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Abstract

Motivation: PSORTb v.1.1 is the most precise bacterial localization prediction tool 
available. However the program’s predictive coverage and recall are low and the method 
is only applicable to Gram-negative bacteria. The goals of the present work were:
increase PSORTb’s coverage while maintaining the existing precision level, expand it to 
include Gram-positive bacteria, and then carry out a comparative analysis of localization.

Results: An expanded database of proteins of known localization and new modules using 
frequent subsequence-based support vector machines were introduced into PSORTb
v.2.0. The program attains a precision of 96% for Gram-positive and Gram-negative 
bacteria and predictive coverage comparable to other tools for whole proteome analysis.
We show that the proportion of proteins at each localization is remarkably consistent 
across species, even in species with varying proteome size.

Availability: Web-based version: http://www.psort.org/psortb. Standalone version: 
Available through the website under GNU General Public License.

Contact: psort-mail@sfu.ca, brinkman@sfu.ca

Supplementary Information: http://www.psort.org/psortb/supplementaryinfo.html
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Introduction

Subcellular localization prediction allows researchers to make inferences regarding a 

protein’s function, to annotate genomes, to design proteomics experiments and –

particularly in the case of bacterial pathogen proteins – to identify potential diagnostic, 

drug and vaccine targets. The last year has seen the release of several localization 

prediction tools, including CELLO (Yu et al., 2004) and Proteome Analyst (Lu et al., 

2004), the only new tools capable of analyzing bacterial proteins. CELLO utilizes an n-

peptide composition-based support vector machine approach in its analyses, while 

Proteome Analyst generates predictions using an annotation keyword-based system. 

In 2003 we released PSORTb, an open-source tool for localization prediction in 

Gram-negative bacteria (Gardy et al., 2003). PSORTb uses the multiple classification 

method approach pioneered by PSORT I (Nakai and Kanehisa, 1991), in which several 

sequence features known to influence localization are analyzed using different 

computational techniques. By analyzing features including: signal peptides, 

transmembrane helices, homology to proteins of known localization, amino acid 

composition and motifs, PSORTb v.1.1 attained a classification precision of 97%.

However, the method did not extend to Gram-positive organisms and its predictive 

coverage when applied to whole proteomes – the number of proteins for which a 

prediction could be made – remained low, at 28%. The goal of the present work was to 

expand PSORTb’s predictive scope by introducing additional classification methods 

applicable to both Gram-positive and Gram-negative bacteria, while maintaining the 

existing standard of high precision. Support vector machine was investigated as a 

potential method for increasing coverage.



Support vector machine, or SVM (Vapnik, 1995), is a kernel learning algorithm in 

which all data is mapped as vectors in n-dimensional feature space. Given training data 

from two classes (positive and negative), an SVM learns the optimal separating 

hyperplane which both separates the two classes and maximizes their distance from the 

hyperplane. In previous work on the applicability of SVMs to the localization 

classification problem, nucleotide or protein sequences have been modeled as vectors

representing amino acid composition (Hua and Sun, 2001, Yu et al., 2004). We proposed, 

however, that the precision of an SVM could be improved by utilizing frequently-

occurring subsequences rather than overall amino acid composition. Such common 

patterns within a group of proteins may indicate the site of a common biochemical 

mechanism or structural motif. In earlier work we examined the applicability of this 

method to the classification of outer membrane proteins (She et al., 2003); here we show 

that it can be used for high-precision classification of all prokaryotic localization sites. 

Through the introduction of an SVM-based classifier and expansion of the SCL-

BLAST and motif-based analyses, we have significantly improved PSORTb’s predictive 

capacity relative to version 1.1. The program is now capable of generating predictions for 

Gram-positive bacteria, and is able to make predictions for 75% of a Gram-positive 

proteome and 57% of a Gram-negative proteome, comparable to the coverage attained by 

other methods. Five localization sites are predicted for Gram-negative bacteria 

(cytoplasm, cytoplasmic membrane, periplasm, outer membrane and extracellular) and 4 

for Gram-positive bacteria (cytoplasm, cytoplasmic membrane, cell wall and 

extracellular), with the program also able to flag potentially multiply-localized proteins. 

