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Summary 

Here we report a systematic approach for 
predicting subcellular localization (cytoplasm, 
mitochondrial, nuclear and plasma membrane) of 
human proteins. Firstly, SVM based modules for 
predicting subcellular localization using traditional 
amino acid and dipeptide (i+1) composition 
achieved overall accuracy of 76.6% and 77.8%, 
respectively. PSI-BLAST when carried out using 
similarity-based search against non-redundant 
database of experimentally annotated proteins 
yielded 73.3% accuracy. To gain further insight, 
hybrid module (hybrid1) was developed based on 
amino acid composition, dipeptide composition, 
and similarity information and attained better 
accuracy of 84.9%. In addition, SVM module 
based on different higher order dipeptide i.e. i+2, 
i+3, and i+4 were also constructed for the 
prediction of subcellular localization of human 
proteins and overall accuracy of 79.7%, 77.5% and 
77.1% was accomplished respectively. 
Furthermore, another SVM module hybrid2 was 
developed using traditional dipeptide (i+1) and 
higher order dipeptide (i+2, i+3, and i+4) 
compositions, which gave an overall accuracy of 
81.3%. We also developed SVM module hybrid3 
based on amino acid composition, traditional and 
higher order dipeptide compositions and PSI-
BLAST output and achieved an overall accuracy 
of 84.4%. A web server HSLPred 
(http://www.imtech.res.in/raghava/hslpred/ or 
http://bioinformatics.uams.edu/raghava/hslpred/) 
has been designed to predict subcellular 
localization of human proteins using the above 
approaches. 

Introduction 

 The successful completion of a human 
genome project has yielded huge amount of 
sequence data. Analysis of this data to extract the 
biological information can have profound 
implications on biomedical research. Therefore, 
mining of biological information or functional 
annotation of piled up sequence data is a major 
challenge to the modern scientific community. 
Determination of functions of all these proteins 
using experimental approaches is a difficult and 

time-consuming task. Traditionally, the similarity 
search based tools has been used for functional 
annotations of proteins (1). This approach fails 
when unknown query protein does not have 
significant homology to proteins of known 
functions. The functions of the proteins are closely 
related to its cellular attributes, such as subcellular 
localization and its association with the lipid 
bilayer (subcellular localization) (2, 3), hence the 
related proteins must be localized in the same 
cellular compartment to cooperate towards a 
common function (4). In addition, information on 
the localization of proteins with known function 
may provide insight about its involvement in 
specific metabolic pathways (5-7). Therefore, an 
attempt has been made to predict subcellular 
localization of proteins to elucidate the function.    

 Several methods have been devised earlier 
to predict the subcellular localization of the 
eukaryotic and prokaryotic proteins using different 
approaches and datasets (8). The most commonly 
used approach utilizes alignment or similarity 
search against an experimentally annotated 
database. But this approach fails in the absence of 
significant similarity between the query and target 
protein sequences (1). Another popular approach 
is based on identification of sequence motifs such 
as signal peptide or nuclear localization signal 
(NLS) (9). This approach has been limited by the 
observation that all the proteins residing in a 
compartment do not have universal motif. To 
overcome these limitations, several machine 
learning techniques based methods such artificial 
neural networks (ANN) and support vector 
machines (SVM) have been developed to predict 
the subcellular localization of proteins. These 
methods are based on the several features of 
protein sequences such as recognition of N-
terminal sorting signals or the composition of 
amino acids. These methods predict subcellular 
localization either for prokaryotic or eukaryotic 
proteins such as PSORT (10) and TargetP (11) for 
eukaryotes, SubLoc (8) and NNPSL (1) for both 
prokaryotes and eukaryotes with good accuracy 
(>70%). Recently, our group has also developed a 
new hybrid approach based method, ESLPred, 
which predicts the four major subcellular 
localizations (nuclear, cytoplasmic, mitochondrial, 
and extracellular) of eukaryotic proteins with an 
overall accuracy of 88% (12). To the best of our 
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knowledge there is no method for the prediction of 
subcellular localization of human proteins. 
Availability of sequence data of human genes in 
recent years demands a reliable and accurate 
method for prediction of subcellular localization of 
human proteins.    

