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A Graduated Assignment Algorithm 
for Graph Matching 

Steven Gold and Anand Rangarajan 

Abstract-A graduated assignment algorithm for graph matching is presented which is fast and accurate even in the presence of 
high noise. By combining graduated nonconvexity, two-way (assignment) constraints, and sparsity, large improvements in accuracy 
and speed are achieved. Its low order computational complexity [O(/m), where land mare the number of links in the two graphs] 
and robustness in the presence of noise offer advantages over traditional combinatorial approaches. The algorithm, not restricted to 
any special class of graph, is applied to subgraph isomorphism, weighted graph matching, and attributed relational graph matching. 
To illustrate the performance of the algorithm, attributed relational graphs derived from objects are matched. Then, results from 
twenty-five thousand experiments conducted on 100 node random graphs of varying types (graphs with only zero-one links, 
weighted graphs, and graphs with node attributes and multiple link types) are reported. No comparable results have been reported 
by any other graph matching algorithm before in the research literature. Twenty-five hundred control experiments are conducted 
using a relaxation labeling algorithm and large improvements in accuracy are demonstrated. 

Index Terms-Graduated assignment, continuation method, graph matching, weighted graphs, attributed relational graphs, 
softassign, model matching, relaxation labeling. 

+ 
1 INTRODUCTION 

HE process of approximately matching two abstract T representations lies at the heart of the development of 
artificial systems with human-like abilities such as vision. 
Consequently, within the field of computer vision it has 
been the focus of much research. Many algorithms for 
matching sets of features, such as points or line segments 
derived from two images have been explored. One ap- 
proach has been to represent the images or objects in the 
form of graphs. A weighted graph may be used to formu- 
late a structural description of an object [l]. Such descrip- 
tions can be further enhanced with parametric information 
and represented by attributed relational graphs (ARGs) [21. 

Because of the representational power of graphs, much 
effort has gone into the development of efficient algorithms 
which can effectively match graphs. Two main approaches 
have been tried. One approach involves the construction of 
a state-space which is then searched with techniques similar 
to the branch and bound methods employed in operations 
research [3]. These algorithms are of exponential time 
worst-case complexity. However the assumption is made, 
that with the help of heuristics, the size of each level of the 
resulting state-space search tree will be reduced to a low 
order polynomial (as a function of the number of nodes of 
the graphs) [4]. However even under these assumptions, 
the algorithm typically has a high-order polynomial com- 
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plexity. For example the method in [5], is approximately 
O(13m ) complexity (where 1 and m are the number of links 
in the two graphs), though special instances are faster. 

The second approach employs nonlinear optimization 
methods (or heuristic approximations thereof). The most 
successful of these methods use some form of relaxation 
labeling [6], [7], [8], [9], [lo], [ll], 1121, [13]. Relaxation la- 
beling algorithms do not search the state-space and gener- 
ally have a much lower computational complexity (O(1m) or 
perhaps even lower-see [lo]) than tree search methods. 
Other nonlinear optimization approaches are neural net- 
works, 1141, [151, [161, 1171, 1181, 1191, 1201, [211, linear pro- 
gramming [22], symmetric polynomial transform [22], ei- 
gendecomposition [231, genetic algorithms [241, and La- 
grangian relaxation [25]. These techniques have so far met 
with mixed results suffering from either speed or accuracy 
problems and have often only been tried on the much easier 
problem of matching graphs with equal number of nodes 
(though Young et al. 1191, Chen and Lin 1201, and Sugan- 
than et al. 1211 work on graphs of unequal size and offer 
some other enhancements). 

Our graduated assignment method falls under the rubric 
of nonlinear optimization. Like relaxation labeling, it does 
not search a state-space and has a low order computational 
complexity [O(Im)]. It differs from relaxation labeling in 
two major ways. The softassign, incorporating a method 
discovered by Sinkhorn [26] is employed here to satisfy 
two-way (assignment) constraints. Assignment constraints 
require the nodes of both graphs to be equally constrained. 
A node in one graph can match to at most one node in the 
other graph and vice versa. Relaxation labeling, a tool for 
classification, only enforces a one-way constraint. Ton and 
Jain [lo] use this concept of two-way matching, but their 
technique is not guaranteed to satisfy the constraints, while 
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the softassign is [26], [27], [28]. Second, a continuation 
method-graduated nonconvexity-is used in an effort to 
avoid poor local minima [29], [30], [31], [32], [331, with a 
parameter controlling the convexity. These two ideas are 
combined with a third-sparsity-an old technique that has 
appeared within the relaxation labeling framework [34], 
which is explicitly encoded to increase efficiency. The 
softassign, graduated nonconvexity and sparsity form the 
key components of our new algorithm. 