PSORTb remains the most precise tool for localization prediction available, with a 



measured classification precision of 96% for both Gram-negative and Gram-positive 

bacteria.

The improved coverage attained by PSORTb v.2.0 allowed us to compare the 

proportion of proteins resident at each localization site across multiple proteomes. We 

hypothesized that free-living organisms with more diverse environmental niches may 

contain more membrane proteins in order to facilitate uptake of a variety of materials. We 

found, however, that the proportion of proteins at a given localization site remains 

remarkably constant across species, regardless of lifestyle, environmental niche, or 

proteome size.

System and methods

Dataset

PSORTb v.2.0 was trained and evaluated using an expanded version of the original 

PSORTdb dataset (Gardy et al., 2003). This updated dataset, the composition of which is 

shown in Table 1, includes 150 new Gram-negative proteins and 576 new Gram-positive 

proteins. Each protein’s localization site has been experimentally verified and reported in 

the literature. The dataset is freely available at http://www.psort.org/dataset.

PSORTb v.2.0 Organization

Like PSORTb v.1.1, PSORTb v.2.0 consists of a series of analytical modules, each 

capable of generating predictions for one or more localization sites. Several significant 

changes have been made to the modules in the new version, however. In version 2.0, the 

SubLocC module has been replaced with a new support vector machine-based method, 

http://www.psort.org/dataset


described below. The signal peptide identification module has now been trained with 

Gram-positive data in addition to the Gram-negative data used in version 1.1 

(http://www.cbs.dtu.dk/ftp/signalp). The SCL-BLAST and Motif modules have been 

expanded as described below. No changes were made to the HMMTOP transmembrane 

helix identification module (Tusnàdy and Simon, 2001) or the OMPMotif module.

As in version 1.1, the modules’ predictions are weighted and integrated using a 

Bayesian network in order to generate the final prediction, which comes in the form of a 

score distribution. When a single localization site displays a score of 7.5 or greater, that 

site is returned as a final prediction. New to version 2.0 is multiple localization flagging –

if two sites return high scores, a flag of “This protein may have multiple localization 

sites” is appended to the final prediction. This flag is triggered when a site scores 

between 4.0 and 7.49 for Gram-negative proteins, and between 5.0 and 7.49 for Gram-

positive proteins. If no site scores above 4.0 or 5.0, depending on the class, a localization 

site of “Unknown” is returned. PSORTb’s emphasis is on precision, and returning a result 

of “Unknown” when not enough information is available to make a prediction avoids 

potential false positive results. 

SCL-BLAST and SCL-BLASTe

PSORTb’s SCL-BLAST module assigns putative localizations based on homology to a 

protein of known localization. Version 2.0 improves the recall associated with this 

module by implementing a BLASTP search (Altschul et al, 1990) against the expanded 

PSORTdb database. We have also introduced an exact match filter to detect if a user’s 

query protein is already in the database – if a query protein displays 100% identity to a 

http://www.cbs.dtu.dk/ftp/signalp


protein in PSORTdb with a difference between query and subject length of no more than 

1 character (to account for some users’ removal of the initial “f-Methionine” residue), the 

SCL-BLASTe subroutine returns the localization site associated with the subject protein. 

In cases where an exact match is identified, the query protein is not analyzed by 

subsequent modules, enabling a result to be returned faster. The SCL-BLAST module is 

able to generate predictions for each of the 5 Gram-negative and 4 Gram-positive 

localization sites.

Motifs and Profiles

In PSORTb v.1.1, the Motif module scanned a query sequence for the presence of any 

one of 26 PROSITE motifs indicative of specific Gram-negative localization sites. In 

PSORTb v.2.0, the module has been expanded to include 44 Gram-negative motifs

derived from PROSITE v.18 (Hulo et al., 2004), covering all but the cytoplasmic 

localization site, and 25 Gram-positive motifs covering all 4 localization sites. The 

complete list of motifs is available at http://www.psort.org/motifs. Each motif has been 

checked against PSORTdb to ensure that it produces no false positive results. 2 motifs 

used in PSORTb v.1.1 were removed from v.2.0 due to the occurrence of false positives

when examined against the expanded PSORTdb.

