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Similarity searching using molecular fingerprints is computationally efficient and a surprisingly effective
virtual screening tool. In this study, we have compared ranking methods for similarity searching using
multiple active reference molecules. Different 2D fingerprints were used as search tools and also as descriptors
for a support vector machine (SVM) algorithm. In systematic database search calculations, a SVM-based
ranking scheme consistently outperformed nearest neighbor and centroid approaches, regardless of the
fingerprints that were tested, even if only very small training sets were used for SVM learning. The superiority
of SVM-based ranking over conventional fingerprint methods is ascribed to the fact that SVM makes use
of information about database molecules, in addition to known active compounds, during the learning phase.

1. INTRODUCTION

Ligand-based virtual screening (LBVS) methods are
designed to efficiently process millions of database molecules
and select a limited number of candidate compounds that
are most likely to possess a desired biological activity. LBVS
has become an integral part of the hit identification process
in pharmaceutical research, and it is also used to complement
high-throughput screening.1 A long-established strategy for
LBVS is similarity searching using molecular fingerprints,2–4

which transforms compounds into bit string representations
of chemical structures and properties and compares them in
fingerprint space. Representative state-of-the-art fingerprint
designs include hashed connectivity pathways,5 structural
dictionary-based designs,6 layered-atom environments,7 and
pharmacophore-type fingerprints.8 Similarities between da-
tabase and active reference molecules are quantitatively
determined by calculating the pairwise overlap of their
fingerprint representations. For this purpose, a variety of
similarity metrics have been introduced, the most prominent
being the Tanimoto coefficient (Tc).3

Similarity searching using fingerprints can be applied in
situations where only a single active reference structure is
available, different from many other similarity methods that
require multiple reference compounds such as, for example,
clustering or partitioning. However, search performance
usually improves when multiple active compounds are
available. Accordingly, various approaches have been intro-
duced to utilize multiple reference molecules in fingerprint
calculations, including consensus9 or centroid10 fingerprints,

scaling procedures,11 and nearest-neighbor methods10,12 (i.e.,
data fusion techniques). Several studies have been conducted
to compare these different search strategies, and nearest-
neighbor as well as centroid calculations were often found
to perform best.10,12 The relative performance of these search
strategies is often influenced by differences in structural
diversity between compound classes. For example, for
structurally homogeneous classes, the 1-NN approach easily
detects active compounds, whereas averaging of fingerprints
or similarity values often produces better results than 1-NN
for moderately diverse classes.

Recently, Wilton et al.13 have evaluated binary kernel
discrimination (BKD) in virtual compound screening using
Tripos’ Unity 2D fingerprint as a descriptor and a support
vector machine14,15 (SVM) for comparison. Calculations
were carried out on three sets of pesticides using differently
sized training sets. For mid-sized learning sets of ca. 200
active and inactive compounds, the results for BKD, SVM,
and various Unity 2D similarity rankings were rather
heterogeneous on the three data sets, and no clear preferences
could be observed. When large training sets of 6000 active
and up to 60 000 inactive molecules were used on the
combined pesticide data sets, the machine learning methods,
especially SVM, outperformed Unity 2D similarity rank-
ings.13

SVMs were originally developed for binary classification
problems and have become popular in the chemoinformatics
field.16–18 In a typical SVM analysis, training compounds
belonging to two different classes (e.g., active versus
inactive) are projected into chemical reference space and a
separating hyperplane is derived. Then, test compounds are
evaluated in this reference space to predict their class labels
dependent on which side of the hyperplane they fall. SVMs
were adopted for virtual screening by using the signed
distance between a molecule and the hyperplane to rank
database compounds in order of decreasing priority for
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biological testing.19 In the context of hit identification, the
advantage of ranking compared to classification methods is
that the number of molecules submitted to biological testing
can arbitrarily be chosen.

