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The Bayesian evidence framework has been successfully applied to the
design of multilayer perceptrons (MLPs) in the work of MacKay. Never-
theless, the training of MLPs suffers from drawbacks like the nonconvex
optimization problem and the choice of the number of hidden units. In
support vector machines (SVMs) for classification, as introduced by Vap-
nik, a nonlinear decision boundary is obtained by mapping the input
vector first in a nonlinear way to a high-dimensional kernel-induced fea-
ture space in which a linear large margin classifier is constructed. Practical
expressions are formulated in the dual space in terms of the related ker-
nel function, and the solution follows from a (convex) quadratic program-
ming (QP) problem. In least-squares SVMs (LS-SVMs), the SVM problem
formulation is modified by introducing a least-squares cost function and
equality instead of inequality constraints, and the solution follows from
a linear system in the dual space. Implicitly, the least-squares formula-
tion corresponds to a regression formulation and is also related to kernel
Fisher discriminant analysis. The least-squares regression formulation
has advantages for deriving analytic expressions in a Bayesian evidence
framework, in contrast to the classification formulations used, for ex-
ample, in gaussian processes (GPs). The LS-SVM formulation has clear
primal-dual interpretations, and without the bias term, one explicitly con-
structs a model that yields the same expressions as have been obtained
with GPs for regression. In this article, the Bayesian evidence frame-
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work is combined with the LS-SVM classifier formulation. Starting from
the feature space formulation, analytic expressions are obtained in the
dual space on the different levels of Bayesian inference, while posterior
class probabilities are obtained by marginalizing over the model param-
eters. Empirical results obtained on 10 public domain data sets show that
the LS-SVM classifier designed within the Bayesian evidence framework
consistently yields good generalization performances.

1 Introduction

Bayesian probability theory provides a unifying framework to find models
that are well matched to the data and to use these models for making optimal
decisions. Multilayer perceptrons (MLPs) are popular nonlinear paramet-
ric models for both regression and classification. In MacKay (1992, 1995,
1999), the evidence framework was successfully applied to the training of
MLPs using three levels of Bayesian inference: the model parameters, regu-
larization hyperparameters, and network structure are inferred on the first,
second, and third level, respectively. The moderated output is obtained by
marginalizing over the model- and hyperparameters using a Laplace ap-
proximation in a local optimum.

Whereas MLPs are flexible nonlinear parametric models that can approx-
imate any continuous nonlinear function over a compact interval (Bishop,
1995), the training of an MLP suffers from drawbacks like the nonconvex
optimization problem and the choice of the number of hidden units. In sup-
port vector machines (SVMs), the classification problem is formulated and
represented as a convex quadratic programming (QP) problem (Cristianini
& Shawe-Taylor, 2000; Vapnik, 1995, 1998). A key idea of the nonlinear SVM
classifier is to map the inputs to a high-dimensional feature space where the
classes are assumed to be linearly separable. In this high-dimensional space,
a large margin classifier is constructed. By applying the Mercer condition,
the classifier is obtained by solving a finite dimensional QP problem in the
dual space, which avoids the explicit knowledge of the high-dimensional
mapping and uses only the related kernel function. In Suykens and Vande-
walle (1999), a least-squares type of SVM classifier (LS-SVM) was introduced
by modifying the problem formulation so as to obtain a linear set of equa-
tions in the dual space. This is done by taking a least-squares cost function,
with equality instead of inequality constraints.

The training of MLP classifiers is often done by using a regression ap-
proach with binary targets for solving the classification problem. This is also
implicitly done in the LS-SVM formulation and has the advantage of deriv-
ing analytic expressions within a Bayesian evidence framework in contrast
with classification approaches used, as in GPs. As in ordinary ridge regres-
sion (Brown, 1977), no regularization is applied on the bias term in SVMs
and LS-SVMs, which results in a centering in the kernel-induced feature
space and allows relating the LS-SVM formulation to kernel Fisher dis-
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criminant analysis (Baudat & Anouar, 2000; Mika, Rätsch, & Müller, 2001).
The corresponding eigenvalues of the centered kernel matrix are obtained
from kernel PCA (Schölkopf, Smola, & Müller, 1998). When no bias term
is used in the LS-SVM formulation, similar expressions are obtained as
with kernel ridge regression and gaussian processes (GPs) for regression
(Gibbs, 1997; Neal, 1997; Rasmussen, 1996; Williams, 1998). In this article, a
Bayesian framework is derived for the LS-SVM formulation starting from
the SVM and LS-SVM feature space formulation, while the corresponding
analytic expressions in the dual space are similar, up to the centering, to the
expressions obtained for GP. The primal-dual interpretations and equality
constraints of LS-SVMs have also allowed, extending the LS-SVM frame-
work to recurrent networks and optimal control (Suykens & Vandewalle,
2000; Suykens, Vandewalle, & De Moor, 2001). The regression formulation
allows deriving analytic expressions in order to infer the model parameters,
hyper parameters, and kernel parameters on the corresponding three levels
of Bayesian inference, respectively. Posterior class probabilities of the LS-
SVM classifier are obtained by marginalizing over the model parameters
within the evidence framework.

In section 2, links between kernel-based classification techniques are dis-
cussed. The three levels of inference are described in sections 3, 4, and 5. The
design strategy is explained in section 6. Empirical results are discussed in
section 7.

2 Kernel-Based Classification Techniques

Given a binary classification problem with classes C+ and C−, with corre-
sponding class labels y = ±1, the classification task is to assign a class label
to a given new input vector x ∈ Rn. Applying Bayes’ formula, one can
calculate the posterior class probability:

P(y | x) = p(x | y)P(y)
p(x)

, (2.1)

where P(y) is the (discrete) a priori probability of the classes and p(x | y)
is the (continuous) probability of observing x when corresponding to class
label y. The denominator p(x) follows from normalization. The class label
is then assigned to the class with maximum posterior probability:

y(x) = sign[g0(x)]
M= sign[P(y = +1 | x)− P(y = −1 | x)] (2.2)

or

y(x) = sign[g1(x)]

M= sign[log(p(x | y = +1)P(y = +1))

− log(p(x | y = −1)P(y = −1))]. (2.3)
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Given g0(x), one obtains the posterior class probabilities from P(y = +1 |
x) = 1

2 (1+ g0(x)) and P(y = −1) = 1
2 (1− g0(x)) (Duda & Hart, 1973).

When the densities p(x | y = +1) and p(x | y = −1) have a multivariate
normal distribution with the same covariance matrix 6 and corresponding
mean m+ and m−, respectively, the Bayesian decision rule, equation 2.3,
becomes the linear discriminant function,

y(x) = sign[wTx+ b], (2.4)

with w = 6−1(m+ − m−) and b = −wT(m+ + m−)/2 + log(P(y = +1)) −
log(P(y = −1)) (Bishop, 1995; Duda & Hart, 1973).

In practice, the class covariance matrix 6 and the mean m+ and m− are
not known, and the linear classifier wTx+ b has to be estimated from given
data D = {(xi, yi)}Ni=1 that consist of N+ positive and N− negative labels. The
corresponding sets of indices with positive and negative labels are denoted
by I+ and I− with the full index set I equal to I = I+ ∪ I− = {1, . . . ,N }.
Some well-known algorithms to estimate the discriminant vector w and
bias term b are Fisher discriminant analysis, support vector machine (SVM)
classifier, and a regression approach with binary targets yi = ±1. How-
ever, when the class densities are not normally distributed with the same
covariance matrix, the optimal decision boundary typically is no longer
linear (Bishop, 1995; Duda & Hart, 1973). A nonlinear decision boundary
in the input space can be obtained by applying the kernel trick: the input
vector x ∈ Rn is mapped in a nonlinear way to the high (possibly infi-
nite) dimensional feature vector ϕ(x) ∈ Rnf , where the nonlinear function
ϕ(·): Rn → Rnf is related to the symmetric, positive definite kernel func-
tion,

K(x1, x2) = ϕ(x1)
Tϕ(x2), (2.5)

from Mercer’s theorem (Cristianini & Shawe-Taylor, 2000; Smola, Schölkopf,
& Müller, 1998; Vapnik, 1995, 1998). In this high-dimensional feature space,
a linear separation is made. For the kernel function K, one typically has
the following choices: K(x, xi) = xT

i x (linear kernel); K(x, xi) = (xT
i x + 1)d

(polynomial kernel of degree d ∈ N); K(x, xi) = exp{−‖x − xi‖22/σ 2} (RBF
kernel); or a K(x, xi) = tanh(κxT

i x+ θ) (MLP kernel). Notice that the Mercer
condition holds for all σ ∈ R and d values in the RBF (resp. the polynomial
case), but not for all possible choices of κ, θ ∈ R in the MLP case. Combi-
nations of kernels can be obtained by stacking the corresponding feature
vectors.