 In the present study, a systematic attempt 
has been made to develop a method for the 
subcellular localization of human proteins. The 
SVM modules based on different features of the 
proteins such as amino acid composition and 
dipeptide composition of proteins have been 
constructed. In addition, a similarity search based 
module HuPSI-BLAST has also been developed, 
using PSI-BLAST to predict the localization of 
human proteins. Further, SVM module “hybrid1” 
has been developed using amino acid composition, 
traditional dipeptide composition and results of 
PSI-BLAST prediction. The SVM modules based 
on higher order dipeptide compositions (i+2, i+3, 
and i+4) and combinations of various feature-
based modules have also been constructed. Here, 
we have also compared the performance of the 
present organism specific method (HSLPred) with 
ESLPred (12), a general method for prediction of 
subcellular localization of eukaryotic proteins. In 
addition, the performance of HSLPred has also 
been assessed on various mammalian and non-
mammalian genomes and on an independent data 
set. It was observed that method can predict the 
subcellular localization of human proteins and 
proteins from related genomes with high accuracy. 
In other words, our method can also be used for 
the prediction of subcellular localization of 
mammalian proteins. 

Materials and Methods  

The data set 

The dataset of human proteins with experimentally 
annotated subcellular localization has been derived 
from release 44.1 of the SWISSPROT database 
(13). Out of 10777 human proteins available in 
database, subcellular localization information was 
available for 7910 sequences. These 7910 
sequences were screened strictly in order to 
develop a high-quality dataset for predicting 
subcellular localization of human proteins. The 

sequences annotated as “fragments“, “isoforms”, 
“potential”, “by similarity”, or “probable” were 
filtered out from the dataset. Further, sequences 
residing in more than one subcellular location 
(such as a protein sequence labeled with “nuclear 
and cytoplasmic” or “mitochondrial and 
cytoplasmic”) were also excluded from the 
dataset. The sequence redundancy of dataset was 
further reduced by using PROSET software (14) 
such that no two sequences had >90% sequence 
identity in the dataset. The final dataset consists 
3780 protein sequences that belong to 11 
subcellular locations as shown in the Table 1. The 
number of sequences for the last 7 subcellular 
locations was not sufficient for developing 
prediction method. Therefore, method was 
developed for only 4 major subcellular locations 
of human proteins (840 cytoplasmic, 315 
mitochondrial, 858 nuclear, 1519 plasma 
membrane). 

Support Vector Machines 

An excellent machine learning technique support 
vector machine has been used for the prediction of 
subcellular localization of human proteins. 
Previously, SVM has been successfully used for 
the classification of microarry data, MHC binders 
prediction and protein secondary structure 
prediction (15, 16, 17). In the present study, a 
freely downloadable package of SVM, SVM_light 
has been used to predict the sub-cellular 
localization of proteins. The prediction of 
subcellular localization is a multi-class 
classification problem. So, N SVMs for N class 
classification have been constructed. Here, the 
class number was equal to four for human 
proteins. The ith SVM was trained with all the 
samples in the ith class with positive label and 
negative label for proteins of remaining 
subcellular localizations. This kind of SVM is 
known as one versus rest SVM (1-v-r SVM) (8). 
In this way, four SVMs were constructed for the 
subcellular localization of human proteins. An 
unknown sample was classified into the class that 
corresponds to the SVM with highest output score. 
We have adopted different approaches based on 
different features of a protein such as amino acid 
composition and dipeptide composition in the 
fixed length format.  
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Amino acid composition 

Amino acid composition is the fraction of each 
amino acid in a protein. This representation 
completely misses the order of amino acids. The 
fraction of all 20 natural amino acids was 
calculated using equation 1. 

proteinin  acids amino ofnumber  total
i acid amino ofnumber  total

  

 i acid amino ofFraction 

=
          ……1 

Where, i can be any amino acid 

Traditional dipeptide composition (i+1) 

Dipeptide composition was used to encapsulate the 
global information about each protein sequence, 
which gives a fixed pattern length of 400 (20 × 
20). This representation encompassed the 
information of the amino acid composition along 
with the local order of amino acid. The fraction of 
each dipeptide was calculated using equation 2. 

 dipeptides possible all ofnumber  total

1( dep ofnumber  total
   

 1( dep ofFraction 
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=
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i
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Where, dep (i+1) is one out of 400 dipeptide. 