The SVM approach is not dependent on the use of a
specific chemical space representation. For example, the
reference space can be defined by use of numerical property
descriptors20 that are important elements of chemical space
design21,22 but can be defined also by molecular fingerprints,
which makes SVM-based ranking directly comparable to
conventional similarity searching.

In this study, we focus on a performance evaluation of
the SVM-based ranking approach and conventional ranking
methods utilized in fingerprint similarity searching. We did
not aim at comparing standard similarity searching with a
supervised learning technique such as SVM but, rather, aimed
at evaluating the predictive value of fingerprint descriptors
using ranking approaches that do or do not assign different
weights to individual bit positions. Here, we report the results
of systematic search calculations on 10 different sets of
pharmaceutically relevant compounds and five different types
of fingerprints to compare the different ranking techniques.
While SVMs are usually trained with fairly large compound
sets, for example, see Wilton et al.,13 we used data sets for
training comprising only five active molecules and between
14 and 14 423 randomly chosen database compounds. These
compound sets were chosen in order to mimic practical
virtual screening situations where often only a few active
compounds are available. In our analysis, SVM-based
ranking consistently produced higher recall rates for our
compound classes than the nearest neighbor or centroid
search strategy, regardless of the tested fingerprint design.

2. RANKING STRATEGIES FOR VIRTUAL SCREENING
USING FINGERPRINTS

2.1. Compound Ranking Based on Support Vector
Machines. The SVM approach utilizes a set of n active/
inactive training molecules. In this study, compounds are
represented as binary fingerprints with m bit positions such
that each training molecule is assigned a vector ui ∈ {0,1}m

(i ) 1, . . ., n) that defines a point in m-dimensional Euclidean
vector space. In addition, training compounds are labeled
with their activity yi ∈ {-1,+1}, where yi ) –1 means
inactive and yi ) +1 means active. The principal idea of
the SVM approach is to determine a hyperplane {x ∈ Rm:
w · x + b ) 0} such that all active training molecules are
located in the positive half-space {x ∈ Rm: w ·x + b g 0}
and all inactive training molecules in the negative half-space
{x ∈ Rm: w ·x + b e 0}; w is the normal vector of the
hyperplane and b a scalar. If the training data are linearly
separable, an infinite number of such hyperplanes exist, and
the one that maximizes the distance from the nearest training
examples is called the maximum-margin hyperplane and
determined by solving a convex optimization problem. If
training data cannot be linearly separated, a maximum-
margin hyperplane can still be deduced by permitting training
errors and penalizing misplaced molecules during the
optimization procedure.23 Optimization yields a normal
vector w that is used to rank database compounds according
to the value of g(x) ) w ·x.

2.2. Conventional Ranking Strategies for Similarity
Searching. The SVM-based ranking method was compared
to two popular conventional ranking techniques for finger-
print searching using multiple reference molecules, the
centroid10 and nearest-neighbor12 approach in combination
with Tanimoto similarity.3 For a set R of n active reference
molecules, ui ) (ui1, ui2, . . ., uim) for all i ) 1, . . ., n, and
a database compound x ) (x1, x2, . . ., xm), the centroid
approach determines an “average” fingerprint uRj of all active
reference molecules with

uR ) (uR1, uR2, ..., uRm)

and

uRj )
1
n"i)1

n

uij

for all j ) 1, . . ., m.
Then, x is compared to the “centroid” uRj using, for

example, the Tc [i.e., Tc(uRj,x)]. By contrast, the k nearest-
neighbor method (k-NN) separately calculates the Tanimoto
similarity of x to each individual reference compound ui,
yielding n different similarity values: si ) Tc(ui,x). The
similarity scores si are sorted, and the k (1 e k e n) highest
values, corresponding to the k nearest-neighbors of x in
fingerprint space, are selected. The average of these k values
represents the final similarity score for x. Thus, the centroid
approach “merges” chemical information provided by several
active reference molecules before comparison to a database
compound, whereas the k-NN method conducts an individual
similarity search for each active reference molecule and then
“fuses” the resulting similarity values.

