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High-throughput gene expression technologies such as microarrays have been utilized in a variety of scientific applications. Most
of the work has been done on assessing univariate associations between gene expression profiles with clinical outcome (variable
selection) or on developing classification procedures with gene expression data (supervised learning). We consider a hybrid variable
selection/classification approach that is based on linear combinations of the gene expression profiles that maximize an accuracy
measure summarized using the receiver operating characteristic curve. Under a specific probability model, this leads to the consid-
eration of linear discriminant functions. We incorporate an automated variable selection approach using LASSO. An equivalence
between LASSO estimation with support vector machines allows for model fitting using standard software. We apply the proposed
method to simulated data as well as data from a recently published prostate cancer study.

INTRODUCTION

DNA microarrays simultaneously gauge the expres-
sion of thousands of genes in clinical samples. In this pa-
per, we focus on cancer studies, where gene expression
technologies have been applied extensively (Alizadeh et al
[1]; Khan et al [2]; Dhanasekaran et al [3]). Obtaining
large-scale gene expression profiles of tumors should the-
oretically allow for the identification of subsets of genes
that function as prognostic disease markers or biologic
predictors of therapeutic response. Because the data are
highly multivariate and complex, it is important to de-
velop automated statistical methods to detect systematic
signals in gene expression patterns.

In cancer studies, analyses have typically focused on
one of three problems. First, investigators have looked for
genes that discriminate neoplastic from benign tissue. Sta-
tistically, this is the problem assessing differential expres-
sion of genes and has been studied by several authors; see,
for example, Efron et al [4]. A second problem is clus-
tering the samples to find subtypes of disease using algo-
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rithms such as those in [5]. The final class of problems
is classification or supervised learning, which involves us-
ing the profile to predict some clinical outcome, such as
the stage of disease. Suppose that in this instance, we treat
the gene expression profile as the independent variables
and tissue type as the response. A particular feature of
microarray experiments is that the dimension of the pre-
dictor space (number of genes) is typically larger than the
number of samples. This is known as the “large p, small
n” paradigm (West [6]), so classification methods must
take this into account.

One method to do this is apply prefiltering criteria in
which the candidate number of genes for building a clas-
sifier is smaller than the number of samples. For exam-
ple, Dudoit et al [7] performed a systematic comparison
of several discrimination methods for the classification of
tumors based on microarray experiments. However, they
must perform an initial reduction in the number of pre-
dictors before building the classifier.

We wish to consider the joint effects of genes in
determining classification rules for discriminating tu-
mors. There are two assumptions that drive our pro-
posed methodology. First, we assume that the joint effects
of multiple genes must be considered in discriminating
classes of disease. Recently, much attention has been given
to the finding that a 70-gene signature can predict breast
cancer survival (van’t Veer et al [8]; van de Vijver et al
[9]). However, most such gene signatures have been con-
structed using univariate methods. It seems reasonable to
consider joint models, as genes are correlated because of
their mutual involvement in disease pathways.
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The second assumption is that there are individual
genes that can discriminate classes. This is different from
the latent factor and partial least squares proposals put
forth by other authors (West [6]; Nguyen and Rocke
[10]), where linear combinations of all available genes are
used to predict the outcome. We seek to develop inter-
pretable models for classification; for this purpose, using
individual genes for predictors rather than linear combi-
nations of genes seems reasonable.

