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ABSTRACT
Motivation: Biological literature contains many abbreviati-
ons with one particular sense in each document. However,
most abbreviations do not have a unique sense across the
literature. Furthermore, many documents do not contain the
long-forms of the abbreviations. Resolving an abbreviation in
a document consists of retrieving its sense in use. Abbre-
viation resolution improves accuracy of document retrieval
engines and of information extraction systems.
Results: We combine an automatic analysis of Medline
abstracts and linguistic methods to build a dictionary of abbre-
viation/sense pairs. The dictionary is used for the resolution of
abbreviations occurring with their long-forms. Ambiguous glo-
bal abbreviations are resolved using Support Vector Machines
that have been trained on the context of each instance of the
abbreviation/sense pairs, previously extracted for the dictio-
nary setup. The system disambiguates abbreviations with a
precision of 98.9% for a recall of 98.2% (98.5% accuracy). This
performance is superior in comparison to previously reported
research work.
Availability: The abbreviation resolution module is available
at http://www.ebi.ac.uk/Rebholz/software.html
Contact: gaudan@ebi.ac.uk

1 INTRODUCTION
Abbreviations are a common feature in scientific literature.
They are often used without naming the long-form (Fred et al.
(2004)), resulting in confusion and even in misinterpretati-
ons, as soon as the human reader has the wrong long form for
the abbreviation on his mind (Sentinel Event Alert (2001)).
We distinguish global abbreviations from local abbrevia-

tions. Global abbreviations appear in documents without
the long-form explicitly stated, while local abbreviations
come together with their long-form in the document. Global
abbreviations are often ambiguous, meaning that they have
different senses in different documents.
In particular 80% of the abbreviations defined in the Uni-

fied Medical Language System (UMLS) have ambiguous
occurrences in Medline (Liu et al. (2002a)). Regarding

∗to whom correspondence should be addressed

human gene symbols from LocusLink, which morphologi-
cally are very similar to abbreviations, 40% of the symbols
are used in Medline, but many of the occurrences are not
related to genes.
Yu et al. (2002) also distinguish dynamic and common

abbreviations. Common abbreviations become accepted as
synonyms (“AIDS” and “acquired immunodeficiency syn-
drome”) and represent important terms in their domain, whe-
reas dynamic abbreviations are defined for convenience in
only a particular article. As a result, global abbreviations are
mainly common abbreviations since the reader is expected to
know or guess the senses of the global abbreviations.
In the case of local abbreviations the long-form can be

retrieved from the document using the extraction method des-
cribed in Swartz et al. (2003)). This improves the precision
of gene and protein identification in biomedical text, which
suffers from protein/gene symbols that are identical to ambi-
guous abbreviations. But this method fails in case of global
ambiguous abbreviations (Dingare et al. (2004)).
Furthermore, many errors in named entity identification are

explained by variations observed in the long-forms of abbre-
viations. For example, AgNor abbreviates two long-forms
sharing the same sense: “argyrophilic nucleolar organizer
region” and “silver-stained nucleolar organizer region”; simi-
larly, ER abbreviates “estrogen receptor” and “oestrogen-
receptor”. This property of long-forms is common and has
been exploited by Tsuruoka et al. (2003) to develop a proba-
bilistic string similarity method.
As a result, resolving local and global abbreviations to their

long-forms is a valuable step for improving the quality of
Information Extraction and Information Retrieval systems. If
the abbreviation is resolved to a normalized long-form, i.e. to
a common long-form and not to a minor morphological vari-
ant, then this leads to even better results and was persued in
our approach.
The most problematic step in abbreviation resolution is

retrieving the sense of a global abbreviation that is ambi-
guous. Stevenson (2002) gives an overview of the state of
the art of solving this problem, also known as “Word Sense
Disambiguation”.
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Fig. 1. Disambiguation Process.