PSORTb v.2.0 also includes a Profile module, in which localization-specific 

profiles derived from PROSITE v.18 were selected to generate 100.0% precise 

predictions against PSORTdb. Each profile is similar to a motif but with position-specific 

weighting information included, such that more degenerate sequences can be retrieved 

than via the strict pattern-matching of the Motif module. 6 profiles were selected, 4 of 



which identify both Gram-negative and Gram-positive cytoplasmic and cytoplasmic 

membrane proteins, and 2 of which are specific to the Gram-positive cell wall and 

extracellular sites. The profiles are also available at http://www.psort.org/motifs.

Frequent Subsequence-Based Support Vector Machines

PSORTb v.2.0 contains a new series of modules utilizing support vector machines 

(SVMs) for classification. 9 SVMs were developed, one for each Gram-negative and 

Gram-positive localization site. Training data for each SVM consisted of a positive class 

comprising all proteins resident at a specific localization site and a negative class 

comprising all other proteins of the same Gram category. 

Each of the 9 positive class datasets was first mined for frequent subsequences 

using an implementation of the generalized suffix tree (Wang et al., 1994). A 

subsequence was defined as frequent if it occurred in at least X% of proteins in the 

positive class of training data, where X is a parameter called minimum support, or 

MinSup. Multiple values of the MinSup parameter were tested.

SVMLight (Joachims, 2002) was used to implement 9 SVMs whose feature 

spaces consisted of the frequent subsequences characteristic of a specific localization site. 

For each localization site, different SVMs were tested using different combinations of 

MinSup (range: 0.8%-13%) and kernel (linear, polynomial with degree = 2, radial basis 

function with γ=0.005). The MinSup/kernel combination giving the highest classification 

precision combined with a reasonable level of recall (> 40%) was selected for inclusion 

in PSORTb v.2.0. Variations in the margin error penalization parameter C were not 

evaluated, as our earlier work on the subject showed a negligible effect on precision and 

http://www.psort.org/motifs


recall values (She et al., 2003). The final SVMs implemented in PSORTb v.2.0 utilize 

LibSVM (Lin, 2003).

Evaluation

All evaluations were carried out using five fold cross-validation, in each round of which 4 

randomly generated folds of the data are used for training or construction of the 

module(s) in question and the 5th fold is reserved for testing. Where possible, we have 

included confusion matrices with our results to aid further evaluation of PSORTb’s 

performance by researchers using other definitions of accuracy. We have defined 

precision as TP/(TP+FP) and recall as TP/(TP+FN). In cases where a protein has dual 

localizations, we count a prediction of either of the two actual sites as a true positive. 

Implementation

Expanded PSORTb database and SCL-BLAST

PSORTb’s SCL-BLAST module predicts localization of a query sequence based on 

homology to a protein in the PSORTdb database of proteins of experimentally verified 

localization. It is therefore expected that a larger and more diverse database will lead to 

an increase in the program’s recall. SCL-BLAST v.2.0 utilizes an updated version of the 

original PSORTdb database – Gram-positive queries are run against the subset of 576 

new proteins of Gram-positive origin, and Gram-negative queries are run against the 

expanded set of Gram-negative proteins.  Furthermore, we investigated whether subsets 

of the Gram-negative and Gram-positive database could be combined. For example, the 

cytoplasmic and cytoplasmic membrane sites were hypothesized to be functionally 



equivalent, such that a Gram-negative protein could be searched against a BLAST 

database containing both Gram-negative proteins and Gram-positive cytoplasmic and 

cytoplasmic membrane proteins. We examined whether a larger database with such 

combinations of proteins would increase recall even further.

We tested several combined databases using 5-fold cross-validation and found 

that higher recall and comparable precision was indeed achieved.  For Gram-positive 

results, a database including Gram-negative cytoplasmic, cytoplasmic membrane and 

extracellular proteins yielded the best predictions. For Gram-negative queries, optimal 

results were achieved when the queries were searched against a database which included 

Gram-positive cytoplasmic and cytoplasmic membrane proteins – including extracellular 

proteins in the database resulted in several periplasmic proteins being falsely predicted as 

extracellular. Results of 5-fold cross-validation testing of SCL-BLAST v.2.0 for each 

localization site are shown in Table 2. The Gram-negative version of the module retains 

the 96% precision exhibited in v.1.1, and improves the recall by 8%. The new Gram-

positive version also displays precision of 96%, and recall of 58%, the lower recall likely 

due to the smaller Gram-positive database. It is important to note, however, that such 

recall values are not to be expected when SCL-BLAST is applied to datasets containing a 

large number of hypothetical proteins, due to their lack of similarity to proteins in the 

SCL-BLAST database.