3. FINGERPRINT DESIGNS

In order to make the comparison of different ranking
methods independent of the characteristics of a specific
fingerprint design, we included five different fingerprints in
our analysis: MACCS,6,24 Daylight,5 Molprint2D,7,25 TGD,26,27

and TGT.27 MACCS represents an ensemble of 166 structural
fragments that are assigned to 166 bit positions monitoring
the presence or absence of the fragments in a molecule. The
Daylight fingerprint determines connectivity pathways in
molecules and maps them to overlapping bit segments using
a hash function. We used a Daylight fingerprint version that
consists of 2048 bit positions and monitors pathways of
length 0-7. Molprint2D derives atom environments from
the connectivity table of a molecule. Since the total number
of possible atom environments can, in principle, become
exceedingly large, the environments are not assigned to
predefined fingerprint bit positions but described as a set of
strings. To represent Molprint2D as a bit string, we deter-
mined all different atom environments present in our activity
classes and the screening database, enumerated them, and
assigned them to unique fingerprint positions. This resulted
in a fingerprint representation with 84 560 bit positions.
However, for a typical test compound, only 15–25 of these
bits were set on. TGD and TGT are two- and three-point
pharmacophore-type fingerprints with 420 and 1704 bit
positions, respectively, that are determined from the 2D
molecular graph representation and implemented in the
Molecular Operating Environment (MOE).27
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4. COMPOUND SETS AND CALCULATION
PROTOCOLS

Alternative ranking methods were compared on 10 dif-
ferent activity classes listed in Table 1. Activity classes were
selected to contain similar numbers of compounds such that
the numbers of potential database hits was also comparable.
These classes consisted of between 21 and 35 compounds
and were originally assembled from the MDL Drug Data
report28 as described elsewhere.29,30 As a source database,
a “2D-unique” version of ZINC31 (termed 2D-ZINC) was
generated by removing duplicate molecules producing identi-
cal 2D molecular graphs. 2D-ZINC contained about 1.44
million molecules that were all considered potential false
positives in our virtual screening trials. For each activity
class, 100 different sets of five active compounds were
randomly selected as reference or training molecules. The
remaining 16–30 compounds were added as potential hits
to 2D-ZINC. Unlike the k-NN and centroid approach, the
SVM-based ranking method required training sets that
included not only active but also inactive molecules. Since
no confirmed inactive molecules were available, we used
random subsets of increasing size (0.001%, 0.01%, 0.1%,
and 1%) from 2D-ZINC as negative training examples. For
each combination of a fingerprint and activity class, the
1-NN, 5-NN, centroid, and SVM-based ranking methods
were applied, and the recall of active compounds was
monitored among the 100 and 1000 top-scoring database
molecules and averaged over the 100 trials corresponding
to the different subsets of active compounds used in training.
Perl scripts were written to facilitate the 1-NN, 5-NN, and
centroid searches. SVM-based ranking was carried out using
a publicly available SVM implementation, SVMlight,32,33 its
standard parameter settings, and the linear kernel, that is,
the inner product in the Euclidean space of the fingerprints.
We did not attempt to further optimize SVM parameters or
test alternative kernel functions because the naïve SVM
application using SVMlight could be readily repeated with
different fingerprint descriptors and compared with the results
of conventional similarity searching.

5. VIRTUAL SCREENING TRIALS

The focal point of our study has been the comparison of
state-of-the-art ranking methods for fingerprint searching with
multiple reference molecules and SVM-based ranking using

fingerprints as feature vectors. Results of our systematic
similarity search trials are summarized in Table 2. Recovery
rates are reported for each activity class, fingerprint, and
ranking approach for selection sets of 100 compounds. In
addition, Figure 1 graphically represents virtual screening
results averaged over all activity classes for database selection
sets of 100 and 1000 compounds. The conventional finger-