The Yarowsky observation (Yarowsky (1995)), which
states that terms tend to have “one sense per discourse”, pro-
vides the foundation for retrieving the sense of a polysemic
word by using the context of the document.
Various methods have been implemented for the resolution

of ambiguous abbreviations, all following a similar schema
(Figure 1). A lexicon is used for collecting the abbreviations
and their senses (1). Then the method computes the con-
text of use for each sense (2). Finally, a Machine Learning
Algorithm is trained on the context of each sense (3). The
disambiguation of an abbreviation contained in a document
consists of computing its context in the document (4) and
then retrieving the most probable abbreviation sense, given
the context (5), thanks to the Machine Learning Algorithm.
This disambiguation schema has been exploited by Pakho-

mov (2002), Yu et al. (2003) and Liu et al. (2002b) who use
UMLS to collect the abbreviations and their long-forms for
the lexicon. However, Pakhomov (2002) observed that not
more than one third of the long-forms from UMLS appear in
the literature. Furthermore, only frequent abbreviations used
in the literature are in UMLS. Since the overlap between the
UMLS abbreviations and the ones used in Medline is not suf-
ficient, another dictionary has to be considered. Adar (2004)
uses a more relevant approach for the lexicon by using a
dictionary extracted from Medline abstracts.
Using the same disambiguation schema, Liu et al. (2002b)

rely on the UMLS annotations from MetaMap (Aronson
(2001)) of the documents as the context of the senses. A
Naive Bayes Algorithm is trained on the annotations and then
used for the disambiguation, achieving, after removing rare
senses, a precision of 92.9% but for a recall of 47.4%.
Concerning the extraction of the context, Adar (2004)

relies on the Medical Subject Heading terms (MeSH terms)
of the abstracts. The cosine similarity metric is applied for
classifying the abbreviation. The method classified correctly
73% of the test set when disregarding rare senses (less than
50 occurrences).
Similarly, Pakhomov (2002) compared a local context1

with a global context2 for training a Machine Learning Algo-
rithm based on Maximum Entropy. The system achieves an
accuracy of 89% on a limited corpus (10 000 rheumatology
notes).

1 words surrounding the abbreviation
2 words found in the section containing the abbreviation

Liu et al. (2002b) also experimented with the local context
and the bag of words technique for training a Support Vector
Machine (SVM), reaching an accuracy of 84%.
We present a novel system for the resolution of local and

global abbreviations. The resolution of local abbreviations is
based on a dictionary of abbreviations, whereas the resolu-
tion of global polysemic abbreviations uses a disambiguation
process based on the model described in Figure 1.
The first component of the system is a dictionary of abbre-

viations automatically generated from the literature, inspired
by Adar (2004).
Local abbreviations are resolved by looking them up in the

dictionary for the most frequent form of the long-form found
in the text.
Concerning the resolution of polysemic global abbreviati-

ons, we describe first the statistical method used for extrac-
ting the context of each sense, and then we explore the
disambiguation method based on Support Vector Machines.
Finally, we present the global strategy for the resolution of
any abbreviation in arbitrary documents.

2 DICTIONARY OF ABBREVIATIONS
The literature is rich in various methods for the automatic
extraction of abbreviation/long-form pairs from text. Wren
et al. (2005) summed up four methods applied to the creation
of online databases of abbreviation/long-form pairs when
Yoshida et al. (2000) focused on the construction of a protein
name abbreviation dictionary.
Our abbreviation extraction is based on the method des-

cribed in Adar (2004), which is robust, fast and achieves a
precision of around 95% for a recall of 75%.
An abbreviation is explained in a document by the mention

of its long-form. The general pattern is that the long-form is
followed by the abbreviation in parentheses; the inverse order
of the pair is found at a much lower frequency:

The changes in adrenocorticotropin hormone (ACTH),
cortisol and dehydroepiandrosterone (DHEA) in mater-
nal and fetal plasma were estimated in two groups of
women.

After the detection of an abbreviation in parentheses, the
correct long-form has to be assigned to the abbreviation. A
limited number of rules formalizes how to build abbreviations
from a long-form.
The long-form is identified automatically using the Lon-

gest Common Subsequence (LCS) in conjunction with a set
of scoring rules (Taghva et al. (1999)) that favors the first
letter of each word of the long form. For each abbreviation
candidate (a word surrounded with parentheses), the algo-
rithm matches the long-form in front of the parentheses to
the abbreviation and thus determines the boundaries of the
long-form.
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After scanning all Medline abstracts available in August
2004, the result of our extraction is 5.250.259 long-form/ab-
breviation pairs found in 2.857.954Medline abstracts. In the
following, we refer to this set of abstracts as D.

