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ABSTRACT

Motivation: Identifying different cancer classes or subclasses with

similar morphological appearances presents a challenging problem

and has important implication in cancer diagnosis and treatment.

Clustering based on gene-expression data has been shown to be a

powerful method in cancer class discovery. Non-negative matrix

factorization is one such method and was shown to be advantageous

over other clustering techniques, such as hierarchical clustering or

self-organizing maps. In this paper, we investigate the benefit of

explicitly enforcing sparseness in the factorization process.

Results:We report an improved unsupervisedmethod for cancer clas-

sification by the use of gene-expression profile via sparse non-negative

matrix factorization. We demonstrate the improvement by direct com-

parison with classic non-negativematrix factorization on the three well-

studied datasets. In addition, we illustrate how to identify a small subset

of co-expressed genes that may be directly involved in cancer.
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Supplementary information: http://arep.med.harvard.edu/snmf/
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1 INTRODUCTION

Accurate classification of cancer types or subtypes is of great
importance for better treatment and prognosis. Traditionally,
such classification is based on clinical and histopathological evid-
ences and thus subject to a pathologist’s interpretation. With the
advent of microarray technology, which can simultaneously mon-
itor the expression of all genes in the genome, it is natural to ask if
molecular markers, such as gene expression patterns, can be used
to diagnose and classify cancer types in a systematic and objective
fashion.
Many classification methods from statistical and machine-

learning area have been proposed for molecular cancer classification
using gene expression data (Alon et al., 1999; Golub et al., 1999;
Alizadeh et al., 2000; Ben-Dor et al., 2000; Bittner et al., 2000;
Ross et al., 2000; Slonim et al., 2000; Pomeroy et al., 2002; Nguyen
and Rocke, 2002; Brunet et al., 2004). We are interested in the
clustering-based class discovery methods that do not need or
have the luxury of known types as training set, which are
required by supervised learning methods. Several well-known unsu-
pervised methods, such as hierarchical clustering (HC) and self-
organizing maps (SOM) are powerful approaches that have been

used successfully (Eisen et al., 1998; Tamayo et al., 1999; Golub
et al., 1999; Alizadeh et al., 2000; Perou et al., 2000).
However, such methods tend to be unstable, producing different

clusters with slightly different input or different choice of initial
conditions.
There are at least three characteristics of gene-expression data

that present challenging problem for traditional statistical and
machine-learning methods. First, gene-expression data have very
high dimensionality, with tens of thousands of measured variables
(genes). Second, there are only a few observations or experiments
available, usually <100. Therefore, the number of variables easily
exceeds the number of observations, making traditional statistical
methods powerless. Third, although there is a large number of
measured genes, only a handful of gene components account for
most of the data variation.
It is obvious that dimension reduction to a much lower dimension

(smaller than the number of observations) is appropriate. Principle
component analysis (PCA) or singular value decomposition and
partial least squares (PLS) are two such methods that have been
applied to cancer classification with satisfactory results (Nguyen
and Rocke, 2002; Bicciato et al., 2003; Tan et al., 2004). However,
due to the holistic nature of PCA, the resulting components are
global interpretations and lack intuitive meaning. To solve this
problem, Lee and Seung (1999) demonstrated that non-negative
matrix factorization (NMF) is able to learn localized features
with obvious interpretation. Their work was applied elegantly to
image and text analysis. Inspired by the work, Brunet et al. (2004)
applied non-negative matrix factorization to describe all the genes
in a genome in terms of a small number of metagenes and sum-
marized the sample gene-expression patterns by that of the meta-
genes. The metagene expression patterns were then used to cluster
the samples into distinct tumor types and subtypes. Brunet et al.
(2004) showed that NMF appeared superior to HC and SOM in the
gene expression datasets.
One problem with the basic NMF formulation is that it gives no

control over the sparseness of the decomposition. Li et al. (2001)
demonstrated that depending on the data, the basic NMF may give
parts-based but holistic representation. For such datasets, NMF does
not give an intuitive decomposition into parts that would correspond
to the idea of ‘build blocks’ of the data (Hoyer, 2002, 2004). How-
ever, in many applications, such control may give better representa-
tion of or reveal localized features or latent structures in the data.
Thus Li et al. (2001) proposed local NMF (LNMF) with additional
constraints to enforce the sparseness of the decomposition. Hoyer
(2002, 2004) also showed that explicitly incorporating the notion!To whom correspondence should be addressed.
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of sparseness allowed the discovery of parts-based representations
that were qualitatively better than those given by classic NMF.
Wang et al. (2004) introduced yet another variant of NMF, Fisher
non-negative matrix factorization (FNMF) for learning local fea-
tures by imposing Fisher constraints to the original NMF formula-
tion. This approach seeks to maximize the between-class scatter and
minimize the within-class scatter of the encoding matrix H.
Naturally, we would like to apply sparse NMF to cancer classi-