In addition, to observe the interaction of the ith 

residue with the third, fourth and fifth residue in 
the sequence, higher order dipeptides such as i+2, 
i+3, and i+4 respectively (Figure 1) were 
generated using equation 3.  

 dipeptides possible all ofnumber  total
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=

+
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Where, n is equal to 2, 3 or 4; dep (i+n) is one out 
of 400 dipeptide. 

Multivariate Adaptive Regression Splines  

In this study, we also made an attempt to use 
simple and reliable machine learning technique 

Multivariate Adaptive Regression Splines 
(MARS) for predicting sub-cellular localization of 
human proteins. It has been shown previously that 
MARS performs as good as other machine 
learning techniques such as neural networks. In 
addition, MARS also provides information about 
the relative importance of different input variables 
for the classifications or predictions (18, 19). In 
the present study, we have downloaded the XTAL 
regression software package that incorporates the 
Xmars version of MARS for SUN workstation 
(http://www.ece.umn.edu/groups/ece8591/xtal.htm
l). This version of MARS uses maximum 10 
predictable input variables. Thus, we have used 
compositions of amino acid properties for the 
prediction rather then amino acid and dipeptide 
compositions. Compositions of amino acid 
properties: 

We have used five commonly used properties of 
amino acids; i) non-polar aliphatic amino acid (G, 
A, V, L, I, P), ii) polar uncharged amino acids (S, 
T, C, M, N, Q), iii) aromatic amino acids (F, Y, 
W), iv) negatively charged amino acids (D, E) and 
v) positively charged amino acids (K, R, H). In 
order to get composition of a property, we added 
compositions of its residues, for e.g. compositions 
of negatively charged residues would be 
compositions of D and E.  

HuPSI-BLAST  

A module HuPSI-BLAST was designed to predict 
subcellular localization of human proteins, in 
which the query sequence was searched against 
database of human proteins using PSI-BLAST. 
The database consists of 3532 sequences 
belonging to 4 major subcellular locations 
(cytoplasmic, mitochondrial, nuclear and plasma 
membrane). The subcellular localization of these 
proteins has been proven experimentally. The PSI-
BLAST was used instead of normal standard 
BLAST to search the database because it has the 
capability to detect remote homologies (20). It 
carries out an iterative search in which the 
sequences found in one round of search are used to 
build score model for the next round of searching. 
Three iterations of PSI-BLAST were carried out at 
a cut-off E-value of 0.001. This module could 
predict any of the four localizations (cytoplasmic, 
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mitochondrial, nuclear or plasma membrane) 
depending upon the similarity of the query protein 
to the proteins present in the database. The module 
would return “unknown subcellular localization” if 
no significant similarity was obtained. 

Hybrid SVM modules 

Recently, our group has introduced the concept of 
hybrid SVM module for the prediction of 
subcellular localization of eukaryotic proteins 
(12). In the present study, an attempt has been 
made to elaborate the concept of hybrid modules 
by designing hybrid modules based on different 
approaches. The description of the approaches 
used to develop different hybrid modules has been 
described below: 

Hybrid1 SVM module 

The hybrid1 SVM module encapsulates the 
information of amino acid composition, traditional 
dipeptide composition, and PSI-BLAST output 
(Figure 2a). SVM was provided with an input 
vector of 425 dimensions that consisted of 20 for 
amino acid composition, 400 for dipeptide 
composition, 5 for PSI-BLAST output. The PSI-
BLAST output was converted to binary variables 
using the representation shown in equation 4.  