2.1 Merging Morphologically Similar
Long-Forms

Among all extracted long-form/abbreviation pairs, a number
of abbreviations share morphologically similar long-forms
with the same sense, e.g. ”oestrogen receptor” vs. ”estrogen-
receptor”. These long-forms are identified with each other
with a similarity measure (Adar (2004)). An n-gram simi-
larity algorithm is used with a cut-off parameter to merge
similar long-forms l1 and l2:

similarity(l1, l2, n) =
|gramsn(l1) ∩ gramsn(l2)|√
|gramsn(l1)| · |gramsn(l2)|

e.g. grams3(’hello’) = {’hel’, ’ell’, ’llo’}

Table 1 illustrates long-forms presenting a high similarity
and therefore clustered into groups of long-forms.
The cut-off parameter has been estimated from a hand cura-

ted random sample of 250 long-forms doublets. We selected
a cut-off parameter of 0.8 so that two long-forms are merged
only if they have the same sense.

2.2 Context Based Merging
In contrast to the previous similarity consideration, some
long-forms can be morphologically quite different (e.g. “beta
site APP-cleaving enzyme” vs. “beta site amyloid precur-
sor protein-cleaving enzyme”) but still code for the same
meaning. To identify them as synonyms requires domain
knowledge, which is provided through the context of the
long-forms. Using the context, we merged morphologically
diverse long-forms coding for the same meaning.
Adar (2004) relies on the MeSH term annotations of the

abstracts for representing the context of the long-forms.
However, the granularity of the information contained in
MeSH annotations is coarser than the one obtained by extrac-
ting relevant words from the text. Furthermore, the MeSH
terms approach can not be applied to arbitrary text. As a
result, we developed a new method based on word occur-
rences.
We use here the assumption that two long-forms, coding

for the same meaning, are illustrated by documents sharing
in average more common words3 than documents illustrating
different meanings (Table 1).
The similarity between two sets of long-forms (g1 and

g2), created by grouping morphologically similar long-forms
together, is computed by considering the number of common
words in the sets Dg1 and Dg2 of documents containing the

3 Only words included in the pattern (adjective∗ (proper-noun|noun)+)+
are considered

1) n-gram similarity
Long-form 1 Long-form 2
computed radiography computed radiographic
compression ratios compression rate
caloric restriction calorie-restricted
thrombocytopenia with absent
radii

thrombocytopenia and absent
radius

transactivator responsive ele-
ment

trans-activator response
element

2) contextual similarity
Long-form 1 Long-form 2
alpha-amino-3-hydroxy-5-
methyl-4-isoxazolepropionic
acid receptors

AMPA receptors

silver-stained nucleolar organi-
zer regions

argyrophilic staining of nucle-
olar organizer regions

complete remission complete response

Table 1. Similar long-forms detected with the n-gram similarity (1) and the
contextual similarity (2).

long-forms, normalized by the total number of words in the
documents of the two sets:

similarity(g1, g2) =
c(g1, g2)

c(g1, g1) + c(g2, g2)

with

c(g1, g2) =

1
|Dg1 | · |Dg2 |

·
∑

di∈Dg1 ,dj∈Dg2 ,di "=dj

2 · |W (di) ∩W (dj)|
|W (di)| + |W (dj)|

if |Dg1 |>1 and |Dg2 |>1, whereW (di) is the set of words in
the document di.
The cut-off parameter has been estimated from a hand

curated random sample of 150 long-form set doublets. We
selected a cut-off parameter of 0.22 so that two sets of long-
forms are merged only if they have the same sense. As a result
we use sets (clusters) of long-form/abbreviation pairs which
represent the same meaning according to our morphological
and contextual similarity estimates. Each cluster contains a
number of similar long-forms and the links to the documents
containing these long-forms. We define the different senses
of an abbreviation by the long-forms found in the different
clusters. These abbreviations and their senses are stored in a
dictionary.

3 DISAMBIGUATION OF ABBREVIATIONS
Whenever we find no long-form associated to an ambi-
guous abbreviation, we use the context to identify the correct
meaning of the abbreviation. In the following we describe
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which suitable context words are generated to disambiguate
abbreviations, and how the classifier is trained.