fication problem. Since the work of Brunet et al. (2004) demon-
strated that basic NMF appeared to perform better over HC and
SOM, we would like to compare the sparse NMF directly with basic
NMF using the same datasets. The results, though very limited in
scope, seem to indicate that explicitly enforcing sparseness of H
improves class discovery over direct application of the basic NMF.
In addition, we have investigated the biological significance of
sparseness factors by using the well-studied leukemia dataset as
a show case.

2 METHODS

In this study, we attempt to classify cancer types purely from their gene-
expression data. Without prior knowledge of the features that distinguish one

cancer type from the other, or cancer from normal tissue, we adopt the

unsupervised approach: clustering through sparse non-negative matrix fac-

torization (SNMF). Ideally, samples with distinct disease state will form
distinct clusters.

The gene-expression data obtained from a typical microarray experiment

can be represented as a N · M matrix A. Each row represents the expression

level of a gene across all samples, and each column represents the expression
level of all genes in one sample. All the entries in the gene-expression matrix

are non-negative.

Previously, Brunet et al. (2004) took advantage of the non-negative prop-
erty of gene-expression matrix and applied the basic NMF with divergence

update rule for clustering and achieved respectable classification results.

In the following, we summarize their method briefly. Detailed description

can be found in their paper (Brunet et al., 2004). Mathematically, their

clustering method resorts to factor the gene-expression matrix A into the

product of two matrices of non-negative entries, A !WH. MatrixW has size
N · k and Matrix H has size k ·M. k is much smaller thanM. The column of

W defines a ‘metagene’, with entry wij the coefficient of gene i in metagene j.
The columns of Matrix H represent the metagene expression pattern of the

corresponding sample, with each entry hij represent the expression level of
metagene i in sample j.

Given such a factorization, the matrix H can be used to determine the

cluster membership: sample j is placed in cluster i if the hij is the largest entry
in column j (Brunet et al., 2004).

As discussed previously, the basic NMF method has no control over the
sparseness of the decomposition and therefore does not always yield a parts-

based representation. A few groups have proposed ways to add sparseness

constraints to NMF (Li et al., 2001; Hoyer, 2002, 2004; Shahnaz et al.,
2004). In this study, we attempt to enforce sparseness by combining the goal
of minimizing reconstruction error with that of sparseness. Specifically, we

adopt the point-count regularization approach that enforces sparseness of

H by penalizing the number of non-zero entries rather than the sum of entries
SHij in H (Hoyer, 2002, 2004; Shahnaz et al., 2004).

The SNMF algorithm is described below (Fig. 1). The sparseness of H is

controlled by the parameter (l > 0). Larger l value results in sparser matrix

H at the expense of accurate reconstruction of the original matrix A.

Note that theminimization problem is convex inW andH separately but not
convex in both simultaneously. The idea of fixing W and solving the optim-

ization with respect toH then reversing the roles of the variables and iterating

until convergence was originally proposed by Paatero and Tapper (1994) and

subsequently described by others (Hoyer, 2002, 2004; Pauca et al., 2004;
Shahnaz et al., 2004).

Under such optimization scheme, the resultingHmatrix should contain as

many zero entries as possible. Larger l will force the H matrix becomes
more and more sparse, resulting in more localized basis vectors.

2.1 Biological motivation for sparseness

Originally, Lee and Seung (1999) applied NMF to decompose facial images

and derived parts-based representation of whole images. Parts correspond to

localized features that are building blocks for the whole. However, Li et al.
(2001) demonstrated that basic NMF may give parts-based but holistic

representation. Therefore, explicitly enforcing sparseness is desired. Analog-

ously, in the gene-expression study, parts correspond to ‘metagenes’ that
represent genes tend to be coexpressed in samples (Brunet et al., 2004). These
metagenes can overlap, indicating that a single gene can participate in many

pathways or processes. The more sparse the matrix of H, the more sparse is

the feature matrixW. Therefore, enforcing the sparseness of H will give rise
to metagenes that comprised few dominantly co-expressed genes. In the

context of cancer classification, such small subset of co-expressed genes

may indicate genes that are involved in cancer and thus good local features

for specific cancer types. Specifically, we first decompose the gene-
expression matrix A into W and H. Entry wij is the coefficient of gene i in
metagene j. Entry hij is the expression level of matagene i in sample j.
Therefore, for each cluster of samples, i.e. cluster i, we investigate the

gene components that have relatively large coefficient in the corresponding
i-th column of W. In Section 3, we investigate the biological meanings of

the sparse factors by analyzing the functions of component genes in the

corresponding metagenes.