  Cytoplasmic           →      1  0  0  0  0 
   Mitochondrial           →      0  1  0  0  0 
   Nuclear                      →      0  0  1  0  0 
   Plasma membrane     →      0  0  0  1  0 
   Unknown                   →      0  0  0  0  1 

 
…….4           

Hybrid2 SVM module 

The hybrid2 SVM module was constructed using 
all higher order dipeptide compositions (i+2, i+3, 
i+4) along with traditional dipeptide composition 
(i+1). This hybrid2 module was provided with an 
input vector of 1600 dimensions, 400 from each 
dipeptide compositions (Figure 2b). 

Hybrid3 SVM module 

The hybrid3 SVM module was constructed using 
amino acid composition, traditional dipeptide 
composition (i+1), higher order dipeptide 
compositions (i+2, i+3, i+4) and similarity search 
based results (Figure 2c). The module was 
provided with input vector of 1625 dimensions, 
comprising 20 for amino acid compositions, 1600 
for above four types of dipeptide compositions and 
5 for PSI-BLAST output. 

Evaluation of HSLPred  

The performance of SVM modules constructed in 
this report was evaluated using 5-fold cross-
validation technique. In this technique, relevant 
dataset was partitioned randomly into 5 equal 
sized sets. The training and testing was carried out 
five times, each time using one distinct set for 
testing and the remaining four sets for training. To 
assess the predictive performance, accuracy and 
Matthew’s correlation coefficient (MCC) were 
calculated as described by Hua and Sun, (8) using 
equation 5 and 6. 

( )
( )xExp

xp
  )Accuracy(x =      ………5

 

( ) ( ) ( ) ( )
( ) ( )[ ] ( ) ( )[ ] ( ) ( )[ ] ( ) ( )[ ]xoxnxuxnxoxpxuxp

xoxuxnxp

++++

−
=

   

 (x) MCC

             ……….6 

Where, x can be any subcellular location 
(cytoplasmic, mitochondrial, nuclear, or plasma 
membrane), Exp(x) is the number of sequences 
observed in location x, p(x) is the number of 
correctly predicted sequences of location x, n(x) is 
the number of correctly predicted sequences not of 
location x, u(x) is the number of under-predicted 
sequences and o(x) is the number of over-
predicted sequences. 

Reliability Index 

The reliability index (RI) is a commonly used 
measure of prediction that provides confidence 
about the predictions to the users. The RI 
assignment is a useful indication of the level of 
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certainty in the predictions for the particular 
sequence. The strategy used for assigning the RI is 
similar as used in the past by our group (12). The 
RI was assigned according to the difference (∆) 
between the highest and second highest SVM 
output scores. The reliability index for the hybrid1 
approach based module was calculated using the 
equation 7.   





≥∆

<∆≤+∆
=

4.    if                             5

4,    0  if      1 5/3 *( INT
    RI                                                  

………7 

In order to validate the performance of HSLPred 
and to compare with other method such as 
ESLPred (12), two other data sets were also used. 
The brief description is as follows 

Independent dataset 

The techniques such as cross-validation and 
bootstrapping are routinely used for evaluating the 
performance of any method. Still, the best way of 
testing the performance of newly developed 
method is to test it on an independent dataset, that 
contains the patterns neither used during training 
and nor during testing of the method. An 
independent data was derived from the latest 
release 45.2 of the SWISSPROT database (13). 
This data set contained 164 human proteins (30 
cytoplasmic, 11 mitochondrial, 60 nuclear and 63 
plasma membrane) and was not used in the 
training and testing of HSLPred method.  

ESLPred data set 

To compare the performance of the present 
method (HSLPred) with ESLPred, another method 
developed by our group for subcellular 
localizations of eukaryotic proteins (12), the 
dataset of ESLPred was used. ESLPred was 
trained on 2427 eukaryotic proteins  (1097 nuclear, 
684 cytoplasmic, 321 mitochondrial and 325 
extracellular). This data set was further divided 
into two main sets: a) mammalian and b) non-
mammalian (eukaryotic proteins other then 
mammalian) proteins, to assess the performance of 
HSLPred on these two different systems.  