The classification problem now is assumed to be linear in the feature
space, and the classifier takes the form

y(x) = sign[wTϕ(x)+ b], (2.6)
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where w and b are obtained by applying the kernel version of the above-
mentioned algorithms, where typically a regularization term wTw/2 is in-
troduced in order to avoid overfitting (large margin 2/wTw) in the high
(and possibly infinite) dimensional feature space. On the other hand, the
classifier, equation 2.6, is never evaluated in this form, and the Mercer con-
dition, equation 2.5, is applied instead. In the remainder of this section,
the links between the different kernel-based classification algorithms are
discussed.

2.1 SVM Classifiers. Given the training data {(xi, yi)}Ni=1 with input data
xi ∈ Rn and corresponding binary class labels yi ∈ {−1,+1}, the SVM clas-
sifier, according to Vapnik’s original formulation (Vapnik, 1995, 1998), in-
corporates the following constraints (i = 1, . . . ,N):

{
wTϕ(xi)+ b ≥ +1, if yi = +1
wTϕ(xi)+ b ≤ −1, if yi = −1,

(2.7)

which is equivalent to yi[wTϕ(xi)+ b] ≥ 1, (i = 1, . . . ,N). The classification
problem is formulated as follows:

min
w,b,ξ
J1(w, ξ) = 1

2
wTw+ C

N∑
i=1

ξi (2.8)

subject to

{
yi
[
wTϕ(xi)+ b

] ≥ 1− ξi, i = 1, . . . ,N
ξi ≥ 0, i = 1, . . . ,N.

(2.9)

This optimization problem is solved in its dual form, and the resulting
classifier, equation 2.6, is evaluated in its dual representation. The variables
ξi are slack variables that are needed in order to allow misclassifications in
the set of inequalities (e.g., due to overlapping distributions). The positive
real constant C should be considered as a tuning parameter in the algorithm.
More details on SVMs can be found in Cristianini and Shawe-Taylor (2000),
Smola et al. (1998), and Vapnik (1995, 1998). Observe that no regularization
is applied on the bias term b.

2.2 LS-SVM Classifiers. In Suykens & Vandewalle, 1999 the SVM clas-
sifier formulation was modified basically as follows:

min
w,b,ec

J2c(w, ec) = µ

2
wTw+ ζ

2

N∑
i=1

e2
c,i (2.10)
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subject to yi

[
wTϕ(xi)+ b

]
= 1− ec,i, i = 1, . . . ,N. (2.11)

Besides the quadratic cost function, an important difference with standard
SVMs is that the formulation now consists of equality instead of inequality
constraints.

The LS-SVM classifier formulation, equations 2.10 and 2.11, implicitly
corresponds to a regression interpretation with binary targets yi = ±1. By
multiplying the error ec,i with yi and using y2

i = 1, the sum squared error
term

∑N
i=1 e2

c,i becomes

N∑
i=1

e2
c,i =

N∑
i=1

(yiec,i)
2 =

N∑
i=1

e2
i =

(
yi −

(
wTϕ(x)+ b

))2
, (2.12)

with

ei = yi − (wTϕ(x)+ b). (2.13)

Hence, the LS-SVM classifier formulation is equivalent to

J2(w, b) = µEW + ζED, (2.14)

with

EW = 1
2

wTw, (2.15)

ED = 1
2

N∑
i=1

e2
i =

1
2

N∑
i=1

(
yi −

[
wTϕ(xi)+ b

])2
. (2.16)

Both µ and ζ should be considered as hyperparameters in order to tune
the amount of regularization versus the sum squared error. The solution of
equation 2.14 depends on only the ratio γ = ζ/µ. Therefore, the original
formulation (Suykens & Vandewalle, 1999) used only γ as tuning parame-
ter. The use of both parameters µ and ζ will become clear in the Bayesian
interpretation of the LS-SVM cost function, equation 2.14, in the next sec-
tions. Observe that no regularization is applied to the bias term b, which is
the preferred form for ordinary ridge regression (Brown, 1977).

The regression approach with binary targets is a common approach for
training MLP classifiers and also for the simpler case of linear discriminant
analysis (Bishop, 1995). Defining the MSE error between wTϕ(x)+ b and the
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Bayes discriminant g0(x) from equation 2.2,

MSE =
∫ [

wTϕ(x)+ b− g0(x)
]2

p(x)dx, (2.17)

it has been shown (Duda & Hart, 1973) that minimization of ED in equa-
tion 2.14 is asymptotically (N→∞)equivalent to minimizing equation 2.17.
Hence, the regression formulation with binary targets yields asymptotically
the best approximation to the Bayes discriminant, equation 2.2, in the least-
squares sense (Duda & Hart, 1973). Such an approximation typically gives
good results but may be suboptimal since the misclassification risk is not
directly minimized.

The solution of the LS-SVM regressor is obtained after constructing the
Lagrangian L(w, b, e;α) = J2(w, e)−∑N

i=1 αi{yi− [wTϕ(xi)+ b]− ei}, where
αi ∈ R are the Lagrange multipliers. The conditions for optimality are:



∂L
∂w
= 0 → w =

N∑
i=1

αiϕ(xi)

∂L
∂b
= 0 →

N∑
i=1

αi = 0

∂L
∂ei
= 0 → αi = γ ei, i = 1, . . . ,N

∂L
∂αi
= 0 → yi = wTϕ(xi)+ b + ei = 0, i = 1, . . . ,N.

(2.18)

As in standard SVMs, we never calculate w or ϕ(xi). Therefore, we eliminate
w and e, yielding a linear Karush-Kuhn-Tucker system instead of a QP
problem:

[
0 1T

v
1v Ä+ γ−1IN

] [
b
a

]
=
[

0
Y

]
(2.19)

with

Y = [y1; . . . ; yN], 1v = [1; . . . ; 1],

e = [e1; . . . ; eN], α = [α1; . . . ;αN], (2.20)

and where Mercer’s condition, equation 2.5, is applied within the kernel
matrix Ä ∈ RN×N,

Äij = ϕ(xi)
Tϕ(xj) = K(xi, xj). (2.21)
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The LS-SVM classifier is then constructed as follows:

y(x) = sign

[
N∑

i=1

αiyiK(x, xi)+ b

]
. (2.22)

In numerical linear algebra, efficient algorithms exist for solving large-
scale linear systems (Golub & Van Loan, 1989). The system, equation 2.19,
can be reformulated into two linear systems with positive definite data ma-
trices, so as to apply iterative methods such as the Hestenes-Stiefel conjugate
gradient algorithm (Suykens, 2000). LS-SVM classifiers can be extended to
multiple classes by defining additional output variables. Although sparse-
ness is lost due to the use of a 2-norm, a sparse approximation of the LS-
SVM can be obtained by sequentially pruning the support value spectrum
(Suykens, 2000) without loss of generalization performance.

2.3 Gaussian Processes for Regression. When one uses no bias term b
in the regression formulation (Cristianini & Shawe-Taylor, 2000; Saunders,
Gammerman, & Vovk, 1998), the support values α∗ are obtained from the
linear system,(

Ä+ µ
ζ

IN

)
α∗ = Y. (2.23)

The output of the LS-SVM regressor for a new input x is given by

ŷ(x) =
N∑

i=1

α∗i K(x, xi) = θ(x)Tα∗, (2.24)

with θ(x) = [K(x, x1); . . . ;K(x, xN)]. For classification purposes one can use
the interpretation of an optimal least-squares approximation, equation 2.17,
to the Bayesian decision rule, and the class label is assigned as follows:
y = sign[ŷ(x)].

Observe that the result of equation 2.24 is equivalent with the gaus-
sian process (GP) formulation (Gibbs, 1997; Neal, 1997; Rasmussen, 1996;
Sollich, 2000; Williams, 1998; Williams & Barber, 1998) for regression. In
GPs, one assumes that the data are generated as yi = ŷ(x) + ei. Given N
data points {(xi, yi)}Ni=1, the predictive mean for a new input x is given
by ŷ(x) = θ(x)TC−1

N YR, with θ(x) = [C(x, x1); . . . ;C(x, xN)] and the ma-
trix CN ∈ RN×N with CN,ij = C(xi, xj), where C(xi, xj) is the parameterized
covariance function,

C(xi, xj) = 1
µ

K(xi, xj)+ 1
ζ
δij, (2.25)
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with δij the Kronecker delta and i, j = 1, . . . ,N. The predictive mean is
obtained as

ŷ(x) = 1
µ
θ(x)T

(
1
µ
Ä+ 1

ζ
IN

)−1

Y. (2.26)

By combination of equations 2.23 and 2.24, one also obtains equation 2.26.
The regularization term EW is related to the covariance matrix of the inputs,
while the error term ED yields a ridge regression estimate in the dual space
(Saunders et al., 1998; Suykens & Vandewalle, 1999; Suykens, 2000). With
the results of the next sections, one can also show that the expression for
the variance in GP is equal to the expressions for the LS-SVM without the
bias term. Compared with the GP classifier formulation, the regression ap-
proach allows the derivation of analytical expressions on all three levels of
inference.