Table 1. Compound Activity Classes

class code biological activity number of compounds

ANG angiotensin-II antagonists 27
ETA endothelin antagonists 22
GPA glycoprotein IIb/IIIa

receptor antagonists
25

HIV HIV protease inhibitors 24
IL1 IL-1! converting enzyme–

inhibitors
23

INO inosine monophosphate
dehydrogenase inhibitors

35

SQE squalene epoxidase
inhibitors

25

SSI squalene synthetase
inhibitors

29

THR thrombin inhibitors 23
ULD upregulators of LDL

receptor
21

Table 2. Performance of Different Ranking Methodsa

similarity searching SVM-based ranking
1-NN 5-NN centroid 0.001% 0.01% 0.1% 1%

(a) Daylight
ANG 13.9 32.1 21.6 43.8 52.3 62.7 69.5
ETA 1.4 3.6 1.1 6.9 9.4 11.0 16.0
GPA 2.3 8.1 5.1 9.3 14.8 24.5 36.7
HIV 18.5 26.6 12.3 30.8 47.4 58.9 66.4
IL1 5.6 11.0 6.8 17.6 32.7 44.7 53.5
INO 57.5 75.6 68.5 87.4 89.7 90.6 90.4
SQE 6.3 9.5 4.8 14.6 26.6 36.3 44.5
SSI 15.3 10.9 5.8 14.6 17.3 20.6 27.2
THR 1.3 2.8 0.6 2.9 7.0 13.2 19.6
ULD 8.4 11.3 5.3 12.4 16.8 21.6 29.4
average 13.0 19.1 13.2 24.0 31.4 38.4 45.3

(b) MACCS
ANG 3.8 24.7 23.4 19.4 33.6 42.1 44.6
ETA 0.0 0.9 0.7 1.8 2.7 4.9 6.2
GPA 4.7 10.8 12.0 12.3 25.0 32.2 35.9
HIV 4.7 11.4 11.2 15.5 26.7 34.5 38.9
IL1 0.0 4.8 3.6 4.0 10.5 15.1 19.1
INO 19.8 20.4 18.0 17.9 25.3 32.2 37.8
SQE 3.9 10.7 9.0 12.3 23.2 29.2 34.2
SSI 9.1 3.9 3.1 8.2 11.5 15.8 18.5
THR 1.6 3.4 4.1 7.6 13.1 20.6 23.9
ULD 0.0 1.6 1.8 0.6 2.3 3.9 7.3
average 4.8 9.3 8.7 9.9 17.4 23.1 26.6

(c) Molprint2D
ANG 56.2 57.4 45.8 65.6 66.9 66.6 69.7
ETA 7.4 7.1 1.8 16.9 21.5 23.4 27.3
GPA 14.8 29.7 17.5 48.8 56.6 60.1 65.9
HIV 34.9 49.6 26.6 72.0 75.8 78.3 81.8
IL1 34.6 41.2 25.4 56.8 58.2 63.1 67.0
INO 57.7 87.8 86.8 90.7 91.3 91.4 91.3
SQE 19.5 21.3 12.2 34.4 40.7 46.6 51.1
SSI 18.1 15.2 7.3 22.8 23.8 25.3 28.2
THR 9.7 6.2 1.2 17.1 22.4 27.5 31.3
ULD 11.9 13.1 5.3 22.3 27.1 29.1 35.6
average 26.5 32.9 23.0 44.7 48.4 51.1 54.9

(d) TGD
ANG 22.4 28.6 27.3 39.8 52.5 56.6 59.1
ETA 4.2 7.1 5.7 11.7 13.1 16.1 15.6
GPA 17.6 30.7 25.3 50.1 62.3 69.4 74.2
HIV 15.8 13.2 8.7 36.6 43.1 47.6 51.5
IL1 14.0 20.9 18.4 45.2 46.9 48.4 49.7
INO 18.6 22.5 22.4 8.5 20.0 27.4 36.7
SQE 3.6 0.6 0.4 0.7 2.1 3.7 4.9
SSI 3.9 8.7 5.1 22.1 22.8 25.0 24.9
THR 5.2 1.8 0.9 18.9 26.4 29.2 31.0
ULD 6.5 13.6 9.8 16.8 25.7 31.1 34.8
average 11.2 14.8 12.4 25.0 31.5 35.5 38.2