In addition, the data set of other mammalian 
genomes such as rat, rabbit, bovine and sheep have 
also been downloaded from the latest release 45.2 
of the SWISSPROT database (13), to check the 
generalizability of HSLPred on other closely 
related genomes. The data set used is shown in 
Table S6 of supplementary material 
(http://www.imtech.res.in/raghava/hslpred/supl.ht
ml). 

Results and Discussion 

The human genome sequencing has produced 
sequences of more than >40,000 genes. 
Amazingly, genes are simple consisting of four 
type of nucleotides (Adenine, Guanine, Cytosine, 
and Thymine) and get translated into far more 
complex proteins that are made up of 20 different 
types of amino acids. The four types of 
nucleotides in various different orders carry 
information for making the specific proteins that 
directs the make up of each human being. Among 
many other things, proteins control human 
development, physiology and provide resistance to 
diseases. In order to perform its appropriate 
functions, each protein must be translocated to its 
correct intra- or extra-cellular compartments. 
Hence, subcellular localization is a key step 
characteristic of each functional protein.  

Since, 1991, numerous algorithms have 
been developed to predict subcellular localization 
of proteins, based on amino acid compositions 
(21), neural network (1) covariant discriminant 
algorithm (22), Markov Chains (23), and support 
vector machines (8, 24). Recently, Gardy et al. 
(25) have developed a tool PSORT-B that 
combined several methods together, for the 
prediction of subcellular localization for Gram-
negative bacterial proteins. In general, artificial 
intelligence (AI) based techniques such as SVM 
and artificial neural networks are considered as 
elegant approaches for the prediction of 
subcellular localization of proteins.  

The performance of all the SVM modules 
developed in this study has been evaluated through 
5-fold cross-validation technique. The SVM 
training has been carried out by the optimization 
of various kernel function parameters and value of 
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the regularization parameter C. The detailed 
results obtained using various kernel function 
parameters have been shown in the supplementary 
material Table S1 
(http://www.imtech.res.in/raghava/hslpred/supl.ht
ml). It has been observed that RBF kernel 
performs better than linear and polynomial 
kernels, in the case of amino acid composition 
based SVM module. Thus, for all the SVM 
modules developed in the present study, RBF 
kernel has been used. 

The amino acid composition based SVM 
module (kernel=RBF, γ=300, C=2, j=1) has been 
able to achieve an overall accuracy of 76.6% for 
all the 4 subcellular localizations (Table 2). 
Further, to implement information about frequency 
as well as local order of residues, SVM module 
based on traditional dipeptide compositions has 
been constructed. The traditional dipeptide (i+1) 
composition based SVM module has achieved the 
best results (77.8%) with the RBF kernel (γ=50, 
C=6, j=1). This accuracy is nearly 1% better than 
amino acid composition based SVM module. The 
detailed performance of amino acid and traditional 
dipeptide composition based SVM modules in 
assigning different subcellular localizations has 
been shown in Table 2.  

The homology of a protein with other 
related sequences provides broad range of 
information about the protein. Hence, similarity 
search based module HuPSI-BLAST has been 
constructed to encapsulate evolutionary 
information of the proteins. During 5-fold cross-
validation, no significant hits have been obtained 
for 671 proteins out of 3532 proteins. Therefore, 
the performance of this module is poorer in 
comparison to amino acid composition as well as 
dipeptide composition based modules. This 
module has predicted cytoplasmic, mitochondrial, 
nuclear and plasma membrane subcellular 
localizations with 56.9%, 40.6%, 68.2%, and 92% 
accuracy respectively and achieved an overall 
accuracy of 73.3% (Table 2). It proves that 
compositions (amino acid and dipeptide) can 
annotate the data more reliably in comparison to 
similarity search based tool. 

To further, enhance the prediction 
accuracy, the methodologies such as “hybrids” 
have been devised to encapsulate more 
comprehensive information of the proteins. The 
first hybrid SVM-based module hybrid1 has been 
constructed using amino acid composition, 
traditional dipeptide composition and PSI-BLAST 
results. The hybrid1 module with RBF kernel 
(γ=50, C=2 j=1) has achieved striking overall 
accuracy of 84.9%, which is significantly better 
then rest of the modules developed in this study. 
These results confirm that prediction accuracy of 
subcellular localization of proteins can be 
increased using wide range of information about a 
protein.  