In GPs, one typically uses combinations of kernel functions (Gibbs, 1997;
Neal, 1997; Rasmussen, 1996; Williams & Barber, 1998), while a positive
constant is added when there is a bias term in the regression function. In Neal
(1997), the hyperparameters of the covariance function C and the variance
1/ζ of the noise ei are obtained from a sampled posterior distribution of the
hyperparameters. Evidence maximization is used in Gibbs (1997) to infer the
hyperparameters on the second level. In this article, the bias term b is inferred
on the first level, while µ and ζ are obtained from a scalar optimization
problem on the second level. Kernel parameters are determined on the third
level of inference.

Although the results from the LS-SVM formulation without bias term
and gaussian processes are identical, LS-SVMs explicitly formulate a model
in the primal space. The resulting support values αi of the model give fur-
ther insight in the importance of each data point and can be used to ob-
tain sparseness and detect outliers. The explicit use of a model also allows
defining, in a straightforward way the effective number of parameters γef f
in section 4. In the LS-SVM formulation, the bias term is considered a model
parameter and is obtained on the first level of inference. As in ordinary ridge
regression (Brown, 1997), no regularization is applied on the bias term b in
LS-SVMs, and a zero-mean training set error is obtained from equation 2.18:∑N

i=1 ei = 0. It will become clear that the bias term also results in a centering
of the Gram matrix in the feature space, as is done in kernel PCA (Schölkopf
et al., 1998). The corresponding eigenvalues can be used to derive improved
generalization bounds for SVM classifiers (Schölkopf, Shawe-Taylor, Smola,
& Williamson, 1999). The use of the unregularized bias term also allows the
derivation of explicit links with kernel Fisher discriminant analysis (Baudat
& Anouar, 2000; Mika et al., 2001).

2.4 Regularized Kernel Fisher Discriminant Analysis. The main con-
cern in Fisher discriminant analysis (Bishop, 1995; Duda & Hart, 1973) is
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w T
ϕ(x) + b = −1

w T
ϕ(x) + b = 0

w T
ϕ(x) + b = +1

e i

Class -1

Class +1

-1
0

+
1

Figure 1: Two gaussian distributed classes with the same covariance matrix are
separated by the hyperplane wTϕ(x) + b = 0 in the feature space. The class
center of classes −1 and +1 is located on the hyperplanes wTϕ(x) + b = −1
and wTϕ(x)+ b = 1, respectively. The projections of the features onto the linear
discriminant result in gaussian distributed errors with variance ζ−1 around the
targets −1 and +1.

to find a linear discriminant w that yields an optimal discrimination be-
tween the two classes C+ and C− depicted in Figure 1. A good discrimi-
nant maximizes the distance between the projected class centers and min-
imizes the overlap between both distributions. Given the estimated class
centers m̂+ =

∑
i∈I+ ϕ(xi)/N+ and m̂− =

∑
i∈I− ϕ(xi)/N−, one maximizes

the squared distance (wT(m̂+ − m̂−))2 between the projected class centers
and minimizes the regularized scatter s around the class centers,

s =
∑
i∈I+

(
wT(ϕ(xi)− m̂+)

)2 +
∑
i∈I−

(
wT(ϕ(x+ i)− m̂−)

)2

+ γ−1wTw, (2.27)

where the regularization term γ−1wTw is introduced so as to avoid overfit-
ting in the high-dimensional feature space. The scatter s is minimized so as
to obtain a small overlap between the classes. The feature space expression
for the regularized kernel Fisher discriminant is then found by maximizing

max
w
J FDA(w) =

(
wT(m̂+ − m̂−)

)2
s

= wT(m̂+ − m̂−)(m̂+ − m̂−)Tw
wTSWCw

, (2.28)
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with SWC =
∑

i∈I+(ϕ(xi)− m̂+)(ϕ(xi)− m̂+)T +
∑

i∈I−(ϕ(xi)− m̂−)(ϕ(xi)−
m̂−)T + γ−1Inf . The solution to the generalized Rayleigh quotient, equa-
tion 2.28, follows from a generalized eigenvalue problem in the feature
space (m̂+ − m̂−)(m̂+ − m̂−)Tw = λSWCw, from which one obtains

w = S−1
WC(m̂+ − m̂−). (2.29)

As the mapping ϕ is typically unknown, practical expressions need to be
derived in the dual space, for example, by solving a generalized eigenvalue
problem (Baudat & Anouar, 2000; Mika et al., 2001). Also the SVM formu-
lation has been related to Fisher discriminant analysis (Shashua, 1999). The
bias term b is not determined by Fisher discriminant analysis. Fisher dis-
criminant analysis is typically used as a first step, which yields the optimal
linear discriminant between the two classes. The bias term b has to be de-
termined in the second step so as to obtain an optimal classifier.

It can be easily shown in the feature space that the LS-SVM regression
formulation, equation 2.14, yields the same discriminant vector w. Defining
ϒ = [ϕ(x1), . . . , ϕ(xN)] ∈ Rnf×N, the conditions for optimality in the primal
space are[

ϒϒT + γ−1Inf ϒ1v

1T
vϒ

T N

][
w
b

]
=
[
ϒY
ϒ1v

]
. (2.30)

From the second condition, we obtain b = wT(N+m̂+ +N−m̂−)/N + (N+ −
N−)/N. Substituting this into the first condition, one obtains(

SWC+ N+N−
N2 (m̂+− m̂−)(m̂+− m̂−)T

)
w= 2

N+N−
N2 (m̂+− m̂−),

which yields, up to a scaling constant, the same discriminant vector w as
equation 2.29 since (m̂+− m̂−)(m̂+− m̂−)T)w ∝ (m̂+− m̂−). In the regression
formulation, the bias b is determined so as to obtain an optimal least-squares
approximation, equation 2.17, for the discriminant function, equation 2.2.

3 Probabilistic Interpretation of the LS-SVM Classifier (Level 1)

A probabilistic framework is related to the LS-SVM classifier. The outline of
our approach is similar to the work of Kwok (1999, 2000) for SVMs, but there
are significant differences concerning the Bayesian interpretation of the cost
function and the algebra involved for the computations in the feature space.
First, Bayes’ rule is applied in order to obtain the LS-SVM cost function. The
moderated output is obtained by marginalizing over w and b.

3.1 Inference of the Model Parameters w and b. Given the data points
D = {(xi, yi)}Ni=1 and the hyperparametersµ and ζ of the modelH, the model
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parameters w and b are estimated by maximizing the posterior p(w, b |
D, logµ, log ζ,H). Applying Bayes’ rule at the first level (Bishop, 1995;
MacKay, 1995), we obtain1

p(w, b | D, logµ, log ζ,H)

= p(D | w, b, logµ, log ζ,H)p(w, b | logµ, log ζ,H)
p(D | logµ, log ζ,H) , (3.1)

where the evidence p(D | logµ, log ζ,H) is a normalizing constant such
that the integral over all possible w and b values is equal to 1.

We assume a separable gaussian prior, which is independent of the hy-
perparameter ζ , that is, p(w, b | logµ, log ζ,H) = p(w | logµ,H)p(b |
log σb,H), where σb → ∞ to approximate a uniform distribution. By the
choice of the regularization term EW in equation 2.15, we obtain for the
prior with σb →∞:

p(w, b | logµ,H) =
( µ

2π

) nf
2 exp

(
−µ

2
wTw

) 1√
2πσ 2

b

exp

(
− b2

2σ 2
b

)

∝
( µ

2π

) nf
2 exp

(
−µ

2
wTw

)
. (3.2)

To simplify the notation, the step of taking the limit of σb → ∞ is already
made in the remainder of this article.

The probability p(D | w, b, logµ, log ζ,H) is assumed to depend only
on w, b, ζ , and H. We assume that the data points are independent p(D |
w, b, log ζ,H) = ∏N

i=1 p(xi, yi | w, b, log ζ,H). In order to obtain the least-
squares cost function, equation 2.16, from the LS-SVM formulation, it is
assumed that the probability of a data point is proportional to

p(xi, yi | w, b, log ζ,H) ∝ p(ei | w, b, log ζ,H), (3.3)

where the normalizing constant is independent of w and b. A gaussian
distribution is taken for the errors ei = yi− (wTϕ(xi)+b) from equation 2.13:

p(ei | w, b, log ζ,H) =
√
ζ

2π
exp

(
−ζ e2

i

2

)
. (3.4)

An appealing way to interpret this probability is depicted in Figure 1. It
is assumed that the w and b are determined in such a way that the class

1 The notation p(· | ·, logµ, log ζ, ·) used here is somewhat different from the notation
p(· | ·, µ, ζ, ·) used in MacKay (1995). We prefer this notation since µ and ζ are (positive)
scale parameters (Gull, 1988). By doing so, a uniform notation over the three levels of
inference is obtained. The change in notation does not affect the results.
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centers m̂− and m̂+ are mapped onto the targets −1 and +1, respectively.
The projections wTϕ(x) + b of the class elements ϕ(x) of the multivariate
gaussian distributions are then normally disturbed around the correspond-
ing targets with variance 1/ζ . One can then write p(xi, yi | w, b, ζ,H) =
p(xi | yi,w, b, ζ,H)P(yi) = p(ei | w, b, ζ,H)P(yi), where the errors ei =
yi − (wTϕ(xi) + b) are obtained by projecting the feature vector ϕ(xi) onto
the discriminant function wTϕ(xi)+ b and comparing them with the target
yi. Given the binary targets yi ∈ {−1,+1}, the error ei is a function of the
input xi in the classifier interpretation. Assuming a multivariate gaussian
distribution of feature vector ϕ(xi) in the feature space, the errors ei are also
gaussian distributed, as is depicted in Figure 1 (Bishop, 1995; Duda & Hart,
1973). However, the assumptions that wTm̂− + b = −1 and wTm̂+ + b = +1
may not always hold and will be relaxed in the next section.