Model selection. As discussed in the Brunet et al. (2004) paper, for any
rank k, the basic NMF algorithms group the M samples into k clusters. The
choice of k automatically presents a difficult problem as it is not known a
priori which k decomposes the samples into meaningful clusters. Another

problem is that the NMF algorithm may not always converge to the same

solution from different starting point, thanks to the stochastic nature of the

method. Brunet et al. (2004) developed a nice model selection method based
on consensus clustering (Monti et al., 2003; Brunet et al., 2004). The basic
idea is that if a clustering into k classes is strong, sample assignment to

clusters should not vary much from random starting points. After running
with many different random initial points, a consensus matrix for class

assignment can be calculated. Its entries reflect the probability that each

pair of samples is clustered together. Thus the dispersion between 0 and 1

Sparse NMF Algorithm (SNMF)

1. Initialize W, H to random positive matrices of dimension
    N × k and k × M respectively, rescale the column of W to unit
    norm  

2. Iterate until convergence or reach maximum number
    of allowed iterations. 

a. Solve. 
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Fig. 1. Sparse non-negative matrix factorization.
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indicates the reproducibility of the class assignments with respect to random

starting points. The off-diagonal entries of the resultant consensus matrix can

serve as similarity measure among samples. Brunet et al. (2004) use average
linkage HC to reorder the samples and thus the rows and columns of it. The
degree of dispersion of the reordered consensus matrix can be visually

inspected. In Figures 2, 3 and 4 in Section 3, deep blue color corresponds

to a numerical value of 0 and means that the samples are never assigned to

the same cluster. Dark red color corresponds to 1 and means that the samples
always appear in the same cluster. Quantitatively, the stability of clustering

associated with a given rank k can be measured through cophenetic correla-

tion coefficient rk that ranges from 0 to 1 (Brunet et al., 2004). rk can be
easily calculated as the Pearson correlation of the distance matrix between

samples induced by the consensus matrix and the distance matrix induced by

the linkage used in the reordering of the consensus matrix (Brunet et al.,
2004). Simply speaking, the bigger is the coefficient, the more stable is the
cluster assignment. Therefore, by observing how rk changes as k increases,
one can select the values of k where the magnitude of the coefficient starts to

fall. Interested readers should consult the original paper for detailed descrip-

tion of how this coefficient is calculated. To make the comparison valid, we
use the same model selection criteria.

3 RESULTS

First, we compare the clustering results achieved by enforcing the
sparseness of the decomposition with the basic NMF on the three
datasets reported by Brunet et al. (2004). The accuracy of the
clustering is measured by the following formula (Xu et al., 2003):

AC ¼
Pn

i¼1 I jið Þ
n

where I(ji) is 1 if the cluster assignment is correct for sample ji, and0 if
the cluster assignment is incorrect. The results are found in Table 1,
the l used is 0.01. Detailed analysis can be found in text and in
supplement tables. It appears that SNMF outperform NMF in leuk-
emia and central nervous system tumors dataset. However, for the
Medulloblastoma dataset, the result is not clear cut and may indicate
the histological subclasses are not aswell understood as the other two
cases. Second, we attempt to investigate the biological meaning of
sparseness by analyzing genes that tend to co-occur in each cancer
types. The results indicate that NMF or SNMF can identify sets of
genes that seem to be involved in the underlying cancer.

3.1 Leukemia dataset

Acute myelogenous leukemia (AML) and acute lymphoblastic
leukemia (ALL) can be easily distinguished. In addition, ALL
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Fig. 3. (a) The reordered consensus matrices and corresponding cophenetic

correlation coefficients for hierarchially clustered matrices. (b) r drops when
k increases from 4 to 5, indicating a four-cluster split of the data is more stable

than a five-cluster split.
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Fig. 2. The reordered consensus matrices and corresponding cophenetic cor-

relation coefficients r for hierarchially clustered matrices. (a) The reordered
consensus matrices and r are derived from 50 connectivity matrices calcu-