In this paper, we develop classification rules based on
the consideration of measures of diagnostic accuracy. In
particular, we are interested in finding gene expression
profiles that can discriminate between two populations.
A unique challenge is posed because of the large p, small
n problem. Our solution is to combine the problems of
variable selection and classification. We suggest an ap-
proach for classification using the LASSO approach (Tib-
shirani [11]). An advantage of this approach is that some
of the effects of the variables in these models are estimated
to be exactly zero. These will represent genes that have
no discriminatory power between the two classes, while
those with nonzero coefficients will represent genes that
can separate classes of tumors successfully. Thus, a by-
product of the approach is the generation of a gene list.
We exploit an equivalence between LASSO and support
vector machines (SVMs) in order to fit the proposed clas-
sifier. The structure of the paper is as follows. In “materials
and methods,” we provide background on the data struc-
tures observed and the motivation based on biomarker
combinations, which leads to the use of linear discrim-
inant functions. We also provide a review of LASSO es-
timation (Tibshirani [11]) in this section. The latter two
techniques are then involved in the proposed estimation
procedure, described in “results and discussion.” There,
we also describe how to implement the proposed method
using software for SVMs. Issues of model selection are
also discussed. We describe the application of the pro-
posed methodologies to simulated data and data from a
recent cancer profiling study (Dhanasekaran et al [3]) in
“prostate cancer gene expression data.” Finally, some con-
cluding remarks are made in “conclusion.”

MATERIALS AND METHODS

Let aT denote the transpose of the vector a. For the ith
sample (i = 1, . . . , n), we let Xi = [Xi1 · · ·Xip]T denote
the p× 1 gene expression profile vector (ie, Xij is the gene
expression measurement of the jth gene, j = 1, . . . , p).
We suppose that the data have already been preprocessed
and normalized. In addition, it is assumed that the gene
expression data are standardized so that for each gene, the
mean is zero and standard deviation one. Let gi denote the
tumor class for the ith sample (i = 1, . . . , n); we assume
that there are two classes so that gi takes values g ∈ {0, 1}.
Here and in the sequel, we will refer to g = 1 as the dis-
eased class and g = 0 as the healthy class; however, the
methods proposed here are applicable to any two-class

setting. In “LASSO estimation,” we assume the existence
of a continuous response variable Yi for the ith sample
(i = 1, . . . , n).

ROC curves and optimal biomarker combinations
Our approach is to consider each measurement from a

microarray for a single gene as a diagnostic test. Thus, for
each subject, we have a high-dimensional vector of diag-
nostic test results. We then want to utilize this information
in a way to separate the two populations of patients. This
issue of finding combinations of biomarkers to accurately
classify patients has been considered by Su and Liu [12],
Baker [13], and Pepe and Thompson [14] in the statistical
literature.

To combine information across the high-dimensional
vector of gene expression profiles, we consider linear com-
binations of the form βT

0 Xi, i = 1, . . . , n. Without loss
of generality, we will also assume that larger values of
this linear combination corresponding to increasing like-
lihood of having g = 1. While the method can be eas-
ily extended to incorporate interactions between gene ex-
pression measurements, we focus on consideration of the
main effects for purposes of exposition.

Suppose XD represents the gene expression profile for
a typical cancer specimen (ie, g = 1), and XD̄ is the cor-
responding profile for a randomly chosen benign spec-
imen. Note that in our situation, the diagnostic test is
the linear combination βT

0 X. One relevant quantity is
the false positive rate based on a cutoff c, defined to be
FP(c) = P(βT

0 X > c|g = 0). Similarly, the true positive
rate is TP(c) = P(βT

0 X > c|g = 1). The true and false
positive rates can be summarized by the receiver operat-
ing characteristic (ROC) curve, which is a graphical pre-
sentation of {FP(c), TP(c) : −∞ < c < ∞}. The ROC
curve shows the tradeoff between increasing true and false
positive rates. Tests that are have {FP(c), TP(c)} values
close to (0, 1) indicate perfect discriminators, while those
with {FP(c), TP(c)} values close to the 45◦ line in the
(0, 1) × (0, 1) plane are tests that are unable to discrim-
inate between the diseased and healthy populations. Ex-
amples of ideal and noninformative ROC curves are given
in Figures 1a and 1b.

While the specificity and sensitivity of a diagnostic
test depend on the cutoff value chosen, a useful summary
measure to consider is the area under the ROC curve. It
can be shown mathematically that the area under curve is
P(βT

0 XD > βT
0 XD̄) (Bamber [15]). Under a binormal prob-

ability model, Su and Liu [12] showed that this quantity
is optimized using the linear discriminant function. This
motivates our choice of consideration of these variables.
We next present an algorithm for estimation of these func-
tions.