By combining equations 3.2 and 3.4 and neglecting all constants, Bayes’
rule, equation 3.1, for the first level of inference becomes

p(w, b | D, logµ, log ζ,H) ∝ exp

(
−µ

2
wTw− ζ

2

N∑
i=1

e2
i

)
= exp(−J2(w, b)). (3.5)

The maximum a posteriori estimates wMP and bMP are then obtained by min-
imizing the negative logarithm of equation 3.5. In the dual space, this corre-
sponds to solving the linear set of equations 2.19. The quadratic cost func-
tion, equation 2.14, is linear in w and b and can be related to the posterior

p(w, b | D, µ, ζ,H)
= 1√

(2π)nf+1 det Q
exp

(
−1

2
gTQ−1g

)
, (3.6)

with2 g = [w − wMP; b − bMP] and Q = covar(w, b) = E(gTg), taking the
expectation over w and b. The covariance matrix Q is related to the Hessian
H of equation 2.14:

Q = H−1 =
[

H11 H12

HT
12 H22

]−1

=


∂2J2

∂w2

∂2J2

∂w∂b
∂2J2

∂b∂w
∂2J2

∂b2


−1

. (3.7)

When using MLPs, the cost function is typically nonconvex, and the co-
variance matrix is estimated using a quadratic approximation in the local
optimum (MacKay, 1995).

2 The Matlab notation [X; Y] is used, where [X; Y] = [XT YT]T .
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3.2 Class Probabilities for the LS-SVM Classifier. Given the posterior
probability, equation 3.6, of the model parameters w and b, we will now
integrate over all w and b values in order to obtain the posterior class prob-
ability P(y | x,D, µ, ζ,H). First, it should be remarked that the assumption
wTm̂+ + b = +1 and wTm̂− + b = −1 may not always be satisfied. This typ-
ically occurs when the training set is unbalanced (N+ 6= N−). In this case,
the discriminant shifts toward the a priori most likely class so as to yield
the optimal least-squares approximation (see equation 2.17). Therefore, we
will use

p(x | y = •1,w, b, log ζ•,H) =
√
ζ•
2π

exp
(
−ζ•(w

T(ϕ(x)− m̂•))2

2

)

=
√
ζ•
2π

exp
(
−ζ•e

2•
2

)
(3.8)

with e• = wT(ϕ(x)− m̂•) by definition, where ζ−1• is the variance of e•. The
• notation is used to denote either + or −, since analogous expressions
are obtained for classes C+ and C−, respectively. In this article, we assume
ζ+ = ζ− M= ζ∗.

Since e• is a linear combination of the gaussian distributed w, marginal-
izing over w will yield a gaussian distributed e•with mean me• and variance
σ 2

e• . The expression for the mean is

me• = wT
MP(ϕ(x)− m̂•) =

N∑
i=1

αiK(x, xi)− m̂d•. (3.9)

with m̂d• = 1
N•

∑N
i=1 αi

∑
j∈I• K(xi, xj), while the corresponding expression

for the variance is

σ 2
e• = [ϕ(x)− m̂•]TQ11[ϕ(x)− m̂•]. (3.10)

The expression for the upper left nf×nf block Q11 of the covariance matrix Q
is derived in appendix A. By using matrix algebra and applying the Mercer
condition, we obtain

σ 2
e• = µ−1K(x, x)− 2µ−1N−1

•
∑
i∈I•

K(x, xi)+ µ−1N−2
• 1T

vÄ(I•,I•)1v

− [θ(x)T − 1
N•

1T
vÄ(I•,I)]

×MUG[µ−1Inef f − (µInef f + ζDG)
−1]

×UT
GM[θ(x)− 1

N•
Ä(I,I•)1v], (3.11)
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where 1v is a vector of appropriate dimensions with all elements equal to
one and where we used the Matlab index notation X(Ia,Ib), which selects
the corresponding rows Ia and columns Ib of the matrix X. The vector
θ(x) ∈ RN and the matrices UG ∈ RN×Nef f and DG ∈ RNef f×Nef f are defined as
follows:

θi(x) = K(x, xi), i = 1, . . . ,N (3.12)

UG(:, i) = λ−
1
2

G,i vG,i, i = 1, . . . ,Nef f ≤ N − 1 (3.13)

DG = diag([λG,1, . . . , λG,Nef f ]), (3.14)

where vG,i and λG,i are the solutions to the eigenvalue problem (see equa-
tion A.4)

MÄMνG,i = λG,ivG,i, i = 1, . . . ,Nef f ≤ N − 1, (3.15)

with VG = [vG,1, . . . , vG,Nef f ] ∈ RN×Nef f . The vector Y and the matrix Ä
are defined in equations 2.20 and 2.21, respectively, while M ∈ RN×N is
the idempotent centering matrix M = IN − 1/N1v1T

v with rank N − 1. The
number of nonzero eigenvalues is denoted by Nef f < N. For rather large
data sets, one may choose to reduce to computational requirements and
approximate the variance σ 2

z by using only the most significant eigenvalues
(λG,i À µ

ζ
) in the above expressions. In this case, Nef f denotes the number

of most significant eigenvalues (see appendix A for details).
The conditional probabilities p(x | y = +1,D, logµ, log ζ, log ζ∗,H) and

p(x | y = −1,D, logµ, log ζ, log ζ∗,H) are then equal to

p(x | y = •1,D, logµ, log ζ, log ζ•,H)

= (2π(ζ−1
• + σ 2

e•))
− 1

2 exp

(
− m2

e•
2(ζ−1• + σ 2

e•)

)
(3.16)

with • either+ or−, respectively. By applying Bayes’ rule, equation 2.1, the
following class probabilities of the LS-SVM classifier are obtained:

P(y | x,D, logµ, log ζ, log ζ∗,H)

= P(y)p(x | y,D, logµ, log ζ, log ζ∗,H)
p(x | D, logµ, log ζ, log ζ∗,H)

, (3.17)

where the denominator p(x | D, logµ, log ζ, log ζ∗,H) = P(y = +1)p(x |
y = +1,D, logµ, log ζ, log ζ∗,H) + P(y = −1)p(x | y = −1,D, logµ, log ζ ,
log ζ∗,H) follows from normalization. Substituting expression 3.16 for • =
+ and • = − into expression 3.17, a quadratic expression is obtained since
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ζ−1∗ + σ 2
e− 6= ζ−1∗ + σ 2

e+ . When σ 2
e− ' σ 2

e+ , one can define σ 2
e =

√
σ 2

e+σ
2
e− , and

one obtains the linear discriminant function

y(x) = sign

[
N∑

i=1

αiK(x, xi)− m̂d+ + m̂d−
2

+ ζ−1 + σ 2
e

m̂d+ − m̂d−
log

P(y = +1)
P(y = −1)

]
. (3.18)

The second and third terms in equation 3.18 correspond to the bias
term b in the LS-SVM classifier formulation, equation 2.22, where the bias
term was determined to obtain an optimal least-squares approximation to
the Bayes discriminant. The decision rules, equations 3.17 and 3.18, al-
low taking into account prior class probabilities in a more elegant way.
This also allows adjusting the bias term for classification problems with
different prior class probabilities in the training and test set. Due to the
marginalization over w, the bias term correction is also a function of the
input x since σ 2

e is a function of x. The idea of a (static) bias term correc-
tion has also been applied in Evgeniou, Pontil, Papageorgiou, & Poggio,
2000 in order to improve the validation set performance. In Mukherjee et
al., 1999 the probabilities p(e | y,wMP, bMP, µ, ζ,H) were estimated using
leave-one-out cross validation given the obtained SVM classifier, and the
corresponding classifier decision was made in a similar way as in equa-
tion 3.18. A simple density estimation algorithm was used, and no gaussian
assumptions were made, while no marginalization over the model param-
eters was performed. A bias term correction was also applied in the soft-
max interpretation for the SVM output (Platt, 1999) using a validation set.
Given the asymptotically optimal least-squares approximation, one can ap-
proximate the class probabilities P(y = +1 | x,w, b,D, logµ, log ζ,H) =
(1+ g0(x))/2 replacing g0(x) by wT