Some of these elements have been explored before in 
graph matching algorithms. Li [ll] briefly mentions trying 
to use a graduated nonconvexity approach within the re- 
laxation labeling framework with some success. However 
he still uses the standard one-way constraint of relaxation 
labeling. Chen and Lin [20] and Suganthan et al. [21] use a 
continuation method (deterministic annealing). They also 
try to enforce two-way constraints, but via a penalty func- 
tion-a method of constraint satisfaction that has met with 
poor results in related combinatorial optimization problems 
1351, [361, [371. 

We took the first steps towards the development of this 
algorithm by applying the graduated assignment technique 
to a parametric assignment problem-point matching (with 
point sets of equal size) in [38]. This was extended to points 
sets of unequal size in [391, 1401. The method was first ap- 
plied to graph matching (graphs of equal size) in[40], [28]. 
However, because the graph matching objective used in 
[40], [28] was originally designed for graphs with equal 
number of nodes [25] it could not handle the much more 
interesting cases of graphs with missing and extra nodes 
and missing and extra links. Moreover another difference is 
the novel and explicit encoding of sparsity. 

The graduated assignment technique is a specialized 
method of efficiently finding good suboptimal solutions for 
certain types of optimization problems-those that can use 
a match matrix to explicitly denote an assignment 
(correspondence) between one set of objects and another. 
These objects may, for example, be sets of points located in 
space, or nodes of a graph. The match matrix is a 0-1 matrix 
with 1s denoting that a given object in one set is assigned to 
(corresponds to) a given object in the other set. The rows 
and columns of this matrix add up to one, and in the case 
where the two sets of objects are equal in size the match 
matrix is a permutation matrix. Graduated-nonconvexity 
[29] is used to turn these discrete variables into continuous 
ones in order to reduce the chances of getting trapped in 
local minima The technique is an iterative one, where at 
each step, an estimate is made of the match matrix and then 
the softassign (incorporating repeated row and column 
normalizations) [26] is used to ensure that the match matrix 
remains the continuous analog of a true assignment (all the 
rows and columns add up to one). A control parameter 
may be adjusted at each step to slowly move the matrix 
closer to 0-1 values. The method has been applied to as- 
signment [271, parametric assignment 1381, [39], and quad- 
ratic assignment [401, [281 problems. The technique bears a 
close relationship to deterministic annealing methods used 
in statistical physics that are now being applied to neural 
networks [411, [321, [421,[281. 

Several experiments on graphs derived from real images 

were conducted to illustrate the performance of the algo- 
rithm. Additionally over 25,000 experiments were con- 
ducted on randomly generated 100 node graphs of different 
types (zero-one links, weighted links, weighted links and 
node attributes) under varying degrees of noise. Because of 
both the speed of the algorithm and the advances in com- 
puter technology (Indigo SGI workstations with the R4400 
processor were used) such large scale testing of a graph 
matching algorithm is for the first time possible. No previ- 
ous results of this order have ever before been reported. We 
also ran about 2,500 control experiments using a relaxation 
labeling algorithm in order to serve as a benchmark for our 
studies. Order of magnitude differences in accuracy and 
speed are reported against this benchmark. 

2 THE GRADUATED ASSIGNMENT ALGORITHM 

2.1 Problem Definition 
The graduated assignment algorithm will be described 

using the case of weighted graph matching. We define the 
problem of weighted graph matching in the following 
manner. Given two undirected graphs G and g which may 
be sparse and whose links may take values in RI, find the 
match matrix M such that the following objective function 
is minimized. 

I A 
subject to Vu z M a l  I 1, V i  E M , !  I 1, Vai Mal E {O,l}. 

1=1 a=l 

Graphs G and g have A and I nodes respectively. {Caibl} is 
defined by: 

{Gab) and {g,] are the adjacency matrices of the graphs, 
whose elements may be in X 1  or NULL. These matrices are 
symmetric with NULL elements along the diagonal. So, Gab 
is the weight of the link between nodes a and b of graph G. 
The matrix M indicates which nodes in the two graphs 
match: 

1 if node a in G corresponds to node i in g 
0 otherwise, 

The function c(., .) is chosen as a measure of compatibility 
between the links of the two graphs. This function is similar 
to the compatibility functions used within the relaxation 
labeling framework ill],  1121, 1341. By explicitly defining C 
to be 0 when a link is missing (NULL) we are ensuring that 
C will also be spalise when the graphs are sparse. 