In addition, higher order dipeptide (i+2, 
i+3, and i+4) compositions based SVM modules 
have been constructed to examine the effect of 
different positions of amino acids on the 
subcellular localization. The overall performance 
of higher order dipeptide compositions in 
predicting subcellular localization is shown in 
Figure 3. The (i+2) dipeptide composition based 
SVM module has achieved overall accuracy of 
79.7%, ~2% higher in comparison to the 
traditional and other higher order dipeptide 
compositions based SVM modules. It has also 
been observed that accuracy of i+2 dipeptide 
composition based modules is nearly 2% more for 
cytoplasmic proteins and for remaining three 
subcellular localizations (mitochondrial, nuclear, 
plasma membrane), it is almost comparable to 
traditional dipeptide compositions. Further, the 
performance of i+3 and i+4 dipeptide composition 
based modules has been found to be similar to 
traditional dipeptide composition based SVM 
module (Figure 3). 

 Since, i+2 dipeptide composition based 
module has achieved better accuracy in 
comparison to traditional dipeptide composition, 
therefore, different hybrid modules have been 
constructed with an aim to increase the overall 
accuracy. The SVM module hybrid2 has been 
constructed using all higher order dipeptide 
compositions (i+2, i+3, i+4) along with traditional 
dipeptide compositions. The overall accuracy of 
hybrid2 SVM module is 3% lesser than hybrid1 
module but it is nearly 4% higher in comparison to 
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traditional dipeptide composition. This proves that 
it is able to encapsulate more information, which 
is useful in delineating the proteins of different 
subcellular localizations. Furthermore, another 
SVM modules hybrid3 has been constructed using 
amino acid compositions, traditional dipeptide 
compositions (i+1), higher order dipeptide 
compositions (i+2, i+3, i+4) and PSI-BLAST 
results. However, hybrid3 SVM module has been 
predicted with an overall accuracy of 84.4% that is 
nearly equal to hybrid1 module. Further 
enhancement in accuracy cannot be achieved due 
to complexity of input patterns as hybrid3 module 
has been provided with an input vector of 1625 
dimensions. 

  In addition, to hybrid modules, cascade 
SVM based approach has also been adopted to 
classify the human proteins with better accuracy. 
The cascade SVM consists of two layers of SVM 
(Figure 2d). First layer consists of models based 
on traditional and higher order dipeptide 
compositions (i+1, i+2, i+3, i+4) and second layer 
consists of SVM model that correlates the output 
of first layer model and provides a final output. 
The cascade SVM module has been able to 
achieve an accuracy of 81.5%, comparable to the 
performance of hybrid2 module. The comparison 
of accuracies of all the SVM modules developed 
on the basis of different approaches is shown in 
Figure 3. 

 To evaluate the prediction reliability, RI 
assignment has been carried out for the hybrid1 
SVM module. It tells about the effectiveness of an 
approach in the prediction of subcellular 
localization of proteins. The RI is a measure of 
confidence in the prediction. Ideally, accuracy and 
probability of correct prediction should increase 
with increase of RI values. We have computed the 
average prediction accuracy of proteins having RI 
value greater then equal to n where, n=1,2…5. As 
shown in Table S9 of supplementary material  
(http://www.imtech.res.in/raghava/hslpred/supl.ht
ml), HSLPred has been able to predict 67.3% of 
sequences with an average prediction accuracy of 
94.9% at RI ≥ 5. This demonstrates that user can 
predict large number of sequences with higher 
accuracy for RI ≥ 5. Similarly, HSLPred has been 

able to predict 83.4% sequences with an accuracy 
of 91.1% for RI ≥ 3.   