3.1 Context Extraction
The contextual terms used for the disambiguation are extrac-
ted using the C-Value algorithm (Frantzi et al. (1999)), a
method combining linguistical (adjective-noun patterns4) and
statistical aspects of terms. The C-Value method scores the
adjective-noun patterns according to three aspects: the fre-
quency of the adjective-noun patterns (positive correlation),
the length of the adjective-noun patterns (positive correla-
tion) and the frequencies of subparts of the adjective-noun
patterns (negative correlation):

C-value(w) = log(‖w‖) · f(w)− 1
|Tw|

∑

v∈Tw

f(v)

where
w is the adjective-noun pattern candidate,
‖w‖ is the length (in words) of w,
f(w) is the frequency of w in the corpus,
Tw is the set of adjective-noun patterns contained in
the candidate w.

Only words contained in terms having a high score are kept
for representing a document. After prioritization of the words
from the context according to the C-value and applying a cut-
off to the list of words, we obtain a tuple Ω=(w1, .., wn) of
size n (55 on average) of relevant words for every document.

3.2 The Model
Each abbreviation a belonging to the dictionary has a set of
senses, denoted by S(a). Each sense s ∈ S(a) is illustrated
by a set of documents Ds ⊂ D. Ds is the set of docu-
ments containing the abbreviation/long-form pairs previously
extracted for the construction of the dictionary.
For each document d, the context words are extracted and

the document is described by a vector v = g(d)with g : D &→
{0, 1}n. The ith component of v, vi, is defined as:

vi =

{
1 if the word wi appears in the document d,

0 otherwise

As a result, we have a function Φ that associates with each
sense s a set of vectors Φ(s):

Φ(s) = {g(d) |d ∈ Ds}

3.3 Disambiguation
The task of disambiguating an abbreviation a in a document
d is to find the sense s ∈ S(a) that minimizes the distance
between the vector v = g(d) (context of d) and the class
defined by Φ(s).

4 The following pattern has been used: (adjective∗ (proper-noun|noun)+)+.

This problem can also be described as a classification pro-
blem of assigning g(d) to one of the classes represented by
the vector sets Φ(s) where s ∈ S(a).
Support Vector Machines (SVM) are suitable classifiers

for sparse data in high dimensional spaces and with many
relevant features. It has been shown that SVMs achieve sub-
stantial improvements over the similar other methods for text
categorization (Joachims (1997)). An SVM can separate two
classes (positive/negative) by a hyper-plane with a maximum
margin between the border vectors. Each class is described
by vectors that the SVM “learns”. Using the one-against-all
approach, we can separate k classes from each other by com-
bining k SVMs. We use in the present case a linear kernel on
binary vectors, with an error penalty of 10 in norm L1.
For each sense s of an abbreviation a, we represent the

positive class of s by

C+(s) = Φ(s)

and the negative by:

C−(s) =
⋃

t∈S(a)∧t"=s

Φ(t)

such that C−(s) is the set of vectors describing all the sen-
ses of a except s. Note that C− and C+ are not necessarily
disjoint.
A Support Vector Machine is created for each sense s and

trained with C+(s) and C−(s). The result is a function hs :
{0, 1}n &→ R where

hs(g(d)) =

{
> 0 predicts g(d) ∈ C+(s)
≤ 0 predicts g(d) ∈ C−(s)

For each abbreviation a and for each of its sense, we get the
classification functions hs (a Support Vector Machine). The
disambiguation of the abbreviation a in a document d consists
of selecting the function hs so that hs(g(d)) is maximal.
If the resulting hs(g(d)) is positive, then sense(a, d) = s is

predicted to be the sense of a in d. If the resulting hs(g(d))
is non-positive, then no sense is predicted:

sense(a, d) = s

if and only if ∀τ ∈ S(a) : hs(g(d)) ≥ hτ (g(d))

and hs(g(d)) > 0

4 ABBREVIATION RESOLUTION
An aspect of the abbreviation resolution task is the reco-
gnition of the abbreviations in the text. Some common
English words are also used as abbreviations, making the
localization task difficult. The conjunction “if” is used to
abbreviate “immunofluorescence” and “for” abbreviates ”fer-
redoxin oxidoreductase”. If the document contains sections
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Fig. 2. Abbreviations in Medline over the past 20 years. 200 most frequent abbreviations along the horizontal axis, sorted according to their
pattern of occurrence in Medline. The color indicates the relative frequency of the abbreviation. Some of the oldest abbreviations (left part)
disappear, reminding of a life cycle. The intensive usage of abbreviations is a recent phenomenon that is in huge progression.

