public databases. Differences in

Algorithm H.vulgare B.graminis

previous tests. codon frequencies between plant and fungi have already
L . , . proven to be a reliable basis for fast computational EST clas-
Application to different organism pairs sification (Maoret al., 2003). In this paper, we demonstrated

To test if our methodology is also applicable to a wider rangehat utilization of machine learning methods (SVMs) could
of biological targets, we used a second data set containingnprove results decisively compared to the existing probabi-
EST sequences from cotton (G. arboreum, 2028 seqs.) adidtic algorithm PF-IND. Analysis of sequences longer than
cotton root knot nematode (M. incognita, 2040 seqs.). Thisl0O0 bp from a mixed barley-blumeria EST dataset showed
training set was derived using the same method as before, sm accuracy of averagely 93% focEAT compared to 81%
the methodology remains consistent with what has alreadfor PF-IND. For a second test set containing sequences from
been done. The prediction accuracy of a model trained oGenbank both classifiers performed worse than in previous
this data set as estimated by 10-fold cross-validation is aboueésts. This drop in accuracy can be explained by vector con-
87.3%. This result clearly indicates that the methodology igaminations or low quality regions within EST sequences
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deposited in databases. Further detrimental effects may resut al., 2003), whereas on the 3217 sequences from barley
from high redundancy within EST databases as well as thand blumeria used for our estimates its prediction accuracy
fact that many of the tested EST sequences may not contaimeached only 82% on average.
a coding sequence at all. In fact, it could be shown that clas- Although programs exist for predicting correct reading fra-
sification accuracy could be increased further by abstainingnes in ESTs, ELAT does not use any of these, but instead
from classifying sequences where no frame was predicted applies machine learning techniques, reaching an accuracy
correct. This suggests that for a large fraction of ESTs, th@f 98%. Of course, the task here has been simplified as
observed codon frequencies deviate from the expected dumly two organisms have to be considered. Nevertheless trai-
to a lack of coding sequence or contamination. This viola-ning data for each of the two classes (correct vs. incorrect
tes basic assumptions of botlt EAT and PF-IND. Therefore frame) are heterogeneous since they contain sequences from
before using ELAT care should be taken to remove vector both organisms. The high classification accuracy therefore
contaminations and to assess sequence quality. suggests, that the difference in codon usage is more severe
Currently ECLAT only provides a pre-built model for the between correct and incorrect frames than between orga-
plant-fungus pair barley and blumeria, but the design of thenisms. A possible explanation could be that incorrect frames
software allows extensions to more organism pairs, as it doesontain codons which are never or rarely observed for the
not rely on any specific characteristics of barley and blumeeorrect frames. Since the same problem is relevant for both
ria except for codon bias differences. Researchers have thgant and fungi, the algorithm correctly identifies the coding
possibility to train EELAT specifically for plant-fungus pairs frames for both of them.
of interest using EST sequences from their laboratories. In The prediction accuracy of bothdeAT and PF-IND incre-
general, we believe that it will be impossible to specify someases with sequence length but decreases again for sequences
objective criteria to predict the accuracy of EST separation “donger than 500 bp. Yet the drop in prediction accuracy for
priori”. Nevertheless, it is always possible to develop a newvery long sequences is much more pronounced for PF-IND.
classifier using the available data and test its performancé&his is consistent with the observation that quality within
with cross-validation to decide if the proposed methodologyEST sequences rapidly degrades as length exceeds an opti-
can or cannot be applied in each particular case. mum of approximately 400 nt (Rudd, unpublished data). For
The use of two additional types of attributes derived fromsequences of less than 50 nt the distribution of codon fre-
codon frequencies proved to have a neutral or even detrguencies deteriorates to a uniform distribution with peaks for
mental effect on prediction accuracy. The results suggest thainly a few codons, thus making classification difficult.
both types of attributes hardly contribute any new informa- ECLAT assists in the rapid and automatic analysis of
tion compared to the original codon frequencies. Furthermor&STs. Neverthelessd AT should not replace BLAST ana-
the slightly but significantly lower accuracy on the completelysis, which gives additional hint to gene function, but be
attribute setimplies overfitting effects. None of the additionalused complementarily to validate BLAST results and give
attribute sets taken separately did perform as well as codopredictions when no close homolog can be found.
frequencies. Unexpectedly the probabilistic attributes perfor- Although ECLAT was developed primarily for the pur-
med very poor, although a good algorithm based on thespose of classification of sequences from mixed plant-fungus
probabilities exists (Maoet al., 2003). The exclusion of EST-pools, our tests have shown that these methods are also
those attributes provided model simplicity, which is desiredapplicable to other pairs of evolutionarily distinct organisms
to reduce overfitting effects, without decreasing overall presuch as plant/nematode. Alternative applications of &
diction accuracy. In the future further attribute types shouldmay comprise automatic prediction of high and low expres-
be considered which are not dependent of codon frequenciegd genes, since gene expression levels and codon bias are
such as occurrences of short sequence motifs or GC-contergositively correlated (Duret and Mouchiroud, 1999), or the
Several standard machine learning algorithms were evalualetection of putative alien sequences in a genome, which
ted on the task of training models to classify EST sequenclave originated from horizontal transfer events.
data. Here support vector machines and artificial neural net-
works proved to be equally capable, but support vector
machines, at least the used implementation, had the advaARCKNOWLEDGEMENT
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