The main objective of the present study 
was to develop a method for the subcellular 
localization of human proteins. Since, the present 
method has been trained on the specific 
organism’s proteins, it should be more accurate 
and better for the particular organism in 
comparison to methods such as ESLPred, 
developed generally for all eukaryotic proteins. 
Following analysis has been performed to show 
superiority of HSLPred over existing methods 
such as ESLPred:  

Firstly, the performance of HSLPred has been 
evaluated on proteins used to develop ESLPred 
method. The hybrid1-based approach of HSLPred 
method has been able to predict cytoplasmic, 
mitochondrial, and nuclear proteins (of ESLPred) 
with an accuracy of 91.8%, 35.2%, 78.3%, 
respectively, and an overall accuracy of 76.1% has 
been attained. The details have been given in the 
supplementary material Table S3 
(http://www.imtech.res.in/raghava/hslpred/supl.ht
ml).  

Secondly, in order to examine the performance of 
ESLPred method on human proteins, we have 
applied ESLPred method on proteins used to 
develop HSLPred. It has been observed that 
hybrid-based approach of ESLPred predicted 
cytoplasmic, mitochondrial, and nuclear proteins 
with an accuracy of 42.7%, 57.8%, and 84.8% 
respectively. An overall accuracy of 62.9% has 
been achieved. For details, see Table S4 of 
supplementary material 
(http://www.imtech.res.in/raghava/hslpred/supl.ht
ml). These results indicated that the performance 
of organism specific method HSLPred is better 
than ESLPred for predicting human proteins.  

Furthermore, in order to check the reason behind 
poor performance of HSLPred in comparison to 
ESLPred on eukaryotic proteins, the data set used 
to develop ESLPred method has been divided into 
two main sets: i) Mammalian and ii) Non-
mammalian (all eukaryotic proteins other than 
mammalian) proteins. These two sets have been 
further predicted using HSLPred server. We found 
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that HSLPred method has achieved an overall 
accuracy of 85% and 70.8% for mammalian and 
non-mammalian protein sets respectively, as 
shown in supplementary material Table S5 
(http://www.imtech.res.in/raghava/hslpred/supl.ht
ml). It proves that HSLPred can predict 
mammalian proteins with good accuracy and non-
mammalian proteins with fair accuracy. 

Further, the performance of both HSLPred and 
ESLPred has been assessed on an independent 
data set to estimate the unbiased performance of a 
method. It has been observed that HSLPred has 
been able to predict 20, 7, 50, 58 proteins correctly 
out of 30, 11, 60, 63 (cytoplasmic, mitochondrial, 
nuclear and plasma membrane proteins) 
respectively, using hybrid1 module. An overall 
accuracy of 82.3% has been achieved. Where as, 
ESLPred method has been able to achieve overall 
accuracy of 64.4%. The detailed results have been 
shown in Table S2 of supplementary material 
(http://www.imtech.res.in/raghava/hslpred/supl.ht
ml). In summary, the performance of HSLPred has 
been found to be better both during cross-
validation as well as testing of an independent data 
set, suggesting that it is not an artifact. We have 
also tested the generalizability of the HSLPred 
algorithm with other genomes such as rat, rabbit, 
bovine and sheep to assess the predictive 
performance of HSLPred on other closely related 
genomes. It has been observed that HSLPred also 
predicts other mammalian proteins with 
considerably high accuracy. The detailed results 
obtained have been shown in Table S7 of 
supplementary material 
(http://www.imtech.res.in/raghava/hslpred/supl.ht
ml). Hence, HSLPred method can also be used for 
the prediction of subcellular localization of other 
closely related mammalian proteins. In other 
words, it can act as a generalized method for 
various closely related mammalian genomes.  

Although SVM and ANN are powerful 
techniques for the classification of proteins, but 
they have their own limitations, as these 
techniques produce results, which are sometimes 
difficult to interpret. Since, subcellular localization 
has resulted from number of input variables 
including hydrophobicity, amino acid 
composition, homology to other localized proteins, 
localization motifs, hence, interpretation of results 