Fig. 3. Number of long-form/abbreviation pairs occurring in Med-
line since 1975.

All (1) ! 20 (2) ! 40 (3)
# Abbreviations 186 641 11 713 7 806

# Ambiguous abbreviati-
ons 57 303 3 163 1 851

# Senses 623 441 21 142 12 330

# Occurrences 5 250 259 4 054 993 3 803 758

x̄ long-form variants 1, 57 9, 7 13, 3

Table 2. Counts (#) and averages (x̄) for abbreviation/sense pairs occur-
ring in at least one abstract (1), in at least 20 abstracts (2) and in at
least 40 abstracts (3). x̄ long-form variants is the number, in average, of
morphological variants per abbreviation’s sense.

in uppercase, then the identification task is difficult (”THE”
abbreviates “tetrahydrocortisone”). More than 350 abbrevia-
tions use the form of a common English word. This problem
can be mainly solved by limiting the recognition of abbre-
viations on adjective-noun patterns, using a Part Of Speech
tagger (POS tagger).
When an abbreviation is localized, an efficient search for

all the possible long-forms of the abbreviation is applied on
the document using a deterministic finite automata (Aho et al.
(1975)). If a long-form is found, its most frequent form is
kept. If no long-form can be retrieved from the document,
then a look-up of the abbreviation in the dictionary is per-
formed. If only one sense is found, then the abbreviation is
not ambiguous and the most frequent long-form of the unique
sense is kept. Finally, if several senses are retrieved, then the
disambiguation process is applied.

5 RESULTS
5.1 Dictionary
After mining all Medline abstracts (1965-2004), the dic-
tionary contains 186 641 different abbreviations linked to
623 441 senses, illustrated by 5 250 259 occurrences of an
abbreviation with its long-form (Table 2). We distinguished
three categories: (1) All abbreviation/long-form pairs, (2)
abbreviation/long-form pairs with more than 20 occurrences,
and (3) pairs occurring at least 40 times. The third category
represents 4% of the total number of abbreviations, but covers
more than 72% of the total number of abbreviation/long-form
occurrences. We also find in the third category the most mor-
phological variants for the long-forms. As a result, the last
category profits the most from normalization of long-forms.
We also found that the number of abbreviations strongly

increased over the past 10 years, which correlates the increase
of new publications per year. More than half of the abbrevia-
tions appeared after 1995 (Figure 3) and last but not least,
abbreviation/long-form pairs appear and disappear, similar
to the life cycle of gene names in the literature (Hof et al.
(2003)) (Figure 2). Abbreviation/long-form pairs disappear
either because the named concept is not of interest any more
or because the abbreviation becomes a common abbreviation,
so that the long-form is not provided any more (Figure 4).
The statistics on the dictionary shows that many abbrevia-

tions/sense pairs appear at a low frequency (rare abbrevia-
tion/sense pairs), whereas few pairs have high frequencies,
reminding of the Zipf’s law distribution (Figure 5).
The examination of the dictionary shows that some clusters

of long-forms should be merged with other ones because their
meanings are very similar. But the long-form of these clu-
sters are morphologically very different from each other and
their context did not allow to merge the long-forms. Howe-
ver, this phenomenon is only observed on clusters of rare
long-forms. For a random sample of 350 long-forms, 42%
of the 169 long-forms occurring only once should have been
merged with an other entry of the dictionary. This propor-
tion drops to 18% for the 108 long-forms having a frequency
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Fig. 4. Frequency of the abbreviation ”TUNEL” with its long-form
(dark grey) and with or without its long-form (light grey) over the
past 10 years (1995-2004). The abbreviation ”TUNEL” is not ambi-
guous in Medline and became a common abbreviation. In 2004,
84% of the occurrences in Medline abstracts of ”TUNEL” are
without the long-form.