2.2 Intractability 

The weighted graph matching problem, as formulated in 
the previous section, is NP-complete for many definitions 
of the function c(., .). On randomly generated graphs c is 
defined as: c(Gab, 8,) = 1 - 3 I Gab - g, I . The function c is so 
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chosen, in order to yield an expected value of zero when 
the link weights are randomly selected from a uniform dis- 
tribution in the interval [0, 11 as was the case in our experi- 
ments. The expected value will be zero, because two points 
chosen from a uniform distribution in the unit interval will 
be on average units apart. 

When c is defined in the above manner, the weighted 
graph matching problem contains the largest common sub- 
graph problem [43] as a special case. That is, if the links 
E (1, NULL} then the above objective (1) is equivalent to 
[151,[441: 

- A  r A r 

since c(1, 1) = 1 using (2). A graph h is the largest common 
subgraph of graphs G and g if and only if the minimum 
value of (3) is equal to the number of edges in h. This can 
also be seen by applying the rectangle rule (Fig. 1) of sub- 
graph isomorphism. When all the elements in (3) are re- 
stricted to zero or one, then all four elements must be on for 
a match to occur, forming a rectangle. Therefore, finding 
the minimum of (3) becomes equivalent to finding the 
maximum number of rectangles which, in turn, is equiva- 
lent to finding the maximum number of matching links in 
the two graphs, also known as the largest common sub- 
graph problem. Since the largest common subgraph prob- 
lem is NP-complete [43] and it is a special case of our 
weighted graph matching problem, the weighted graph 
matching problem is also NP-complete (with the c function 
defined as above). Since we are dealing with an NP- 
complete problem we must look for good suboptimal 
(approximate) solutions. (The preceding is a simplification, 
since it ignores some technical distinctions between NP- 
complete and NP-hard problems). 

h Mbi I 

a Ma, 1 

Fig. 1. Rectangle rule for subgraph isomorphism 

Note, that if (Gab}, (g,) E X' then G = g if and only if the 
minimum of (3) is equal to the number of edges in G since 
c(Gab, gIl) = 1 if and only if G,, = gI1. 

2.3 Graduated Assignment 

The major problem we must tackle in finding good subop- 
timal solutions to the weighted graph matching objective is 
two-way constraint satisfaction, i.e., the row and column 
constraints on the match matrix (Fig. 2). 

x s  
S L A C K S  

w 
Fig. 2. The match matrix, M .  

To simplify the development, let us ignore the inequality 
constraints (ignore for the moment the slacks in Fig. 2) on the 
rows and columns. Therefore, the constraints state that our 
match matrix must be a permutation matrix. (A permutation 
matrix is a square zero-one matrix whose rows and columns 
add up to one.) We now use continuation methods [29], [30], 
[31], [32] to turn our discrete problem into a continuous one 
in order to reduce the chances of getting trapped in local 
minima. A continuation method consists of minimizing a 
series of objective functions indexed by a control parameter. 
As the parameter is increased the solution to the objective 
functions approach that of the discrete problem. 

First, we will examine the case where there is only one 
constraint. Imagine a subproblem (within a larger problem) 
whose objective is to find the maximum element within a 
set of numbers. That is, we are given a set of variables (XI) 
where X I  E X'. Then, we associate a variable mi E (0 , l  J with 

each X I ,  such t h a t z '  m, = 1. Our aim is: 
r = l  

1 if X I  is the maximum number in { X I }  
= {  0 otherwise, 

which is equivalent to finding (m,) which maximize cl=, m,X, . This discrete problem may now be formulated 

as a continuous problem by introducing a control parame- 
ter p > 0 and then setting m as follows [32], [45]: 

I 

This is known as the softmax [46]. The exponentiation used 
within the softmax has the effect of ensuring that all the 
elements of (m,) are positive. It is easily shown that as p is 
increased in the above, the m, corresponding to the maxi- 
mum X I  approaches 1 while all the other ml approach 0 
(except in special cases of ties). In the limit as p -+ 00, the m, 
corresponding to the maximum will equal 1 while all the 
other mi will equal 0. Therefore an algorithm using a con- 
tinuation method to enforce a constraint which selects the 
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maximum among a group of elements could have the fol- 
lowing form: 

Initialize /?to Po 
B e g i n  A :  ( D o  A until Cp 2 pf)) 

m, +- exP(Pxz) 

Do rest of algorithm - ({Xi} may be 

Increase ,B 
updated). . . . 