MPϕ(x)+ bMP for the LS-SVM formulation.
However, such an approach does not yield true probabilities that are be-
tween 0 and 1 and sum up to 1. Using a softmax function (Bishop, 1995;
MacKay, 1992, 1995), one obtains P(y = +1 | x,w, b,D, logµ, log ζ,H) =
(1 + exp(−(wTϕ(x) + b)))−1 and P(y = −1 | x,w, b,D, logµ, log ζ,H) =
(1 + exp(+(wTϕ(x) + b)))−1. In order to marginalize over the model pa-
rameters in the logistic functions, one can use the approximate expres-
sions of MacKay (1992, 1995) in combination with the expression for the
moderated output of the LS-SVM regressor derived in Van Gestel et al.,
(2001). In the softmax interpretation for SVMs (Platt, 1999), no marginal-
ization over the model parameters is applied, and the bias term is de-
termined on a validation set. Finally, because of the equivalence between
classification costs and prior probabilities (Duda & Hart, 1973), the results
for the moderated output of the LS-SVM classifier can be extended in a
straightforward way in order to take different classification costs into ac-
count.
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For large-scale data sets, the computation of the eigenvalue decomposi-
tion (see equation 3.15) may require long computations, and one may choose
to compute only the largest eigenvalues and corresponding eigenvectors us-
ing an expectation-maximization approach (Rosipal & Girolami, 2001). This
will result in an increased variance, as explained in appendix A. An alter-
native approach is to use the “cheap and chearful” approach described in
MacKay (1995).

4 Inference of the Hyperparameters µ and ζ (Level 2)

Bayes’ rule is applied on the second level of inference to infer the most likely
µMP and ζMP values from the given data D. The differences with the expres-
sions obtained in MacKay (1995) are due to the fact that no regularization is
applied on the bias term b and that all practical expressions are obtained in
the dual space by applying the Mercer condition. Up to a centering, these
expressions are similar to the expressions obtained with GP for regression.
By combination of the conditions for optimality, the minimization problem
in µ and ζ is reformulated into a scalar minimization problem in γ = ζ/µ.

4.1 Inference of µ and ζ . In the second level of inference, Bayes’ rule is
applied to infer the most likely µ and ζ values from the data:

p(logµ, log ζ | D,H) = p(D | logµ, log ζ,H)p(logµ, log ζ | H)
p(D | H)

∝ p(D | logµ, log ζ,H). (4.1)

Because the hyperparameters µ and ζ are scale parameters (Gull, 1988), we
take a uniform distribution in logµ and log ζ for the prior p(logµ, log ζ |
H) = p(logµ | H)p(log ζ | H) in equation 4.1. The evidence p(D | H) is
again a normalizing constant, which will be needed in level 3. The prob-
ability p(D | logµ, log ζ,H) is equal to the evidence in equation 3.1 of
the previous level. Substituting equations 3.2, 3.4, and 3.6 into 4.1, we ob-
tain:

p(logµ, log ζ | D,H) ∝
√
µnf

√
ζN

√
det H

exp(−J2(w, b))

exp(− 1
2 gTHg)

∝
√
µnf ζN
√

det H
exp(−J2(wMP, bMP)),

whereJ2(w, b) = J2(wMP, bMP)+ 1
2 gTHg with g = [w−wMP; b− bMP]. The ex-

pression for det H is given in appendix B and is equal to det H = Nµnf−Nef f ζ∏Nef f

i=1 (µ+ζλG,i), where the Nef f eigenvalues λG,i are the nonzero eigenvalues
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of MÄM. Taking the negative logarithm of p(logµ, log ζ | D,H), the opti-
mal parameters µMP and ζMP are found as the solution to the minimization
problem:

min
µ,ζ
J3(µ, ζ ) = µEW(wMP)+ ζED(wMP, bMP)

+ 1
2

Nef f∑
i=1

log(µ+ ζλG,i)−
Nef f

2
logµ− N − 1

2
log ζ. (4.2)

In Appendix B it is also shown that the level 1 cost function evaluated in wMP

and bMP can be written as µEW(wMP)+ ζED(wMP, bMP) = 1
2 YTM(µ−1MÄM+

ζ−1IN)
−1MY. The cost function J3 from equation 4.2 can be written as

min
µ,ζ
J3(µ, ζ ) = 1

2
YTM

(
1
µ

MÄM+ 1
ζ

IN

)−1

MY

+ 1
2

log det
(

1
µ

MÄM+ 1
ζ

IN

)
− 1

2
log

1
ζ
, (4.3)

where the last term is due to the extra bias term b in the LS-SVM formula-
tion. Neglecting the centering matrix M, the first two terms in equation 4.3
correspond to the level 2 cost function used in GP (Gibbs, 1997; Rasmussen,
1996; Williams, 1998). Hence, the use of the unregularized bias term b in
the SVM and LS-SVM formulation results in a centering matrix M in the
obtained expressions compared to GP. The eigenvalues λG,i of the centered
Gram matrix are also used in kernel PCA (Schölkopf et al., 1998), and can
also be used to infer improved error bounds for SVM classifiers (Schölkopf
et al., 1999). In the Bayesian framework, the capacity is controlled by the
prior.

The effective number of parameters (Bishop, 1995; MacKay, 1995) is equal
to γef f =

∑
λi,u/λi,r, where λi,u and λi,r are the eigenvalues of Hessians of

the unregularized cost function (Ju = ζED) and regularized cost function
(Jr = µEW + ζED), respectively. For the LS-SVM, the effective number of
parameters is equal to

γef f = 1+
Nef f∑
i=1

ζMPλG,i

µMP + ζMPλG,i
= 1+

Nef f∑
i=1

γMPλG,i

1+ γMPλG,i
, (4.4)

with γ = ζ/µ. The term +1 is obtained because no regularization on the
bias term b is applied. Notice that since Nef f ≤ N−1, the effective number of
parameters γef f can never exceed the number of given training data points,
γef f ≤ N, although we may choose a kernel function K with possibly nf →∞
degrees of freedom in the feature space.
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The gradient of the cost function J3(µ, ζ ) is (MacKay, 1992):

∂J3

∂µ
= EW(wMP)+ 1

2

Nef f∑
i=1

1
µ+ ζλG,i

− Nef f

2µ
(4.5)

∂J3

∂ζ
= ED(wMP, bMP)+ 1

2

Nef f∑
i=1

λG,i

µ+ ζλG,i
− N − 1

2ζ
. (4.6)

Putting the partial derivatives 4.5 and 4.6 equal to zero, we obtain the fol-
lowing relations in the optimum of the level 2 cost function: 2µMPEW(wMP) =
γef f − 1 and 2ζMPED(wMP, bMP) = N− γef f . The last equality can be viewed as

the Bayesian estimate of the variance ζ−1
MP =

∑N
i=1 e2

i /(N − γef f ) of the noise
ei. While this yields an implicit expression for the optimal ζMP for the regres-
sion formulation, this may not be equal to the variance ζ∗ since the targets
±1 do not necessarily correspond to the projected class centers. Therefore,
we will use the estimate ζ−1∗ = (N − γef f )

−1(
∑

i∈I+ e2
i,+ +

∑
i∈I− e2

i,−) in the
remainder of this article. Combining both relations, we obtain that for the
optimal µMP, ζMP and γMP = ζMP/µMP:

2µMP[EW(wMP)+ γMPED(wMP, bMP)] = N − 1. (4.7)

4.2 A Scalar Optimization Problem in γ = ζ/µ. We reformulate the
optimization problem, equation 4.2, in µ and ζ into a scalar optimization
problem in γ = ζ/µ. Therefore, we first replace that optimization prob-
lem by an optimization problem in µ and γ . We can use that EW(wMP) and
ED(wMP, bMP) in the optimum of equation 2.14 depend on only γ . Since in the
optimum equation 4.7 also holds, we have the search for the optimum only
along this curve in the (µ, γ ) space.

By elimination of µ from equation 4.7, the following minimization prob-
lem is obtained in a straightforward way:

min
γ
J4(γ )=

N−1∑
i=1

log
[
λG,i+ 1

γ

]
+ (N − 1) log[EW(wMP)+γED(wMP, bMP)] (4.8)

with λG,i = 0 for i > Nef f . The derivative ∂J4
∂γ

is obtained in a similar way

as ∂J3
∂µ

:

∂J4

∂γ
= −

N−1∑
i=1

1
γ + λG,iγ 2 + (N − 1)

ED(wMP, bMP)

EW(wMP)+ γED(wMP, bMP)
. (4.9)

Due to the second logarithmic term, this cost function is not convex, and it is
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useful to start from different initial values for γ . The condition for optimality
(∂J4/∂γ = 0) is

γMP =
N − γef f

γef f − 1
EW(wMP)

ED(wMP, bMP)
. (4.10)

We also need the expressions for ED and EW in equations 4.8 and 4.9. It
is explained in appendix B that these terms can be expressed in terms of the
output vector Y and the eigenvalue decomposition of the centered kernel
matrix MÄM:

ED(wMP, bMP) = 1
2γ 2 YTMVG(DG + γ−1Inef f )

−2VT
GMY (4.11)

EW(wMP) = 1
2

YTMVGDG(DG + γ−1Inef f )
−2VT

GMY (4.12)

EW(wMP)+ γED(wMP, bMP) = 1
2

YTMVG(DG + γ−1Inef f )
−1VT

GMY. (4.13)

When the eigenvalue decomposition, equation 3.15, is calculated, the opti-
mization, equation 4.8, involves only vector products that can be evaluated
very quickly.