can provide new insights into protein subcellular 
localization. In the present study, we also used 
MARS technique (18,19) for the classification of 
subcellular localization of human proteins using 
five given properties of amino acids. It has been 
observed that for the classification of cytoplasmic 
proteins, composition of negatively charged amino 
acids (D and E) plays an important role. However, 
for the classification of mitochondrial proteins, the 
relative importance of positively charged (K, R 
and H) and polar uncharged (S, T, C, M, N, and Q) 
amino acids has been observed. In the case of 
nuclear proteins composition of aromatic amino 
acids (F, Y, and W) and for the plasma membrane 
proteins composition of positively charged amino 
acids (K, R and H) has been found to be important. 
The detailed results obtained have been shown in 
Table S8 of the supplementary material 
(http://www.imtech.res.in/raghava/hslpred/supl.ht
ml). Further, cytoplasmic, mitochondrial, nuclear 
and plasma membrane proteins have achieved 
accuracy of 35.7%, 21.9%, 50.0% and 82.4% 
respectively, and an overall accuracy of 58% has 
been attained. In order to account for this lower 
accuracy, either due to the use of MARS or the 
specified properties of input variables, we have 
developed SVM module based on the inputs used 
for MARS. We observed that accuracy achieved 
by SVM module (60.8%) was slightly better than 
MARS, demonstrating that MARS is also a 
powerful technique for the classification of 
proteins. Here, we like to comment that 
performance of MARS can be further improved if 
amino acid or dipeptide compositions are used as 
input variables.  

HSLPred server 

Various types of SVM modules constructed in the 
present study have been implemented as web 
server (HSLPred) using CGI/Perl script. HSLPred 
server is available at 
http://www.imtech.res.in/raghava/hslpred/ or 
http://bioinformatics.uams.edu/raghava/hslpred/. 
Users can enter protein sequence in one of the 
standard formats such as FASTA, GenBank, 
EMBL, GCG, or plain format. The server provides 
options to select various approache s for the 
prediction of subcellular localization of a query 
sequence. In the case of default prediction, it uses 
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the hybrid1 module for prediction. An overall 
architecture of HSLPred server has been shown in 

Figure 4. 
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Figure Legends 
 
Figure 1. The graphical representation of traditional and higher order dipeptide compositions 
Figure 2a. The hybrid1 SVM module incorporates the features of a protein (amino acid and traditional 
dipeptide composition) and output of HuPSI-BLAST module. 
Figure 2b. The hybrid2 SVM module constructed using normal and higher order dipeptide compositions 
Figure 2c. The hybrid3 SVM module developed using a vector of 20 dimensions of amino acid 
composition, 1600 for traditional and higher order dipeptide compositions and 5 of HuPSI-BLAST 
output. 
Figure 2d.  SVM cascade consists of two layers of SVM. 
Figure 3. The comparison of an overall performance of SVM modules constructed on the basis of 
different features and approaches. 
Figure 4. An overall architecture of HSLPred server. 
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Table 1.  Number of sequences within each subcellular location groups 
 

Subcellular location Number of sequences 
Cytoplasm 840 
Mitochondria  315 
Nuclear 858 
Plasma Membrane 1519 
Endoplasmic Reticulum 63 
Extracellular  48 
Peroxisome 25 
Lysosome 51 
Golgi 32 
Centrosome 8 
Microsome 21 
Total 3780 
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Table 2.   Detailed performance of various SVM modules developed using different features of a protein 

and PSI-BLAST 

 

Approaches 
Used 

Cytoplasm Mitochondria Nuclear Plasma 
Membrane 

Average 

 ACC MCC ACC MCC ACC MCC ACC MCC ACC MCC 
Composition-
based (A) 

63.5 0.52 46.0 0.52 76.2 0.67 90.3 0.78 76.6 0.67 

PSI-BLAST 
(B) 56.9 ----- 40.6 ---- 68.2 ---- 92.0 ---- 73.3 ---- 

Dipeptide 
based i+1 (C) 

58.3 0.52 48.3 0.52 80.2 0.71 93.4 0.80 77.8 0.69 

Hybrid1 
(A+B+C) 
 

75.4 0.67 69.8 0.68 82.4 0.79 94.8 0.89 84.9 0.80 

   ACC: Accuracy, MCC: Matthew’s correlation coefficient 
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Figure 2a 
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Figure 2b 
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Figure 2c  
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Figure 2d 
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Figure 3 
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Figure 4 

 
 