Linear discriminant functions by optimal scoring

While linear discriminant analysis (LDA) is typically
calculated using matrix algebra techniques, an alternative
method of calculating them is through the use of opti-
mal scoring (Hastie et al [16, 17]). In this method, the
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Figure 1. Receiver operating characteristic (ROC) curves for (a) ideal and (b) noninformative tests.

problem of classification into two groups is reexpressed as
a regression problem based on quantities known as opti-
mal scores.

The point of optimal scoring is to turn the categor-
ical class labels into quantitative variables. Let θ(g) =
[θ(g1), . . . , θ(gn)]T be the n × 1 vector of quantitative
scores assigned to g for the kth class. The optimal scor-
ing problem involves finding the vector of coefficients
η ≡ (η1,η2, . . . ,ηp) and the scoring map θ : {0, 1} → R
that minimize the following average squared residual:

ASR = n−1
n∑

i=1

{
θ
(
gi
)
−XT

i η
}2
. (1)

Let Z be an n×2 matrix with the ith row equal to (1, 0)
if gi = 1 and (0, 1) if gi = 0 (i = 1, . . . , n). The optimal
scores are assumed to be mutually orthogonal and nor-
malized with respect to an inner product. Thus, the min-
imization of (1) is subject to the constraint N−1‖ZΘ‖2 =
1, where Θ = [θ(0) θ(1)]T is a 2 × 1 vector of the opti-
mal scores. Hastie et al [16] state that the minimization of
this constrained optimization problem leads to estimates
of η that are proportional to the discriminant variables
(ie, the discriminant function) in LDA. In particular, they
propose the following algorithm for the estimation of the
LDA functions

(1) Choose an initial score matrix Θ0 satisfying
ΘT

0 DpΘ0 = I, where Dp = ZTZ/n. Let Θ∗
0 = ZΘ0.

(2) Let X be the n × p matrix with ith row Xi. Fit a
linear regression model of Θ∗

0 on X, yielding fitted
values Θ̂. Let f̂(X) be the vector of fitted regression
functions.

(3) Obtain the eigenvector matrix Φ of Θ∗
0
TΘ̂; the op-

timal scores are then Θ∗ = Θ0Φ.

(4) Define fopt(x) = ΦT f̂(x).

As mentioned before, a problem with attempting to
apply standard linear discriminant function methods to
the data here is that there is not a numerically unique so-
lution because p is larger than n. Thus, some type of regu-
larization is needed. Our approach is based on the LASSO,
which is described in the next section.

LASSO estimation
We suppose that our data are (Yi,Xi), where Yi (i =

1, . . . , n) is a continuous variable. The LASSO solution is
to the optimization problem of minimizing

n∑

i=1

(
Yi − βTXi

)2 + λ
p∑

j=1

∣∣β j
∣∣, (2)

where β = (β1, . . . ,βp) and λ ≥ 0 is a penalty term. Thus,
the constraint that is utilized is an L1 constraint. An al-
ternative way of formulating (2) is to minimize

∑n
i=1(Yi−

βTXi)2, subject to the constraint that
∑p

j=1 |β j| ≤ t. Note
that in the absence of the constraint, the solution is given
by the ordinary least squares (OLS) estimator. If the usual
OLS estimator satisfies the constraint, then the LASSO
and OLS estimates of β coincide. However, for smaller val-
ues of t, some of the components of β are estimated to be
zero. In the linear regression setting, LASSO estimation
has been considered by Tibshirani [11].

For a given value of t, minimization of
∑n

i=1(Yi −
βTXi)2 subject to an L1 constraint on the components of β
is a quadratic programming problem with 2p linear equal-
ity constraints. A sequential algorithm is given by Tibshi-
rani [11] to solve the optimization problem.

While Tibshirani [11] considered estimating coeffi-
cients in regression models using LASSO, our interest is
in using gene expression data to classify tumors. In par-
ticular, we seek to extend the LDA approach advocated by
Dudoit et al [7] to handle the case where p is larger than
n. We outline the proposed method in the next section.