Support vector machine-based classification

Our previous work on the applicability of frequent subsequence-based support vector 

machine to outer membrane protein prediction (She et al., 2003) led us to examine 



whether the method was applicable to proteins resident at all 9 localization sites. We 

reasoned that frequent subsequences found in proteins resident at each site represented 

conserved functional and structural motifs that would yield higher precision classification

than methods based on overall amino acid composition alone. 

By mining frequent subsequences from each of the 9 localization sites, again 

combining the Gram-positive and Gram-negative cytoplasmic sequences and cytoplasmic 

membrane sequences, we were able to develop 9 SVMs, each capable of classifying a 

protein as likely being resident at a specific localization site or not. Varying numbers of 

frequent subsequences were tested, as were different kernel functions, and the 

combination of frequent subsequences and kernel yielding the highest precision as well as 

a reasonable level of recall were selected for use in PSORTb v.2.0.  The performance and 

parameters associated with each of the 9 SVMs is shown in Table 3.

By using a feature space comprising frequent subsequences rather than amino acid 

composition, we were able to attain high precision classification across all localization 

sites. Although the precision values for the 2 cytoplasmic classifiers are the lowest of the 

9 values, the 84% precision achieved by the Gram-negative SVM represents a 5% 

increase relative to the cytoplasmic composition-based SVM SubLocC used in PSORTb

v.1.1. We believe that the reduced precision associated with cytoplasmic proteins may be 

due to the extremely diverse nature of proteins found at this site – proteins found at other 

sites exhibit more functional and structural constraints, resulting in more unique and 

characteristic frequent subsequences. This is especially evident when classifying 

cytoplasmic membrane proteins – the frequent subsequences mined from this structurally 

and environmentally constrained group of proteins results in high precision classification.



We observed that as the MinSup value increased for each classifier, the number of 

frequent patterns decreased, as did precision; recall, however, remained comparatively 

stable (unpublished data). We also noted that the best performance is not achieved at the 

smallest MinSup value – when the number of frequent subsequences exceeds a certain 

level, the performance of the SVM is degraded. 

PSORTb v.2.0 performance

The new SVM modules, as well as the updated motif, profile, and signal peptide

modules, were incorporated into PSORTb v.2.0. As in version 1.1, a Bayesian network 

was constructed in order to integrate the predictions of all modules to generate a final 

prediction. Multiple weighting values were tested, and the values yielding the highest 

precision were used in the final version of PSORTb v.2.0. Five-fold cross-validation was 

then used to evaluate the Gram-negative and Gram-positive versions of the complete 

program. The resulting confusion matrices are available as Supplementary Tables S1a 

and S1b. From the confusion matrices, we calculated the precision and recall values for 

each localization site for both proteins annotated as having a single localization site 

(Table 4) and those annotated as having dual localization sites (Table 5). 

 On single localization proteins, PSORTb v.2.0 attained precision values of 96% 

for both classes of organisms, and recall of 83% and 81% for Gram-negative and Gram-

positive proteins, respectively. We observed that precision values remained relatively 

constant across localization sites, while the recall was highest for membrane proteins, 

likely due to their conserved structural motifs readily identifiable by the frequent 

subsequence-based SVMs, HMMTOP and OMPMotif modules. The Gram-negative 



version of PSORTb v.2.0 exhibits a 0.7% drop in precision relative to PSORTb v.1.1,

however an 8% increase in recall is observed.