(e) TGT
ANG 9.3 17.2 15.5 21.9 28.6 37.1 43.7
ETA 6.9 6.2 3.4 6.1 7.4 8.1 9.3
GPA 14.2 12.1 9.4 19.2 29.6 39.5 50.1
HIV 24.6 41.7 31.1 47.0 54.8 59.3 63.3
IL1 25.0 24.5 19.1 39.9 40.1 44.2 50.2
INO 24.9 31.9 30.9 25.7 50.8 70.5 80.0
SQE 5.3 5.8 3.1 1.8 3.9 6.3 10.0
SSI 1.3 2.0 1.6 7.3 9.5 15.1 21.0
THR 13.6 10.6 6.4 17.6 25.6 31.7 39.4
ULD 8.6 8.1 5.9 4.8 8.3 12.6 18.4
average 13.4 16.0 12.6 19.1 25.8 32.4 38.5

a Recovery rates (in percent) are reported for selection sets of 100
compounds when averaging over 100 different trials for each
combination of a fingerprint and ranking technique. In each case,
only five active reference compounds were used. In addition, for
SVM-based ranking, different percentages of 2D-ZINC were used as
negative training examples: 0.001%, 0.01%, 0.1%, and 1%
corresponding to 14, 144, 1442, and 14 423 compounds, respec-
tively. Activity classes are abbreviated according to Table 1.
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print search calculations mirror trends that are generally
observed;29,30 that is, search performance is compound-class-
dependent and varies among different fingerprint designs.
In the calculations reported here, on average, Molprint2D
produced the highest recovery rates, followed by Daylight,
TGT, TGD, and MACCS. In our calculations, an interesting
feature of Molprint2D was that 90% of its 84 560 bit
positions were set on as individual bits in less than 0.01%
of 2D-ZINC (i.e., only 144 compounds). Thus, atom
environments in active compounds represented by these bits
are highly discriminatory, which is likely to explain the
superior performance of Molprint2D over other fingerprints
observed here. Independent of the considered fingerprint
design, recovery rates for classes ETA, SQE, and THR were
consistently lower than for ANG, HIV, and INO, which could
at least in part be attributed to the presence of different levels
of intraclass structural diversity.29,30 Among the conventional
fingerprint search techniques, the 5-NN approach produced
the overall highest recovery rates. For selection sets of 100
compounds, the 1-NN and centroid techniques achieved
average recovery rates between 5 and 27% and 5-NN did so
between 9 and 33%. Standard deviations of recovery rates
were only small, that is, between 0% and 5% in most cases.
The compound classes studied here did not contain analog
series, which suggests an explanation for the finding that
5-NN calculations were superior to those of 1-NN. For these
activity classes, averaging of similarity values was also more
effective than calculation of average fingerprints.

The search calculations described above provided the basis
for a detailed comparison with SVM-based compound
ranking. This comparison revealed two major trends, ir-
respective of the investigated fingerprint design and activity
class. First, the SVM approach produced consistently higher
recovery rates than conventional fingerprint search strategies,
and second, SVM recall rates increased with increasing
numbers of 2D-ZINC compounds used for training, as
visualized in Figure 1. In addition, the results in Table 2

show that the ratio between the performance of similarity
searching and SVM remained fairly constant. This means
that classes with lowest or highest recovery rates in similarity
searching displayed the same relative performance in SVM
analysis. These results are very likely due to class-dependent
differences in the intrinsic ability of fingerprint descriptors
to distinguish activity classes from database compounds and
are thus not determined by alternative search strategies.