Estimation methods
We propose to use an optimal scoring procedure for

classification, where LASSO estimation is incorporated. In
the notation of the previous section, we wish to solve the
following optimization problem. Minimize

n−1
n∑

i=1

{
θ
(
gi
)
−XT

i η
}2 + λ

p∑

j=1

∣∣η j
∣∣ (3)

subject to the constraint N−1‖ZΘ‖2 = 1. Here is the out-
line for our procedure.

(1) Choose an initial score matrix Θ0 satisfying
ΘT

0 DpΘ0 = I, and let Θ0 = ZΘ.
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Table 1. Classification error rates (x 100) from simulation study. Numbers in parentheses represent standard errors associated with
misclassification rates.

Sample size π = 0.05
small effects

π = 0.05
large effects

π = 0.5
small effects

π = 0.5
large effects

(
n0, n1

)
= (15, 15)

17.3 15.8 12.3 11.9
(1.65) (1.63) (1.21) (1.30)

(
n0, n1

)
= (20, 10)

20.7 19.3 13.3 12.7
(1.51) (1.45) (1.35) (1.38)

(
n0, n1

)
= (50, 50)

14.2 13.9 9.8 8.6
(1.15) (1.24) (1.02) (1.11)

(
n0, n1

)
= (70, 30)

18.3 17.6 10.2 9.9
(1.17) (1.29) (1.08) (1.06)

(2) Fit a linear regression model of Θ0 on X subject to
an L1 constraint on the parameters. Define the fit-
ted values Θ∗

0 . Let f̂(X) be the vector of fitted re-
gression functions.

(3) Obtain the eigenvector matrix Φ of Θ∗
0
TΘ0; the op-

timal scores are Θ = Θ0Φ.

(4) Define fopt(x) = ΦT f̂(x).

Note that we are incorporating the LASSO estimation
procedure in step (2) of the algorithm. We cannot use the
algorithm of Tibshirani [11] because it is too computa-
tionally intensive for large p (number of genes). However,
it turns out that the algorithm can be fit using standard
software for SVMs, which we will now describe.

Support vector machines

An excellent descriptions of SVMs for classification
can be found in [18]. We provide an overview of the
method here. We assume that the data are {xi, yi} (i =
1, . . . , n), where xi is a d-dimensional vector and yi ∈
{−1,+1} is the class label. The goal of SVMs is to find an
optimal separating hyperplane between the observations
with y = −1 and those with y = 1. This problem can
be expressed as minimizing ‖w‖2 subject to the following
constraints:

xi ·w + b ≥ 1− ξi for yi = 1,

xi ·w + b ≤ 1− ξi for yi = −1,

ξi ≥ 0 for i = 1, . . . , n.

(4)

Details on how to solve the optimization problem can be
found in [18, chapter 7]. In the unregularized case, fitting
the LASSO model is equivalent to fitting an SVM classi-
fier with the following 2p × 1 n-dimensional vectors as
the inputs: g, Yk and −Yk (k = 1, . . . , p), defined to be the
sample labels, gene expression values and their negative
values for the kth gene across the n samples. The label is
the vector y0, defined to be −1 for the first entry and 1 for
the other entries. The proof of the equivalence is given in
the “appendix.” We have created a macro in R (R founda-
tion) that implements the proposed method and can be
obtained from the first author.

As mentioned earlier, an advantage of this approach
is that most of the gene effects are estimated to be ex-
actly zero. The method can also identify the genes asso-
ciated with each of the two classes. Genes whose coeffi-
cients are negative are associated with the class g = −1,
while those with positive estimated coefficients are associ-
ated with g = 1.

As is evident in the algorithm from the previous sec-
tion or in (3), the parameter λ needs to be estimated. We
use fivefold cross-validation for this.