Fig. 5. The rank of the abbreviation/sense pairs and their frequen-
cies, using logarithmic scales. Zipf’s law says that there is a constant
k such that frequency(word) · rank(word) = k. The abbrevia-
tion/sense pairs on the left side of the vertical line are pairs occurring
at least 40 times.

comprised between 2 and 40. Finally, none of the 73 long-
forms occurring at least 40 times share their meaning with
other long-forms also occurring at least 40 times.
The dictionary contains many protein and gene symbols

that belong to the rare abbreviation sense class (Chen et al.
(2005)). For example, the gene symbol AFM (“Afamin”),
also means “Airflowmeter”, “Association Française contre les
Myopathies”, “acute falciparum malaria”, “additive factors
method”, “aflatoxin M1”, “antiferromagnetic” and “atomic
force microscopy”. Furthermore, in 99% of its occurrences,
AFM is used in the sense “atomic force microscopy” and not
“Afamin” (Table 3). It is obvious that protein and gene name
identification requires the resolution of these symbols.

5.2 Disambiguation
The disambiguation is required for abbreviations having
several senses and occurring without the long-form, in other
words, for ambiguous global abbreviations. Global abbrevia-
tions are also common since they are expected to be known
by the reader. As a result, we can apply the disambiguation
process using a high quality dictionary by disregarding the

Symbol HUGO name #1 Other sense #2

ACLS Acrocallosal
syndrome 2 advanced cardiac life

support 148

ADM adrenomedullin 254 adriamycin 673

ADMR adrenomedullin
receptor 2 average daily meta-

bolic rate 20

AES amino-terminal
enhancer of split 7 Auger electron spec-

troscopy 58

AES amino-terminal
enhancer of split 7 anterior ectosylvian

sulcus 27

AFA ankyloblepharon fili-
forme adnatum 7 amfonelic acid 17

Table 3. List of the 6 first ambiguous abbreviations matching a HUGO sym-
bol and the full name. Column 1 is the HUGO symbol. Column 2 is the full
name of the HUGO entry. Column 3 is the number of occurrences found for
the corresponding abbreviation. Column 4 is another sense for the abbrevia-
tion that occurs more frequently than the full name of the HUGO entry. The
column 5 is the frequency of that sense.

rare abbreviation/sense pairs, without changing the nature of
the disambiguation problem.
In the following we only consider senses which appear fre-

quently enough to profit from disambiguation (40 documents
and more). As a result, we have 7 806 abbreviations with
12 330 senses, representing 72% (3 803 758) of all pair occur-
rences in Medline. Out of these 7 806 abbreviations, 1 851 are
polysemic, having in average 3.4 senses with a maximum of
32 senses for “PC” (Table 2).
The Support Vector Machines were trained and tested using

a k-fold cross-validation schema (k=5), which measures the
quality of predictions on unseen data. For each abbreviation
a, a document set is built by grouping the documents illustra-
ting the different senses of a (all the Ds where s ∈ S(a)).
Each document set is randomly divided into five subsets
equal in size; four are used for the training of the SVM (80%)
and one for testing (20%), repeating the operation five times
so that each subset has been used for testing. In order to avoid
the explicit indication of the sense, the abbreviation long-
forms are removed from the text before the SVMs learn or
classify the test documents. The system achieves a precision5
of 98.9% for a recall6 of 98.2% (98.5% accuracy7).
This accuracy can be compared to a baseline derived from

a different disambiguation scheme that consists of always
selecting the most frequent sense of the abbreviation, inde-
pendently of the context. Such an algorithm achieves 70%
accuracy on the same data.
The accuracy of the disambiguation module has been com-

pared to the disambiguation methods described by Liu et al.
(2002b), by Yu et al. (2003) and by Pakhomov (2002), using

5 precision = True Positives
True Positives + False Positives

6 recall = TP
TP + FN

7 accuracy = TP + TN
TP + FP + TN + FN

6
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the abbreviations used for their tests. Our disambiguation
method performs better than their methods for more than
80% of these abbreviations, with an average of 98% accu-
racy. The remaining 20% are related to abbreviations that
have either more or less senses than their test samples.