lated at k¼ 2–5, as done by Brunet et al. (2004). (b) r drops when k increases
from 3 to 4, indicating a three-cluster split of the data is more stable than four-
cluster split.Note that r goes back upwhen k increases from4 to 5, contrasting

the continuous drop observed by Brunet et al. Therefore, it seems that further

division of the cancer subtypes may be possible.
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can be further divided into T and B subtypes. This dataset contains
38 bone marrow samples that can be assigned to the aforementioned
three subtypes with high confidence based on clinical and histo-
pathological evidences. This dataset is well established and has
served as a benchmark dataset for comparing the performance of
different clustering algorithms. In general, most clustering algo-
rithms work well. For example, SOM could rediscover these dis-
tinctions on this dataset (Slonim et al., 2000). HC can also perform

well depending on the choice of linage metric and the number of
input genes (Brunet et al., 2004). However, HC was proved unstable
because its performance was subject to the number of input genes.
However, there are two ALL samples that are consistently misclas-
sified or classified with low confidence by most methods (Brunet
et al., 2004). One possible explanation mentioned by Brunet et al.
(2004) is the incorrect diagnosis of the samples. Brunet et al.
included them in the analysis but expected them to be outliers.
When NMF was applied to the dataset, with rank k ¼ 2, it con-
sistently rediscovered the distinction between AML and ALL.
However, it did misclassify two ALL B subtypes to AML
(ALL_14749_B-cell and ALL_7092_B-cell to AML). At k ¼ 3,
it further partitioned the ALL subtypes into ALL-B and ALL-T.
Again, there were two misclassification made (Supplementary
Table S1). Although the same ALL_14749_B-cell was once
again incorrectly assigned to AML, ALL_7092_B-cell was assigned
correctly. However, a new ALL-B sample (ALL_21302_B-cell)
was now incorrectly assigned to AML, indicating some kind of
instability. Increasing k showed increased dispersion that was quant-
itatively measured nicely by decreased value of the cophenetic
correlation (Brunet et al., 2004).
In contrast, at k ¼ 2, the SNMF correctly classified the two

difficult ALL cases that were missed by NMF (Supplementary
Table S1). However, it did make one mistake. One AML sample
(AML_12) was incorrectly assigned to ALL. At k¼ 3, SNMF nicely
split the ALL samples into two subtypes with no mistake made.
However, it still misclassified the same AML sample to ALL. One
possible explanation may be incorrect diagnosis of this sample. The
SNMF is consistent when k changes (Fig. 2), unlike NMF. This is
also an improvement. Another improvement is that increasing k did
not show significant dispersion, compared with NMF (Fig. 2).
Therefore, we suspect that there may exist more than just three
subclasses in the leukemia dataset.

3.2 Central nerve system tumors

This dataset is composed of four types of central nervous system
embryonal tumors (Pomeroy et al., 2002). There are 34 samples
representing four distinct morphologies: 10 classic medullo-
blastomas, 10 malignant gliomas, 10 rhabdoids and 4 normals.
Both HC and SOM failed to reveal the correct clusters. The normal
and malignant glioma samples was consistently clustered together
by both methods (Brunet et al., 2004). NMF method suggested a
four-cluster split with high cophenetic coefficient (Brunet et al.,
2004). NMF method made only two mistakes. One mistake is to
assign a glioma (Brain_MGlio_8) to rhabdoid. However, the other
mistake is more serious. It incorrectly assigned a rhabdoid sample
(Brain_Rhab_10) to normal. Such an assignment will definitely
delay the treatment, if at all, of the patient and thus highly undesired.
However, the SNMF method correctly split the samples into four

clusters stably with high cophenetic coefficient (Fig. 3). The drop of
cophenetic coefficient at k¼ 5 indicates that the samples can be best
split into four clusters. Impressively, it made only one mistake: the
same glioma (Brain_MGlio_8) was assigned to rhabdoid. However,
significantly, it correctly clusters the four normal samples into a
distinct group.

3.3 Medulloblastoma dataset

Medulloblastoma are childhood brain tumors and the pathogenesis
of these tumors is not well understood. The major histological
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Fig. 4. (a) The reordered consensus matrices and corresponding cophenetic

correlation coefficients for hierarchially clustered matrices. (b) r drops as k

increase from 3 to 4, but goes back up at k¼ 5. When k further increases, we
also observed the continuous drop of r, in agreement with that of Brunet et al.
(2004) (data not shown).