RESULTS AND DISCUSSION

Simulated data

We first performed a set of simulations to determine
how well the proposed methods were at classification. We
generated p = 1000 dimensional vectors for two popu-
lations. We considered the following sample size combi-
nations (n0, n1) = (15, 15), (20, 10), (50, 50), and (70, 30),
where nk is the number of samples in the group with g = k
(k = 0, 1). All the genes were assumed to be independent
with a normal distribution and variance 1. We assumed
a model in which a fraction π of the genes was differen-
tially expressed between the two classes, π = 0.05 and
π = 0.5 were considered. We examined two scenarios.
For the first scenario, there was a big change in differen-
tial expression in the differentially expressed genes, a shift
of 5 units in the mean. In the second scenario, the fold
change was only a 1.5 unit difference in mean. For each
simulation setting, 100 datasets were generated, and the
classification error rates were estimated using three-fold
cross-validation. No optimization was performed; we set
λ = 10. The results are summarized in Table 1. Based on
the table, we find that for larger sample sizes and larger
effect sizes, as well as larger numbers of effects, the error
rates are smaller.

However, in our simulations (data not shown), we
found that the method had difficulty in selecting the cor-
rect variables when p is larger than n. This attests to the
fact that variable selection in the situation of large p and
small n is quite difficult. We discuss this situation in the
“conclusion.”
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Table 2. List of genes underexpressed in prostate cancer relative to benign prostate tissue.

Clone ID Gene name

Hs.288965 Homo sapiens cDNA: FLJ22300 fis, clone HRC04759
Hs.76307 Neuroblastoma, suppression of tumorigenicity 1
Hs.9615 Myosin, light polypeptide 9, regulatory
Hs.226795 Glutathione S-transferase pi

Hs.171731
Solute carrier family 14 (urea transporter),
member 1 (Kidd blood group)

Prostate cancer gene expression data

The example we consider is from a prostate can-
cer study; a subset of the samples was considered by
Dhanasekaran et al [3]. We focus here on noncancer ver-
sus cancer tissues. The samples are profiled using spotted
cDNA (ie, red/green) microarrays; there are initially 101
samples profiled using 10 K chips (9984 genes). We have
taken the following preprocessing steps:

(1) remove genes that are reported as missing in more
than 10% of the samples;

(2) remove genes that have a variance less than 0.05 in
all samples;

(3) impute measurements for missing genes using the
median.

This leaves a total of 4880 genes for analysis.
We first performed an estimation of the error rate us-

ing fivefold cross-validation. This generally gave an error
rate between 15–20% for various choices of λ, suggest-
ing that the classifier is not sensitive to the choice of the
smoothing parameter.

One of the by-products of the procedure is a list of
genes that are estimated to have non-zero effects. We
present the gene lists for λ = 1 in Table 2. Out of the 4880
genes, only 21 are estimated to have nonzero effects. Of
the genes that are overexpressed in prostate cancer relative
to benign prostate tissue, the early growth response (Hs.
326035/301865), feline sarcoma viral oncogene homolog
(Hs.81665), T-cell receptor gamma locus (Hs. 112259),
and fatty acid synthase (Hs.83190) have been seen by
other investigators to be upregulated in prostate cancer,
as in Table 3. The other genes on the list could represent
false positives or genes whose joint effect is predictive of
cancer status.

Conclusion

In this paper, we have introduced a new approach to
the joint problems of classification and variable selection
in the analysis of microarray data. These problems have
been treated as separate problems in the previous litera-
ture. Our approach is combine the two problems by use
of the LASSO.

This work has opened the way for several future av-
enues of research that we are currently investigating. First,
a popular alternative to LDA in classification problems
is logistic regression. It has been recently motivated by
ROC considerations (McIntosh and Pepe [19]). While it is
possible to formulate a LASSO estimation for logistic re-
gression models, adapting the LASSO-SVM equivalence
to this situation requires new algorithms. It will also be
important to compare the performance of the two L1-
regularized procedures (LDA and logistic regression) on
real and simulated microarray datasets.

In this paper, we focused on the two-class problem.
While LDA and logistic regression can be extended to
accommodate multicategorical responses, the ROC ar-
guments that motivated the method here only exist for
two populations. We are currently exploring theoretical
frameworks for generalizing ROC ideas for multiple dis-
ease states.