Performance of the program on proteins annotated as having dual localization 

sites is comparable to the performance for singly localized proteins with respect to Gram-

negative organisms, with a precision of 95% and recall of 84%. However, we noted that 

the overall precision for Gram-positive multiply localized proteins was only 75%. Upon 

inspection we realized that this was due to 6 annotated cytoplasmic membrane/cell wall 

proteins being predicted as cytoplasmic. Noting that singly-localized cytoplasmic 

membrane and cell wall proteins were infrequently mispredicted as cytoplasmic, we 

investigated these 6 proteins further. While experimental evidence supporting a possible 

additional localization of cytoplasmic was only found for one of the 6 proteins – B. 

subtilis ComGG (Chung et al., 1998) – the other 5 proteins include enzymes and heat 

shock proteins, for which cytoplasmic or peripheral membrane associated localizations 

are not uncommon. It may be that rather than making mispredictions, PSORTb is 

detecting a more complex pattern of localization for certain proteins.

Proteome coverage

The measured recall of a program when evaluated using 5-fold cross validation does not 

give an accurate reflection of the predictive coverage when the program is applied to the 

analysis of whole proteomes. Because the training and testing data consists of a number 

of well-characterized proteins, a large number of predictions are possible. However, 

hypothetical proteins - which make up a notable proportion of a proteome - often do not 

contain enough information for a prediction to be generated. We therefore set out to 



measure PSORTb v.2.0’s performance when applied to whole proteomes, with the 

expectation that we would see an increase in the 28% average coverage of version 1.1.

106 Gram-negative and 45 Gram-positive proteome files from NCBI’s Microbial 

Genomes page were analyzed (one organism may have multiple proteome files, each 

representing a different chromosome), and a complete summary of the results can be 

found in Supplementary Tables S2a and S2b. The average coverage when PSORTb v.2.0 

is applied to Gram-negative proteomes is 56.7%, and a maximum coverage of 78.8% (T. 

maritime) was achieved. When applied to Gram-positive proteomes, the average 

coverage increases to 74.8%, with a maximum of 83.2% (B. halodurans). 

 The Gram-positive version of the program displays higher predictive coverage

than the Gram-negative version due to the higher recall associated with the Gram-positive 

cytoplasmic SVM. Cytoplasmic proteins represent the largest class of proteins within the 

cell, and an improved ability to identify these results in high overall coverage. The level 

of coverage for each proteome appears to be irrespective of phylogenetic grouping, with 

predictions being generated as readily for organisms such as spirochetes or mollicutes as 

for the proteobacteria. 

Comparison to other methods

We next set out to compare PSORTb v.2.0’s performance to that of other comprehensive 

web-based predictive tools. Proteome Analyst (Lu et al., 2004) is capable of generating 

predictions for 5 Gram-negative localization sites and 3 Gram-positive sites – it does not 

differentiate between cell wall and extracellular proteins. CELLO (Yu et al., 2004)

generates predictions for the 5 Gram-negative localization sites only. SubLoc (Hua and 



Sun, 2001) was not evaluated as it does not predict membrane proteins, and a comparison 

between PSORT I (Nakai and Kanehisa, 1991) and PSORTb appears in our earlier work 

(Gardy et al., 2003).

Because both Proteome Analyst and CELLO were trained using the original 

PSORTb dataset of 1443 Gram-negative proteins, a fair method of assessment was to use 

proteins not included in these programs’ training data. 144 singly-localized new Gram-

negative proteins in the version of PSORTdb described here were submitted to the 

Proteome Analyst and CELLO web servers for analysis. For a comparable evaluation of 

PSORTb v.2.0, the predictions generated for these proteins during the earlier 5-fold 

cross-validation procedure were used, such that the new proteins were not included in the 

PSORTb training data.  A comparison of the performance of the 3 programs is given in 

Table 6, and the associated confusion matrices are available as Supplementary Table S3.

A Gram-positive comparison was not carried out, as we were unsure whether Proteome 

Analyst’s Gram-positive training data and that used in PSORTb overlapped.

In terms of precision, PSORTb v.2.0 outperforms both Proteome Analyst and 

CELLO by 7.6% and 26.1%, respectively. The significant difference between PSORTb

and CELLO is due to the fact that unlike the other two programs, CELLO forces 

predictions for each query protein. While this does lead to a prediction generated for 

every protein in a proteome, the cost in terms of reliability of these predictions is 

significant. This decreased precision may not be apparent when evaluations are reported 

using the accuracy measure, in which high recall is able to compensate for lower 

precision, and illustrates that reporting confusion matrices leads to, epigrammatically 

enough, the least confusion when comparing the performance of multiple programs.