SVM-based ranking using 0.001% of 2D-ZINC as “inac-
tive” training examples (i.e., only 14 molecules) obtained
average recovery rates of 10–45%, thus already higher than
conventional fingerprint searching. On average, standard
deviations of recovery rates were approximately 10%. In only
a single instance (for TGD and activity class INO), SVM-
“0.001%” produced a considerably lower recovery rate
(8.5%) than the 1-NN, 5-NN, and centroid techniques
(18.6–22.5%). However, five active and 14 database mol-
ecules represent a much smaller compound set than typically
used for SVM training (see, for example, Wilton et al.13),
and the high SVM performance level using this very small
training set was not expected. In fact, Table 2 shows that
differences in recovery rates of up to 30% were observed in
favor of SVM-“0.001%” (e.g., for classes GPA, HIV using
Molprint2D or IL1, THR using TGD).

A key finding of this analysis has been the consistently
high recall of active compounds using SVM-based ranking
on fingerprints. A fundamental difference to conventional
ranking methods is that SVM is a supervised machine
learning technique that uses learning sets to assign different
weights to individual fingerprint bit positions. By contrast,
when applying the 1-NN and 5-NN method, all fingerprint
bit positions equally contribute to the similarity value. The
centroid approach implicitly assigns weights to bit positions
through generation of an average bit string. However, it only
uses known active compounds to derive these weights. As a
supervised learning technique, the SVM approach also adds
information about inactive (or randomly selected) database
compounds to the learning step. Therefore, we ascribe the
superiority of the SVM-based ranking technique in part to
this information gain. This idea is consistent with the finding
that the use of increasing numbers of database molecules
for SVM training systematically improved search perfor-
mance. Adding 10 times more database compounds to the
training step (i.e., from 0.001% of 2D-ZINC to 0.01%, 0.1%,
and 1%), on average about 5% more active molecules were
recovered each time. The use of 0.01% of 2D-ZINC (144
compounds) doubled recovery rates relative to 1-NN, 5-NN,
and centroid calculations in many cases.

Figure 1 also shows that increasing the size of database
selection sets from 100 to 1000 compounds had only little
influence on the relative search performance. For each search
technique and fingerprint, about 10–15% more active mol-
ecules were recovered in selection sets of 1000 database
compounds. Thus, although absolute recovery rates further
increased, as one should expect, differences in relative search
performance between the alternative methods remained
constant.

6. CONCLUDING REMARKS

We systematically compared state-of-the-art (1-NN, 5-NN,
and centroid) strategies for fingerprint searching using

Figure 1. Average search performance for different ranking
approaches. Recovery rates were determined in selection sets of
(a) 100 and (b) 1000 compounds and averaged over 100 trials and
10 activity classes. “0.001%”, “0.01%”, “0.1%”, and “1%” give
the percentages of 2D-ZINC molecules used for SVM learning.
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multiple reference molecules and a SVM-based ranking
scheme with fingerprint bit patterns used as descriptors. The
SVM-based ranking method was found to outperform the
1-NN, 5-NN, and centroid approaches, even when only small
training sets were used for SVM learning. To achieve high
recovery rates, extensive SVM parameter optimization was
not required and the application of the linear kernel function
was sufficient. However, we expect that using a different
kernel function, in particular, the Tanimoto kernel,34 might
further enhance SVM search performance.

The observed improvements in recovery rates by SVM
ranking were likely due to the information gain associated
with the addition of randomly chosen database “decoys” to
the learning step. Under these conditions, SVM calculations
were also found to be robust because it was not necessary
to use confirmed inactive compounds for learning, which
makes SVM-based ranking attractive for practical applica-
tions if only a few active compounds are available. In contrast
to SVM, conventional fingerprint searching does not include
information about inactive or database compounds. Taken
together, our results indicate that support-vector-machine-
based ranking using fingerprint descriptors and only a few
active molecules for learning is capable of producing
significant recall of diverse active compounds, which should
make this approach a promising addition to the current
repertoire of virtual screening tools.
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