The estimation procedure described in this paper al-
lows the joint estimation of multivariate gene effects on
the response (class label). The approach described here
could be generalized by fitting more nonlinear gene ef-
fects in the estimation algorithm or by including higher-
order interactions between genes. Another generalization
is to perform a clustering of the genes and to enter the
cluster averages as covariates in the model. Such an ap-
proach was taken by Hastie et al [20] and Tibshirani et al
[21].

It is also of current interest to incorporate biologi-
cal knowledge into microarray data analyses. In many in-
stances, scientists are interested in the effects of a particu-
lar gene or pathway on genetic expression. In this context,
approaches have been suggested by Zien et al [22] and
Pavlidis et al [23] in which biological knowledge as repre-
sented by pathway scores or functional annotation status
are correlated with gene expression. However, their ap-
proaches were univariate. There would be potential gains
in efficiencies of analyses by considering joint models for
pathways. We are currently studying the applicability of
the joint estimation procedure described here to that set-
ting.

Finally, a by-product of the method proposed here is
that the individual genes can be estimated to have ex-
actly zero effect on the response. The list of genes with
estimated nonzero effects then comprise a gene list that
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Table 3. List of genes overexpressed in prostate cancer relative to benign prostate tissue.

Clone ID Gene name

Hs.326035/301865
Early growth response 1 -OR- dopachrome tautomerase
(dopachrome delta-isomerase, tyrosine-related protein 2)

Hs.299221 Pyruvate dehydrogenase kinase, isoenzyme 4
Hs.81665 v-kit Hardy-Zuckerman 4 feline sarcoma viral oncogene homolog
Hs.74267 Ribosomal protein L15
Hs.75431 Fibrinogen, gamma polypeptide

Hs.335797
ESTs, moderately similar to hypothetical protein
FLJ20097 (Homo sapiens) (H sapiens)

Hs.82129 Carbonic anhydrase III, muscle specific
Hs.112259 T-cell receptor gamma locus
Hs.151258 Hypothetical protein FLJ21062
Hs.22394 Sec3-like
Hs.84190 Solute carrier family 19 (folate transporter), member 1
Hs.119597 Stearoyl-CoA desaturase (delta-9-desaturase)
Hs.131740 Homo sapiens cDNA FLJ30428 fis, clone BRACE2008941
Hs.50727 N-acetylglucosaminidase, alpha- (Sanfilippo disease IIIB)
Hs.83190 Fatty acid synthase

Hs.82961
Homo sapiens, clone MGC: 22588 IMAGE: 4696566,
mRNA, complete cds

investigators can do further validation work on. However,
in our simulations (data not shown), we found that the
method had difficulty in selecting the correct v variables.
This attests to the fact that variable selection in the situa-
tion of large p and small n is quite difficult. An alternative
to the method proposed here is Bayesian variable selection
methods (Lee et al [24]). We are currently exploring an
adaptation of the algorithm described here to a Bayesian
approach.

APPENDIX

If we let w = (w1, . . . , wp), then SVMs can be shown
to minimize ‖w‖2 among all hyperplanes with norm 1,
subject to the constraint that gi(w · xi + b) ≥ 1 for all
i = 1, . . . , n. The quantity 2/‖w‖ is known as the mar-
gin. In other words, we are trying to find the separating
hyperplane that maximizes the margin among all classi-
fiers that satisfy the inequality constraints. Using Lagrange
multipliers, we can formulate the optimization problem
as finding w and b to minimize

L(w, b) ≡ 1
2
‖w‖2 −

n∑

i=1

γigi
(〈

xi,w
〉

+ b
)

+ γ′1, (A.1)

subject to γi ≥ 0 (i = 1, . . . , n), where γ = (γ1, . . . , γn).
Instead, we consider the dual of this problem, which is
to maximize L such that the derivatives with respect to
w and b vanish and also that γi ≥ 0 (i = 1, . . . , n). By
differentiating (A.1) with respect to w and b and setting

the resulting derivatives equal to 0, we obtain

∂L
∂w

= w −
n∑

i=1

γigixi = 0,

∂L
∂b
= −

n∑

i=1

γigi = 0.