We also wished to compare the predictive coverage of PSORTb v.2.0 to that of 

the other programs when applied to the analysis of whole proteomes. Because CELLO 

generates a prediction in every case, it was not included in the present analysis. In Lu et 

al., the authors of Proteome Analyst report predictive coverage for two proteomes – one 

Gram-negative and one Gram-positive. Proteome Analyst displayed coverage of 75.6%

for the Gram-negative bacterium Pseudomonas aeruginosa and 67.2% for the Gram-

positive bacterium Bacillus subtilis. When PSORTb v.2.0 was used to analyze the same 

organisms, it attained coverage of 68.1% for P. aeruginosa and 76.5% for B. subtilis.

An analysis based on these two proteomes suggests that while Proteome Analyst 

attains higher coverage on a Gram-negative organism, PSORTb v.2.0 generates more 

predictions for a Gram-positive proteome. Because Proteome Analyst relies on SWISS-

PROT annotation keywords for classification, we believe that PSORTb’s sequence 

feature-based method may yield higher coverage for organisms with little database 

annotation available.

Comparative Proteome Analysis

Using the data generated during our analysis of whole proteome predictive coverage 

(Supplementary Tables S2a and S2b), we investigated our hypothesis that free-living 

organisms might exhibit a higher than normal proportion of membrane proteins. The 

proportion of proteins at each localization site was determined, both as a fraction of the 

total predictions and as a fraction of total proteome size. Table 7 shows the average and 

standard deviation for both types of calculation, as well as the correlation coefficient 

between the number of proteins predicted at a given site and overall proteome size.



Cytoplasmic and cytoplasmic membrane proteins represent the largest fractions of 

the proteome, and the large sample size yields a high correlation coefficient. This 

indicates that proteome size and not lifestyle or other factors is the primary determinant 

of the number of proteins at a given site. This correlation is evident for most other 

localization sites as well, with only the cell wall showing variable values. Because the 

cell wall represents a comparatively tiny fraction of the proteome, however, this 

variability may be attributed to a small sample size. 

When the data is visualized as a scatter plot (Supplementary Figure S1), these 

constant proportions are more easily observable. Several points of interest also become 

obvious. Two Gram-negative organisms, Thermotoga maritima and Aquifex aeolicus -

organisms which are found near the base of the tree of life - appear to have unusually

high proportions of cytoplasmic proteins. The mycoplasmas, noted for their small 

genomes and membrane protein variability, exhibit higher than normal proportions of 

outer membrane proteins.

Discussion

We have developed PSORTb v.2.0, an updated version of the PSORTb tool for prediction 

of bacterial protein subcellular localization. Version 2.0 improves significantly upon the 

original release of the program, with its predictive capability extended to include Gram-

positive organisms and its predictive coverage increased. A flag indicating potentially 

multiply-localized proteins has also been added. PSORTb’s existing standard of high 

precision is maintained, and with a measured precision of 96%, the program continues to 

be the most precise tool for bacterial localization prediction available.



We attribute the 2-fold increase in predictive coverage primarily to the 

incorporation of 9 frequent subsequence-based support vector machine modules. With a 

higher precision than amino acid composition-based SVMs such as SubLoc and CELLO, 

our method allows for the classification of proteins based on characteristic patterns that 

might not have been detected through conventional methods, such as multiple sequence 

alignment. The SVMs have allowed us to address concerns raised with the first release of 

PSORTb, namely how to identify a larger number of cytoplasmic proteins, as well as

cytoplasmic membrane proteins with 3 or fewer predicted helices. Cytoplasmic proteins 

in particular are a large and diverse group of proteins and represent the majority of 

proteins encoded for by a genome. The ability to identify these proteins is key to attaining 

a high predictive coverage rate, and we are interested in pursuing ways of increasing our 

SVM’s ability to detect these proteins, particularly in the case of Gram-negative 

organisms.