Table 1. Performance comparisons of NMF versus SNMF

Datasets Number

of Types

Number of

patient samples

Accuracy

NMF SNMF

Leukemia 3 38 0.947 0.974

CNS 4 34 0.941 0.971

Medulloblastoma 2 34 N/A N/A

Because the pathogenesis of medulloblastoma is not well established, we did not

calculate the accuracy for this dataset. See text for detail.
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subclass of medulloblastoma is desmoplastic medulloblastoma
whose diagnosis is highly subjective (Pomeroy et al., 2002). Nev-
ertheless, two known histological subclasses, classic and desmo-
plastic, are generally accepted as their differences can be clearly
seen under microscope (Brunet et al., 2004). Genes whose expres-
sion was statistically correlated with those two histological classes
have been reported (Pomeroy et al., 2002). The samples can be
divided into 25 classic and 9 desmoplastic medulloblasstomas. HC
and SOM failed to expose a clear desmoplastic cluster at any level
of the hierarchical tree. However, basic NMF predicted robust clus-
tering for k ¼ 2, 3 and 5 and revealed a clusters made up almost
entirely of desmoplastic samples. This cluster included seven out of
nine desmoplastic samples. However, this cluster also contained a
classic medulloblastoma sample. In contrast, the SNMF also pre-
dicted the existence of robust classes for k ¼ 2, 3 and 5 (Fig. 4). For
k ¼ 5, we were able to expose a subclass made up entirely of
desmoplastic sample. However, it contains only three out of nine
desmoplastic samples, and the other desmoplastic samples were
scattered among other clusters. This result is more or less consistent
with the results by HC and SOM. It could mean that the straight-
forward use of NMF is better in this case. Or it may also raise doubt
about the sample assignments, given the fact that the pathogenesis
of these tumors is not well understood and desmoplastic medullo-
blastoma diagnosis is highly subjective.

3.3.1 Biological investigation: a case study For the three data-
sets, we can investigate genes that tend to co-occur in each cancer
type. We illustrate our method by using the well-established leuk-
emia dataset. To identify genes that may be dominantly involved in
each subtype, top 20 genes with the largest coefficient in the W
matrix are extracted for each corresponding clusters, namely ALL-
B, ALL-T and AML. In general, a PubMed search for the functions
of the genes indicate that the three sets of 20 genes each are enriched
in chemokines, oncogenes, tumor suppressor genes and DNA repair
genes. For example, in the AML cluster, the 20 co-occurred genes
include GRO3 oncogene, which is a chemokine and belongs
to the small inducible cytokine subfamily b. Chemokines play
fundamental roles in the development, homeostasis and function
of the immune system. They also affect cells of the central nervous
system as well as on endothelial cells involved in angiogenesis or
angiostasis. We also identified cellular oncogene c-fos, which has an
important role in signal transduction, cell proliferation and differ-
entiation. For the ALL cluster, 1 gene that does not appear in the top
20 of the AML cluster is PI5 Protease inhibitor 5 (maspin), which is
a tumor suppressor and angiogenesis inhibitor. For the ALL-T sub-
type, the well-known tumor suppressor gene, retinoblastoma sus-
ceptibility protein (RB1) gene, with a 3 bp deletion in exon 22, is
found to co-occur with SKI V-ski avian sarcoma viral oncogene
homolog, Proto-Oncogene Trk and PI5 Protease inhibitor 5. For the
ALL-B subtype, the tumor suppressor and angiogenesis inhibit PI5
Protease inhibitor 5 is found to co-occur with XP-C repair comple-
menting protein (p58/HHR23B), a gene that is involved in DNA
repair.
Interestingly, a single gene, AP-3 complex beta3A subunit

mRNA, appeared to be the only gene that appeared simultaneously
in all three subtypes, indicating shared pathways or processes. (For a
compete list of the 20 genes for each subtype, refer to Supplement-
ary Table (4). Similarly, we can also apply the same analysis to the
other two datasets (data not shown).

CONCLUSIONS

NMF has been used successfully in image analysis, text clustering
and cancer class discovery and classification. In this paper, we
observed improved clustering results by enforcing an additional
sparseness constraint on H to the basic NMF in cancer class dis-
covery.We have shown that SNMF improves cancer class discovery
on the same three datasets that were used by Brunet et al. (2004).
Systematic studies on larger datasets are required to yield more
convincing arguments for imposing the sparseness constraints on
cancer class discovery. We also investigated the biological signi-
ficance of enforcing the sparseness factor by using leukemia dataset
as a show case.
This study is apparently very limited in scope, more detailed

investigation of the theoretical and biological basis is desired in
the longer term.
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