(A.2)

Equations (A.2) yield the solutions ŵ =
∑n

i=1 γigixi and∑n
i=1 γigi = 0. If we plug in the formula for ŵ into (A.1),

the optimization problem becomes one of maximizing the
dual function W(η) over γ ≥ 0 and

∑n
i=1 γigi = 0, where

W(η) =
n∑

j=1

γ j −
1
2

n∑

j,k=1

γ jγkgjgk
〈

x j ,xk
〉
. (A.3)

Tibshirani [11] considered the following estimation prob-
lem Minimize

n∑

i=1

(
Yi − ZT

i β
)2 (A.4)

subject to
∑p

j=1 |β j| ≤ t. Note that this minimization
problem is equivalent to minimizing (A.4) subject to∑p

j=1(β+
j + β−j ) ≤ t, where a+ = max(0, a) and a− =

−min(0,−a). We can equivalently consider minimization
of

n∑

i=1

(
Yi −

p∑

j=1

Zijβ+
j +

p∑

j=1

Zijβ−j

)2

−C
[
t −

p∑

j=1

β+
j −

p∑

j=1

β−j

]

(A.5)
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subject to β+
j ≥ 0 and β−j ≥ 0, j = 1, . . . , p. We in-

troduce some more notation. For k = 1, . . . , 2p, define
Wik as Zik for k = 1, . . . , p and −Zi(k−p−1) for k = p +
1, . . . , 2p. Similarly, define the 2p × 1 dimensional vec-
tor η = (η1,η2, . . . ,η2p) by η j = β+

j for j = 1, . . . , p and
η j = β−j−p−1 for j = p+ 1, . . . , 2p. Thus, (A.5) can be writ-
ten as

n∑

i=1

(
Yi −

2p∑

j=1

Wijη j

)2

− C

[
t −

2p∑

j=1

η j

]
. (A.6)

The optimization problem now is to minimize (A.6) sub-
ject to η j ≥ 0 for j = 1, . . . , 2p. Expanding the squared
term in (A.6), we have

n∑

i=1

(
Y 2
i − 2Yi

2p∑

j=1

Wijη j −
2p∑

j,k=1

η jηkWijWik

)

− C

[
t −

2p∑

j=1

η j

]
.

(A.7)

Distributing the summation sign and interchanging in-
dices, (A.7) is equivalent to

〈Y,Y〉 − 2
2p∑

j=1

〈
Wj,Y

〉
η j

+
2p∑

j,k=1

η jηk
〈
Wj,Wk

〉
− C

[
t −

2p∑

j=1

η j

]
.

(A.8)

In particular, we want to minimize (A.8).
We now reconsider the optimization problem (A.3).

Suppose we define new observations (gi, xi) (i =
1, . . . , 2p + 1) by g1 = −1 and gj = 1 for j = 2, . . . , 2p + 1,
x1 = Y/t, and x j =Wj−1 for j = 2, . . . , 2p + 1 and param-
eters (γ1, . . . , γ2p+1) by

γ1 =
2t2

∑n
i=1
(
yi −

∑2p
j=1 Wijη j

)2 (A.9)

and γ j = α1η j−1/t for j = 2, . . . , 2p + 1. Then the condi-

tion
∑2p+1

i=1 γigi = 0 is equivalent to γ1 =
∑2p+1

i=2 γi, which
after further algebraic simplification, yields

∑2p
j=1 η j = t.

Considerable algebraic simplification gives that maximiz-
ing (A.3) can be rewritten as a problem of maximizing

2α1 −
1
2

α2
1

t2 〈Y,Y〉 +
α2

1

t2

2p∑

j=1

η j
〈
Wj,Y

〉

− 1
2

α2
1

t2

2p∑

j,k=1

η jηkgj
〈
Wj,Wk

〉
(A.10)

subject to η ≥ 0 and
∑2p

j=1 η j = t. Because α1 ≥ 0,
comparison of problems (A.10) and (A.8) reveal that they
should yield the same solution.
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