Comparison with other available predictive tools shows that PSORTb remains the 

most precise predictive method available. We believe this is the result of two aspects of 

the program. First, a recent review has highlighted the importance of utilizing multiple 

methods for localization prediction (Schnieder and Fechner, 2004), and PSORTb is one 

of the few localization prediction methods to take such an approach. Second, PSORTb

does not force predictions – if we are unable to generate a confident prediction, the 

program will return a result of “Unknown”. Instead of optimizing precision and recall, we 

have always chosen to emphasize precision in development of PSORTb, reasoning that 

biologists are searching for correct results and, given the choice of an incorrect result or 

an “Unknown” result, prefer “Unknown”. 



Comparative analysis also highlights the importance of publishing confusion 

matrices – different tools use different metrics in their reporting, and often the definition 

of a particular metric varies between groups. Without access to actual predictions, it can 

be difficult to objectively assess multiple predictive tools. Still, we show here that of the 

other localization tools currently available, Proteome Analyst offers an excellent 

complement to PSORTb – despite a slightly lower precision, Proteome Analyst’s recall of 

Gram-negative proteins is especially good. 

PSORTb’s significant increase in predictive coverage allowed us to examine the 

distribution of proteins across localization sites on a proteome-wide scale. We found that 

with very few exceptions the proportions of proteins found at each localization site 

remained notably consistent across species, regardless of lifestyle, physiology, or 

proteome size. This may reflect the nature of biological networks. When a new gene is 

introduced into an organism, its product will carry out certain new functions. In order for 

these new functions to be of any benefit to the organism, however, more new genes and 

gene products might be necessary – the proteins that will form a complete new functional 

pathway capable of interacting with other pathways in the cell. The new proteins that 

constitute the pathway will likely span different cellular compartments. For example, an 

organism taking up residence in a new environment may develop a series of membrane 

transporters to take up nutrients from and sense its surroundings; however it must also 

develop the cytoplasmic components necessary for processing of the incoming nutrients 

and signals. 

PSORTb version 2.0 is available on the web at http://www.psort.org/psortb. Users 

can submit one or multiple query sequences over the web for analysis, selecting one of 3 

http://www.psort.org/psortb


possible output formats, or can download a standalone version of the program under the 

GNU General Public License. All of the completed microbial genomes listed on NCBI 

have precomputed results available for download at http://www.psort.org/genomes/, and 

this Genomes page will be updated as new genomes are released. The PSORTdb dataset 

used in development of the program is also available on the website, along with other 

resources for subcellular localization prediction, including links to other tools and 

datasets of interest. We believe that PSORTb v.2.0 and psort.org are valuable resources to

the microbiology and localization prediction communities. We offer an open source, 

flexible and high coverage predictive tool which is presently the most precise localization 

prediction method available. Utilizing the program for comparative proteome analysis has 

already generated interesting results regarding the proportion of proteins in different 

cellular compartments, and we are presently investigating this area further. 
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Table 1. Composition of the PSORTdb dataset
Localizationa Gram-negative Gram-positive
C 278 194
CM 309 103
P 276 N/A
OM 391 N/A
EC 190 183
CW N/A 61
C/CM 16 15
CM/P 51 N/A
P/OM 2 N/A
OM/EC 78 N/A
CM/CW N/A 20
Total 1591 576

aThe following abbreviations for localization sites and predictions are used throughout the paper: C = cytoplasm, CM = cytoplasmic 
membrane, P = periplasm, OM = outer membrane, EC = extracellular, CW = cell wall. A / character indicates a multiply-
localized/predicted protein. U indicates a prediction of Unknown. 