6 DISCUSSION
The dictionary of abbreviations, the context extraction and
the disambiguation module are the three main components of
the abbreviation resolution process.
The dictionary has been generated from Medline so that its

content is most suitable for abbreviation resolution in bio-
medical text. The high quality of the dictionary is crucial
to achieve the resolution of abbreviations with a high pre-
cision/recall. This quality has been reached by combining
statistical and linguistical methods for grouping morpholo-
gical variants of long-forms. Others have also used generated
dictionaries, but did not solve the problem of morphological
variants for the long-forms or have used external resources
(UMLS) that are not suitable when applied on the biomedi-
cal literature. The high quality of the abbreviation dictionary
has also a direct impact on the accuracy of the disambigua-
tion method. Indeed, the entries of the dictionary are properly
linked to the senses of the abbreviations occurring at least
40 times because of the one-to-one relationship between the
senses and the entries.
A proper representation of the sense’s context is a deci-

sive factor for the discrimination of the senses. We use here
a method based on the text itself and not based on human
annotations, unlike MeSH terms. Furthermore, the C-Value
method provides a refined granularity for the description of
the context, without including irrelevant features. The context
of a sense is represented with vectors that have on average
3.000 non empty features. In other words, each sense is
represented with a considerable number of words.
The accuracy of the disambiguation method profits from

the high performances achieved by Support Vector Machines,
which have been successfully used in many text classification
tasks.
Disambiguation of abbreviations is more accurate than

Word Sense Disambiguation on English words because ab-
breviation’s senses are on average more distant. The sense
of “tree” as a product of nature and the sense of “tree” as
a structure of information are very close. The contexts of
both senses can contain “root”, “branch”, “leaves”, even
“forest”. In contrast, scientific writers tend to avoid to create
abbreviations that already exist in their own domain.
Our classifier disambiguates frequent abbreviations in

Medline abstracts very accurately. Nevertheless, some mis-
classifications occur, generally due to one of the following
reasons:

Fig. 6. Distribution of the probability that a misclassification occurs
(y axis), given the probability that the the abbreviation take the sense
on which the error occurs (x axis).

1. The misclassifications occur for a rare sense of the
abbreviation (Figure 6), mainly due to the small mar-
gin between scores returned by the positive and negative
classification functions (Figure 7). A customized extrac-
tion of the context for minor senses could improve the
accuracy of the classifier.

2. The misclassification occurs on senses which are very
similar but not necessarily synonymous, e.g. “cytoto-
xic T lymphocyte” and “cytolytic T lymphocyte”. These
misclassifications can be solved by increasing further the
granularity of the context, which becomes difficult to
achieve without integrating irrelevant features.

3. The misclassification is due to the fact that some abbre-
viations are described as ambiguous by the dictionary
whereas they are not. According to the dictionary, the
abbreviation UDPGT can either take the sense “UDP-
glucuronosyltransferase” or the sense “uridine diphos-
phate glucuronosyltransferase”, which are the same.
Some further research has to be done for merging these
long-forms.

7 CONCLUSION
The biomedical literature contains many abbreviations that
can be automatically extracted with their different long-
forms. We generated a dictionary of abbreviation/sense pairs,
where different morphological variants of a sense have been
grouped together with linguistical plus statistical methods.
Using the generated dictionary, local and global abbrevia-

tions can be resolved to their sense, using the most frequent
long-form as the sense’s representative. Many of the extrac-
ted abbreviations are ambiguous (1851), meaning that they
can take different senses in different contexts. We developed
a method that disambiguates the polysemic abbreviations in
the documents thanks to the context of it.
On Medline abstracts and for abbreviation/sense pairs

which are found at least 40 times our method assigns this
sense to the abbreviation with a precision of 98.9% at a recall
of 98.2%. The recall is not 100% because, depending on the
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Fig. 7. Scores returned by the SVMs for each sense (class) of
”HMM”, the positive class (crosses) and the negative class (circles).
The distance (margin) between the positive class and the nega-
tive class decreases when the senses become rare. The number of
abstracts used for the test is given in brackets.

context, the SVM may not assign a sense at all. We assume
that abbreviation/sense pairs found less than 40 times are
not commonly known and therefore tend to appear with their
long-form so that disambiguation is not necessary. There are
three reasons for the good performance. First, the senses are,
on average, well separated. Second, the method uses a consi-
derable number of relevant words (features) to represent the
context of each sense. Third, it has been shown that SVM is
the most suitable choice for such data (Joachims (1997)).
Abbreviation resolution can help Information Extraction

systems by improving the precision and recall of the reco-
gnition of names in documents. Abbreviation resolution can
also improve the performances of search engines either by
using the resolving abbreviations during the indexing step or
by disambiguating the query (query reformulation).
The abbreviation dictionary and the abbreviation resolution

module are publicly available.
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