Although the eigenvalues λG,i have to be calculated only once, their cal-
culation in the eigenvalue problem, equation 3.15, becomes computation-
ally expensive for large data sets. In this case, one can choose to calculate
only the largest eigenvalues in equation 3.15 using an expectation max-
imization approach (Rosipal & Girolami, 2001), while the linear system,
equation 2.19, can be solved using the Hestenes-Stiefel conjugate gradient
algorithm (Suykens, 2000). The obtainedα and b can also be used to derive an
alternative expression for ED = 1

2γ 2

∑N
i=1 α

2
i and EW = 1

2
∑N

i=1 αi(yi− αi
γ
−bMP)

instead of using equations 4.11 and 4.12.

5 Bayesian Model Comparison (Level 3)

After determination of the hyperparametersµMP and ζMP on the second level
of inference, we still have to select a suitable model H. For SVMs, differ-
ent models correspond to different kernel functions K, for example, a lin-
ear kernel or an RBF kernel with tuning parameter σ . We describe how to
rank different models Hj (j = 1, 2, . . ., corresponding to, e.g., RBF kernels
with different tuning parameters σj) in the Bayesian evidence framework
(MacKay, 1999). By applying Bayes’ rule on the third level, we obtain the
posterior for the modelHj:

p(Hj | D) ∝ p(D | Hj)p(Hj). (5.1)
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At this level, no evidence or normalizing constant is used since it is com-
putationally infeasible to compare all possible models Hj. The prior p(Hj)

over all possible models is assumed to be uniform here. Hence, equation 5.1
becomes p(Hj | D) ∝ p(D | Hj). The likelihood p(D | Hj) corresponds to the
evidence (see equation 4.1) of the previous level.

A separable gaussian prior p(logµMP, log ζMP | Hj) with error bars σlogµ
and σlog ζ is assumed for all modelsHj. To estimate the posterior analytically,
it is assumed (MacKay, 1999) that the evidence p(logµ, log ζ | D,Hj) can
be very well approximated by using a separable gaussian with error bars
σlogµ|D and σlog ζ |D. As in section 4, the posterior p(D | Hj) then becomes
(MacKay, 1995,1999)

p(D | Hj) ∝ p(D | logµMP, log ζMP,Hj)
σlogµ|Dσlog ζ |D
σlogµσlog ζ

. (5.2)

Ranking of models according to model quality p(D | Hj) is thus based on
the goodness of fit p(D | logµMP, log ζMP,Hj) from the previous level and the
Occam factor σlogµ|Dσlog ζ |D

σlogµσlog ζ
(Gull, 1988; MacKay, 1995,1999).

Following a similar reasoning as in MacKay (1999), the error bars σlogµ|D
and σlog ζ |D can be approximated as follows: σ 2

logµ|D ' 2
γef f−1 and σ 2

log ζ |D '
2

N−γef f
. Using equations 4.1 and 4.7 in 5.2 and neglecting all constants yields

p(D | Hj) ∝

√√√√ µ
Nef f
MP ζ

N−1
MP

(γef f − 1)(N − γef f )
∏Nef f

i=1 (µMP + ζMPλG,i)
. (5.3)

6 Design and Application of the LS-SVM Classifier

In this section, the theory of the previous sections is used to design the LS-
SVM classifier in the Bayesian evidence framework. The obtained classifier
is then used to assign class labels and class probabilities to new inputs x by
using the probabilistic interpretation of the LS-SVM classifier.

6.1 Design of the LS-SVM Classifier in the Evidence Framework. The
design of the LS-SVM classifier consists of the following steps:

1. The inputs are normalized to zero-mean and unit variance (Bishop,
1995). The normalized training data are denoted by D = {(xi, yi)}Ni=1,
with xi the normalized inputs and yi ∈ {−1, 1} the corresponding class
label.

2. Select the model Hj by choosing a kernel type Kj (possibly with a
kernel parameter, e.g., σj for an RBF-kernel). For this model Hj, the
optimal hyperparameters µMP and ζMP are estimated on the second
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level of inference. This is done as follows. (a) Estimate the Nef f im-
portant eigenvalues (and eigenvectors) of the eigenvalue problem,
equation 3.15, to obtain DG (and VG). (b) Solve the scalar optimization
problem, equation 4.8, in γ = ζ/µwith cost function 4.8 and gradient
4.9. (c) Use the optimal γMP to calculate µMP from equation 4.7, while
ζMP = µMPγMP. Calculate the effective number of parameters γef f from
equation 4.4.

3. Calculate the model evidence p(D | Hj) from equation 5.3.

4. For a kernel Kj with tuning parameters, refine the tuning parameters.
For example, for the RBF kernel with tuning parameter σj, refine σj
such that a higher model evidence p(D | Hj) is obtained. This can be
done by maximizing the model evidence with respect to σj by eval-
uating the model evidence for the refined kernel parameter starting
from step 2a.

5. Select the model Hj with maximal model evidence p(D | Hj). Go to
step 2, unless the best model has been selected.

For a kernel function without tuning parameter, like the linear kernel and
polynomial kernel with (already) fixed degree d, steps 2 and 4 are trivial,
since no tuning parameter of the kernel has to be chosen in step 2 and no
refining of the tuning parameter is needed in step 4. The model evidence
obtained at step 4 can then be used to rank the different kernel types and
select the most appropriate kernel function.

6.2 Decision Making with the LS-SVM Classifier. The designed LS-
SVM classifierHj is now used to calculate class probabilities. By combination
of these class probabilities with Bayesian decision theory (Duda & Hart,
1973), class labels are assigned in an optimal way. The classification is done
in the following steps:

1. Normalize the input in the same way as the training data D. The
normalized input vector is denoted by x.

2. Assuming that the parameters α, bMP, µMP, ζMP, γMP, γef f , DG, UG, Nef f
are available from the design of the modelHj, one can calculate me+ ,
me− , σ 2

e+ and σ 2
e− from equations 3.9 and 3.11, respectively. Compute ζ∗

from ζ−1∗ = (N − γef f )
−1(
∑

i∈I+ e2
i,+ +

∑
i∈I− e2

i,−).

3. Calculate p(x | y = +1,D, logµMP, log ζMP, log ζ∗,H) and p(x | y =
+1,D, logµ, log ζ, log ζ∗,H) from equation 3.16.

4. Calculate P(y | x,D,Hj) from equation 3.17 using the prior class prob-
abilities P(y = +1) and P(y = −1). When these prior class probabili-
ties are not available, compute P(y = +1) = N+/N and P(y = −1) =
N−/N.

5. Assign the class label to class with maximal posterior P(y | x,D,Hj).
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Figure 2: Contour plot of the posterior class probability P(y = +1 | x,D,H) for
the rsy data set. The training data are marked with + and × for class y = +1
and y = −1, respectively.

7 Examples

The synthetic binary classification benchmark data set from Ripley (1996) is
used to illustrate the theory of this article. Randomized test set performances
of the Bayesian LS-SVM are reported on 10 binary classification data sets.

7.1 Design of the Bayesian LS-SVM: A Case Study. We illustrate the
design of the LS-SVM classifier within the evidence framework on the syn-
thetic data set (rsy ) from Ripley (1996). The data set consists of a training
and test set of N = 250 and Ntest = 1000 data points, respectively. There are
two inputs (n = 2), and each class is an equal mixture of two normal distri-
butions with the same covariance matrices. Both classes have the same prior
probability P(y = +1) = P(y = −1) = 1/2. The training data are visualized
in Figure 2, with class +1 and class −1 depicted by + and ×, respectively.

In a first step, both inputs x(1) and x(2) were normalized to zero mean
and unit variance (Bishop, 1995). For the kernel function K of the model
H, an RBF kernel with parameter σ was chosen. Assuming a flat prior on
the value of log σ , the optimal σMP was selected by maximizing p(D | Hj) =
p(D | log σj), given by equation 5.3. The maximum likelihood is obtained
for σMP = 1.3110. This yields a test set performance of 90.6% for both LS-
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Figure 3: The posterior class probability P(y = +1 | x,D,H) as a function of the
inputs x(1) and x(2) for the rsy data set.