Table 2. Performance of the SCL-BLAST module using an expanded database of proteins
Performance

Localization Precision Recall
C 88.8 39.9
CM 97.4 62.0
P 94.4 68.8
OM 99.4 90.5
EC 97.3 77.4

Negative

Total 96.4 68.6
C 96.6 58.8
CM 96.8 59.8
CW 91.9 56.7
EC 95.5 57.7

Positive

Total 95.7 58.4

Table 3. Parameters and performance of the 9 frequent subsequence-based support vector machine modules
SVM Parameters Performance

Module MinSup Frequent patterns Kernel Precision Recall
CytoSVM- 0.5 39219 Linear 83.6 68.4
CMSVM- 3 5645 Polynomial 96.9 69.6
PPSVM- 1 27804 Polynomial 96.3 45.3
OMSVM- 1 46688 Linear 94.6 85.3

Negative

ECSVM- 2 35380 Polynomial 94.1 56.4
CytoSVM+ 2 8214 Linear 86.5 79.9
CMSVM+ 2 250163 Linear 100.0 63.1
CWSVM+ 2 11610 Linear 95.7 55.6

Positive

ECSVM+ 5 23605 Polynomial 91.7 55.0



Table 4. PSORTb v.2.0 performance as measured by 5-fold cross-validation using the complete subset of singly localized proteins 
from PSORTdb 

Performance
Localization TP FP FN Precision Recall

C 195 15 83 92.9 70.1
CM 286 14 23 95.3 92.6
P 191 9 85 95.5 69.2
OM 371 10 20 97.4 94.9
EC 150 4 40 97.4 78.9

Negative

Total 1193 52 251 95.8 82.6
C 168 5 26 97.1 86.6
CM 94 3 9 96.9 91.3
CW 54 3 7 94.7 88.5
EC 124 8 59 93.9 67.8

Positive

Total 440 19 101 95.9 81.3



Table 5. PSORTb v.2.0 performance as measured by 5-fold cross-validation using the complete subset of multiply localized proteins 
from PSORTdba

Performance
Localization TP FP FN Precision Recall

C/CM 11 2 5 84.6 68.8
CM/P 34 1 17 97.1 66.7
P/OM 2 2 0 50.0 100.0
OM/EC 76 1 2 98.7 97.4

Negative

Total 123 6 24 95.3 83.7
C/CM 12 6 3 66.7 80.0
CM/CW 6 0 14 100.0 30.0Positive
Total 18 6 17 75.0 51.4

aFor a protein resident at X and Y localization sites, a true positive (TP) is a prediction of either X, Y, or X/Y. A false positive (FP) is 
all multiply-localized proteins not resident at X or Y which are predicted as X, Y, or X/Y. A false negative (FN) is all X/Y proteins 
not predicted as neither X, Y, nor X/Y.

Table 6. Comparison between PSORTb v.2.0, CELLO v.2.0 and Proteome Analyst v. using a set of 144 Gram-negative proteins not 
used in training of any program.a 

PSORT-B v.2.0 CELLO v.2.0 Proteome Analyst v.1.0
Localization TP FP FN Precision Recall TP FP FN Precision Recall TP FP FN Precision Recall
C 22 1 8 95.7 73.3 27 9 3 75.0 90.0 22 1 8 95.7 73.3
CM 39 1 3 97.5 92.9 35 4 7 89.7 83.3 40 6 2 87.0 95.2
P 26 0 6 100.0 81.3 16 6 16 72.7 50.0 29 1 3 96.7 90.6
OM 34 1 5 97.1 87.2 24 3 15 88.9 61.5 34 0 5 100.0 87.2
EC 1 0 0 100.0 100.0 1 19 0 5.0 100.0 1 6 0 14.3 100.0
Total 122 3 22 97.6 84.7 103 41 41 71.5 71.5 126 14 18 90.0 87.5

aSee also supplementary table S3.



Table 7. Analysis of the proportion of predicted proteins at each localization site for 106 Gram-negative and 45 Gram-positive 
proteome files

Statistical analysis

Localization

Average 
% of 

predictions

Standard 
deviation

Average 
% of 

proteome

Standard 
deviation

Correlation 
coefficienta

C 59.3 5.4 33.3 5.5 0.97
CM 30.2 3.5 16.9 2.4 0.97
P 2.9 1.7 1.7 1.1 0.84
OM 4.5 3.1 2.4 1.6 0.72

Negative EC 0.7 0.5 0.4 0.3 0.77
C 68.5 3.9 50.7 3.5 0.99
CM 26.5 3.1 19.7 2.6 0.95
CW 1.2 0.6 0.9 0.5 0.44

Positive EC 3.8 2.1 2.8 1.5 0.81
aCalculated between the number of proteins at localization X and the total number of proteins in the proteome