SVM classifiers. We also trained a gaussian process for classification with
the Flexible Bayesian Modeling toolbox (Neal, 1997). A logistic model with
constant term and RBF kernel in the covariance function yielded an average
test set performance of 89.9%, which is not significantly different from the
LS-SVM result given the standard deviation from Table 2. This table is dis-
cussed further in the next section. In the logistic model, the parameters are
directly optimized with respect to the output probability using sampling
techniques. The LS-SVM classifier formulation assumes a gaussian distri-
bution on the errors between the projected feature vectors and the targets
(or class centers), which allows deriving analytic expressions on the three
levels of inference.

The evolution of the posterior class probabilities P(y = +1 | x,D,H) is
plotted in Figure 3 for x(1) ∈ [−1.5, 1.5] and x(2) ∈ [−0.5, 1.5]. The corre-
sponding contour plot is given in Figure 2, together with the location of
the training points. Notice how the uncertainty on the class labels increases
as the new input x is farther away from the training data. The value zMP

decreases while the variance σ 2
z,t increases when moving away from the

training data.
We also intentionally unbalanced the test set by defining a new test set

from the original set: the negatively and positively labeled instances of
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the original set are repeated three times and once in the new set, respec-
tively. This corresponds to prior class probabilities P(y = −1) = 0.75 and
P(y = +1) = 0.25. Not taking these class probabilities into account, a test
set accuracy of 90.9% is obtained, while one achieves a classification perfor-
mance of 92.5% when the prior class probabilities are taken into account.

7.2 Empirical Results on Binary Classification Data Sets. The test set
classification performance of the Bayesian (Bay) LS-SVM classifier with RBF
kernel was assessed on 10 publicly available binary classification data sets.
We compare the results with LS-SVM and SVM classification and GP re-
gression (LS-SVM without bias term) where the hyperparameter and ker-
nel parameter are tuned by 10-fold cross-validation (CV10). The BUPA Liver
Disorders (bld ), the Statlog German Credit (gcr ), the Statlog Heart Disease
(hea ), the John Hopkins University Ionosphere (ion ), the Pima Indians Dia-
betes (pid ), the Sonar (snr ), and the Wisconsin Breast Cancer (wbc) data sets
were retrieved from the UCI benchmark repository (Blake & Merz, 1998).
The synthetic data set (rsy ) and Leptograpsus crabs (cra ) are described in
Ripley (1996). The Titanic data (tit ) was obtained from Delve. Each data set
was split up into a training (2/3) and test set (1/3), except for the rsy data
set, where we used N = 250 and Ntest = 1000. Each data set was randomized
10 times in order to reduce possible sensitivities in the test set performances
to the choice of training and test set.

For each randomization, the design procedure from section 6.1 was used
to estimate µ and ζ from the training data for the Bayesian LS-SVM, while
selecting σ from a candidate set 6 = [σ1, σ2, . . . , σj, . . . , σNs ] using model
comparison. The classification decision (LS-SVM BayM) is made by the
Bayesian decision rule, equation 3.17, using the moderated output and is
compared with the classifier, equation 2.22, which is denoted by (LS-SVM
Bay). A 10-fold cross validation (LS-SVM, SVM and GP CV10) procedure
was used to select the parameters3 γ or C and σ yielding best CV10 per-
formance from the set 6 and an additional set 0 = [γ1, γ2, . . . , γNg ]. The
same sets were used for each algorithm. In a second step, more refined sets
were defined for each algorithm4 in order to select the optimal parameters.
The classification decisions were obtained from equation 2.4 with the corre-
sponding w and b determined in the dual space for each algorithm. We also
designed the GP regressor within the evidence framework for a GP with
RBF kernel (GP Bay) and for a GP with RBF kernel and an additional bias
term b in the kernel function (GPb Bay).

In Table 1, we report the average test set performance and sample stan-
dard deviation on ten randomizations for each data set (De Groot, 1986). The

3 Notice that the parameter C of the SVM plays a similar role as the parameter γ of the
LS-SVM.

4 We used the Matlab SVM toolbox (Cawley, 2000), while the GP CV10 was obtained
from the linear system, equation 2.23.
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Table 1: Comparison of the 10 Times Randomized Test Set Performances of
LS-SVMs, GPs, and SVM.

n N Ntest Ntot LS-SVM LS-SVM LS-SVM SVM GP GPb GP
(BayM) (Bay) (CV10) (CV10) (Bay) (Bay) (CV10)

bld 6 230 115 345 69.4(2.9) 69.4(3.1) 69.4(3.4) 69.2(3.5) 69.2(2.7) 68.9(3.3) 69.7(4.0)
cra 6 133 67 200 96.7(1.5) 96.7(1.5) 96.9(1.6) 95.1(3.2) 96.4(2.5) 94.8(3.2) 96.9(2.4)
gcr 20 666 334 1000 73.1(3.8) 73.5(3.9) 75.6(1.8) 74.9(1.7) 76.2(1.4) 75.9(1.7) 75.4(2.0)
hea 13 180 90 270 83.6(5.1) 83.2(5.2) 84.3(5.3) 83.4(4.4) 83.1(5.5) 83.7(4.9) 84.1(5.2)
ion 33 234 117 351 95.6(0.9) 96.2(1.0) 95.6(2.0) 95.4(1.7) 91.0(2.3) 94.4(1.9) 92.4(2.4)
pid 8 512 256 768 77.3(3.1) 77.5(2.8) 77.3(3.0) 76.9(2.9) 77.6(2.9) 77.5(2.7) 77.2(3.0)
rsy 2 250 1000 1250 90.2(0.7) 90.2(0.6) 89.6(1.1) 89.7(0.8) 90.2(0.7) 90.1(0.8) 89.9(0.8)
snr 60 138 70 208 76.7(5.6) 78.0(5.2) 77.9(4.2) 76.3(5.3) 78.6(4.9) 75.7(6.1) 76.6(7.2)
tit 3 1467 734 2201 78.8(1.1) 78.7(1.1) 78.7(1.1) 78.7(1.1) 78.5(1.0) 77.2(1.9) 78.7(1.2)
wbc 9 455 228 683 95.9(0.6) 95.7(0.5) 96.2(0.7) 96.2(0.8) 95.8(0.7) 93.7(2.0) 96.5(0.7)

Average performance 83.7 83.9 84.1 83.6 83.7 83.2 83.7
Average ranks 2.3 2.5 2.5 3.8 3.2 4.2 2.6
Probability of a sign test 1.000 0.754 1.000 0.344 0.754 0.344 0.508

Notes: Both CV10 and the Bayesian (Bay) framework were used to design the LS-SVMs.
For the Bayesian LS-SVM the class label was assigned using the moderated output (BayM).
An RBF kernel was used for all models. The model GPb has an extra bias term in the kernel
function. The average performance, average rank, and probability of equal medians using
the sign test taken over all domains are reported in the last three rows. Best performances
are underlined and denoted in boldface, performances not significantly different at the
5% level are denoted in boldface, performances significantly different at the 1% level are
emphasized. No significant differences are observed between the different algorithms.

best average test set performance was underlined and denoted in boldface
for each data set. Boldface type is used to tabulate performances that are
not significantly different at the 5% level from the top performance using
a two-tailed paired t-test. Statistically significant underperformances at the
1% level are emphasized. Other performances are tabulated using normal
type. Since the observations are not independent, we remark that the t-test
is used here only as a heuristic approach to show that the average accu-
racies on the 10 randomizations can be considered to be different. Ranks
are assigned to each algorithm starting from 1 for the best average perfor-
mance. Averaging over all data sets, a Wilcoxon signed rank test of equality
of medians is carried out on both average performance (AP) and average
ranks (AR). Finally, the significance probability of a sign test (PST) is reported
comparing each algorithm to the algorithm with best performance (LS-SVM
CV10). These results are denoted in the same way as the performances on
each individual data set.

No significant differences are obtained between the different algorithms.
Comparing SVM CV10 with GP and LS-SVM CV10, it is observed that sim-
ilar results are obtained with all three algorithms, which means that the
loss of sparseness does not result in a degradation of the generalization
performance on these data sets. It is also observed that the LS-SVM and
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GP designed within the evidence framework yield consistently comparable
results when compared with CV10, which indicates that the gaussian as-
sumptions of the evidence framework hold well for the natural domains at
hand. Estimating the bias term b in the GP kernel function by Bayesian in-
ference on level 3 yields comparable but different results from the LS-SVM
formulation where the bias term b is obtained on the first level. Finally, it
is observed that assigning the class label from the moderated output, equa-
tion 3.17, also yields comparable results with respect to the classifier 2.22,
but the latter formulation does yield an analytic expression to adjust the
bias term for different prior class probabilities, which is useful, for exam-
ple, in the case of unbalanced training and test set or in the case of different
classification costs.

8 Conclusion

In this article, a Bayesian framework has been related to the LS-SVM classi-
fier formulation. This least-squares formulation was obtained by modifying
the SVM formulation and implicitly corresponds to a regression problem
with binary targets. The LS-SVM formulation is also related to kernel fisher
discriminant analysis. Without the bias term in the LS-SVM formulation, the
dual space formulation is equivalent to GPs for regression. The least-squares
regression approach to classification allows deriving analytic expressions
on the different levels of inference. On the first level, the model parameters
are obtained from solving a linear Karush-Kuhn-Tucker system in the dual
space. The regularization hyperparameters are obtained from a scalar opti-
mization problem on the second level, while the kernel parameter is deter-
mined on the third level by model comparison. Starting from the LS-SVM
feature space formulation, the analytic expressions obtained in the dual
space are similar to the expressions obtained for GPs. The use of an unregu-
larized bias term in the LS-SVM formulation results in a zero-mean training
error and an implicit centering of the Gram matrix in the feature space, also
used in kernel PCA. The corresponding eigenvalues can be used to obtain
improved bounds for SVMs. Within the evidence framework, these eigen-
values are used to control the capacity by the regularization term. Class
probabilities are obtained within the defined probabilistic framework by
marginalizing over the model parameters and hyperparameters. By combi-
nation of the posterior class probabilities with an appropriate decision rule,
class labels can be assigned in an optimal way. Comparing LS-SVM, SVM
classification, and GP regression with binary targets on 10 normalized pub-
lic domain data sets, no significant differences in performance are observed.
The gaussian assumptions made in the LS-SVM formulation and the related
Bayesian framework allow obtaining analytical expressions on all levels of
inference using reliable numerical techniques and algorithms.
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Appendix A: Derivations Level 1 Inference

In the expression for the variances σ 2
e+ and σ 2

e− , the upper left nf × nf block
of the covariance matrix Q = H−1 is needed. Therefore, we first calculate
the inverse of the block Hessian H. Using ϒ = [ϕ(x1), . . . , ϕ(xN)], with
Ä = ϒTϒ , the expressions for the block matrices in the Hessian, equation 3.7,
are H11 = µInf + ζϒϒT, H12 = ζϒ1v and H22 = Nζ. Calculating the inverse
of the block matrix, the inverse Hessian is obtained as follows:

H−1=
([

Inf X

0 1

][
H11 −H12H−1

22 HT
12 0

0 H22

][
Inf 0

XT 1

])−1

(A.1)

=
[

(µInf+ζG)−1 −(µInf+ζG)−1H12H−1
22

−H−1
22 HT

12(µInf+ζG)−1 H−1
22 +H−1

22 HT
12(µInf+ζG)−1H12H−1

22

]
, (A.2)

with G = ϒMϒT, X = H12H−1
22 and where M = IN − 1

N 1v1T
v is the idempo-

tent centering matrix with rank N − 1. Observe that the above derivation
results in a centered Gram matrix G, as is also done in kernel PCA (Schölkopf
et al., 1998). The eigenvalues of the centered Gram matrix can be used to
derive improved bounds for SVM classifiers (Schölkopf et al., 1999). In the
Bayesian framework of this article, the eigenvalues of the centered Gram
matrix are also used on levels 2 and 3 of Bayesian inference to determine the
amount of weight decay and select the kernel parameter, respectively. The
inverse (µInf +ζG)−1 will be calculated using the eigenvalue decomposition
of the symmetric matrix G = GT = PTDG, f P = PT

1 DGP1, with P = [P1 P2] a
unitary matrix and with the diagonal matrix DG = diag([λG,1, . . . , λG,Nef f ])
containing the Neff nonzero diagonal elements of full-size diagonal matrix
DG, f ∈ Rnf . The matrix P1 corresponds to the eigenspace corresponding
to the nonzero eigenvalues, and the null space is denoted by P2. There are
maximally N−1 eigenvalues λG,i > 0, and their corresponding eigenvectors
νG,i are a linear combination of ϒM: νG,i = cG,iϒMvG,i, with cG,i a normal-
ization constant such that νT

G,iνG,i = 1. The eigenvalue problem we need to
solve is the following:

ϒMϒT(ϒMvG,i) = λG,i(ϒMvG,i). (A.3)

Multiplication of equation A.3 to the left with MϒT and applying the Mer-
cer condition yields MÄMÄMvG,i = λG,iMÄMvG,i, which is a generalized
eigenvalue problem of dimension N. An eigenvector vG,i corresponding to
a nonzero eigenvalue λG,i is also a solution of

MÄMvG,i = λG,ivG,i, (A.4)

since MÄMÄMvG,i = λG,iMÄMvG,i 6= 0. By applying the normality con-
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dition of νG,i, which corresponds to cG,i = 1/
√

vT
G,iMÄMvG,i, one finally

obtains P1 = [νG,1 . . . νG,Nef f
] where νG,i = 1√

vT
G,iMÄMvG,i

ϒMvG,i, and P1 =
ϒMUG, with UG(:, i) = 1√

vT
G,iMÄMvG,i

vG,i = λ
−1/2
G,i vG,i, i = 1, . . . ,Nef f . The

remaining nf − Nef f dimensional orthonormal null space P2 of G cannot
be explicitly calculated, but using that [P1 P2] is a unitary matrix, we have
P2PT

2 = Inf − P1PT
1 . Observe that this is different from Kwok (1999, 2000),

where the space P2 is neglected. This yields

(µInf + ζG)−1 = P1((µINef f + ζDG)
−1 − µ−1INef f )P

T
1 + µ−1Inf .

By defining θ(x) = ϒTϕ(x) and applying the Mercer condition in equa-
tion 3.10, one finally obtains expression 3.11.

For large N, the calculation of all eigenvalues λG,i and corresponding
eigenvectors νi, i = 1, . . . ,N may require long computations. One may
expect that little error is introduced by putting the N − rG smallest eigen-
values, µ À ζλG,i, of G = GT ≥ 0. This corresponds to an optimal rank
rG approximation of (µInf + ζG)−1. Indeed, calling GR the rank rG approx-
imation of G, we obtain minGR ‖(µInf + ζG)−1 − (µInf + ζGR)

−1‖F. Using
the Sherman-Morrison-Woodbury formula (Golub & Van Loan, 1989) this
becomes: ‖(µInf +ζG)−1− (µInf +ζGR)

−1‖F = ‖ ζµ (µInf +ζG)−1G− ζ
µ
(µInf +

ζGR)
−1GR‖F. The optimal rank rG approximation for (µInf + ζG)−1G is ob-

tained by putting its smallest eigenvalues to zero. Using the eigenvalue
decomposition of G, these eigenvalues are λG,i

µ+ζλG,i
. The smallest eigenvalues

of (µInf + ζG)−1G correspond to the smallest eigenvalues of G. Hence, the
optimal rank rG approximation is obtained by putting the smallest N − rG
eigenvalues to zero. Also notice that σ 2

z is increased by putting λG,i equal to
zero. A decrease of the variance would introduce a false amount of certainty
on the output.

Appendix B: Derivations Level 2 and 3 Inference

First, an expression for det(H) is given using the eigenvalues of G. By
block diagonalizing equation 3.7, det(H) is not changed (see, e.g., Horn
& Johnson, 1991). From equation A.1, we obtain det H = Nζ det(µInf + ζG).
The determinant is the product of the eigenvalues; this yields det H =
Nζµnf−Nef f

∏Nef f

i=1 (µ+ζλG,i).Due to the regularization termµEW , the Hessian
is regular. The inverse exists, and we can write det H−1 = 1/det H.

Using equation 2.30, the simulated error ei = yi − (wT
MPϕ(xi) + bMP) can

also be written as ei = yi− m̂Y−wT
MP(ϕ(xi)− m̂ϒ), with m̂Y =

∑N
i=1 yi/N and

m̂ϒ =
∑N

i=1 ϕ(xi)/N. Since wMP = (ϒMϒT + γ−1Inf )
−1ϒMY, the error term
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ED(wMP, bMP) is equal to

ED(wMP, bMP) = 1
2
(Y− m̂Y1v)

T
(

IN −Mϒ
(
ϒMϒT + γ−1Inf

)−1
ϒM

)2

× (Y− m̂Y1v)

= 1
2γ 2 YTMVG

(
DG + γ−1Inef f

)−2
VT

GMY, (B.1)

where we used the eigenvalue decomposition of G = ϒMϒ . In a similar
way, one can obtain the expression for EW in the dual space starting from
wMP = (ϒMϒT + γ−1Inf )

−1ϒMY:

EW(wMP) = 1
2

YTMVGDG

(
DG + γ−1Inef f

)−2
VT

GMY. (B.2)

The sum EW(wMP)+ γED(wMP, bMP) is then equal to

EW(wMP)+ γED(wMP, bMP) = 1
2

YTMVG

(
DG + γ−1Inef f

)−1
VT

GMY

= 1
2

YTM
(

MÄM+ γ−1In

)−1
MY, (B.3)

which is the same expression as obtained with GP when no centering M is
applied on the outputs Y and the feature vectors ϒ .
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