End A 

However, in our problem we have a two-way constraint: 
A node in graph G must correspond to only one node in 
graph g and vice versa. Fortunately, these two constraints 
can be satisfied using a remarkable result due to Sinkhorn 
[26].  In [26],  it is proven that any square matrix whose ele- 
ments are all positive will converge to a doubly stochastic 
matrix just by the iterative process of alternatively normal- 
izing the rows and columns. (A doubly stochastic matrix is 
a matrix whose elements are all positive and whose rows 
and columns all add up to one-it may roughly be thought 
of as the continuous analog of a permutation matrix). 
Imagine a subproblem (within a larger problem) whose 
objective is to find the best (maximum) assignment given a 
square benefit matrix of numbers. That is, we are given a 
set of variables { X a i )  where Xui E R'. Then we associate a 
variable Mui E {O,  l} with each Xni, such that 

I A 
1=1 a = l  

Mu, = 1 and Vi Mal = 1. Our aim is to find Va 

the matrix M (a permutation matrix) which maximizes the 
following: 

This is known as the assignment problem, a classic 
problem in combinatorial optimization 1471. Therefore an 
algorithm using a continuation method to enforce a two- 
way constraint which selects the maximum assignment 
among a group of elements could have the following form: 
Initialize ,B to Po 

B e g i n  A:  (DO A until ,B 2 Pf) 
Mai + exp (Pxai) 

B e g i n  B :  ( D o  B until M converges) 
Update M by normalizing across 
all rows: 

Update M by normalizing across 
all columns: 

End B 
Do rest of algorithm - ({Xal} 
may be updated) . . . .  
Increase ,B 

End A 

Note that the exponentiation used by the continuation 
method has the effect of ensuring that all the elements of 
the match matrix are positive before Sinkhorn's method is 
applied. Just such an algorithm was used in 1271 to exactly 

solve the assignment problem (the global maximum is 
found). However, the weighted graph matching problem 
we are trying to solve is much harder than the assignment 
problem-it is similar to a quadratic assignment problem 
which is NP-complete [43] as opposed to the assignment 
problem which can be solved in polynomial time 1481. Since 
we have already described a method to solve the assign- 
ment problem, we will find an approximate solution to our 
quadratic assignment problem by using a continuation 
method to solve a succession of assignment problems. For 
each assignment the continuation method returns the corre- 
sponding globally optimal doubly stochastic matrix for the 
current value of the control parameter [27]. Since a doubly 
stochastic matrix (and not a permutation matrix) is re- 
turned for each assignment problem at the current value of 
the control parameter we term this a softassign. 

Recall from (1) that our quadratic graph matching prob- 
lem corresponds to the minimization of the objective 

Given an initial condition MO, the objective can be expanded 
about this initial condition via a Taylor series approximation: 

(4) 
where 

Now minimizing the Taylor series expansion is equivalent 
to maximizing 

A I  

a = l  i = l  

An assignment problem! So our general procedure is: Start 
with some valid initial value for M. Do a first order Taylor 
series expansion, taking the partial derivative. Find the 
softassign corresponding to the current assignment. Take 
the resulting M ,  substitute back in (4) and repeat. As we 
iterate we slowly increase our control parameter p. In the 
initial stages of our algorithm, when P is small, the differ- 
ence between the current value of Mal and the previous 
value of M,, (i.e., M,, - M:,) will be small. Therefore the 
remainder of our Taylor series expansion will be small, and 
our approximation via the Taylor series expansion will be 
good. Then after the critical initial stages of our algorithm, 
when P becomes large the softassign will push the algo- 
rithm towards integer solutions. 

One last detail needs to be resolved. The constraints on 
M are inequality constraints, not equality constraints. 
Therefore, we transform the inequality constraints into 
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Pf 
p,, 
E,,," 

equality constraints by introducing slack variables, a stan- 
dard technique from linear programming [491; 

maximum value of the control parameter p 
rate at which the control parameter p is increased 

graph matching objective, equation (1) 

I I+1 

VaCMai I 1  -+ VaCM,, = 1 

{Ma$ 

{A, 
{Q,J 

1=1 1=1 

and likewise for our column constraints. An extra row and 
column are added to the matrix M to hold the slack vari- 
ables (Fig. 2). (This augmented matrix is denoted by M .) By 
incorporating slack variables, the graph matching algo- 
rithm can handle outliers (spurious or missing nodes or 
links) in a statistically robust manner [50]. 

2.4 The Algorithm 
The pseudocode for the inexact graph matching algorithm is 
as follows (using the variables and constants defined below): 
Initialize p to po, Mal to (1 + e) 

Begin A: (Do A until P2Pf) 
Begin B: (Do B until M converges or # of 
iterations > Io) 

match matrix variables 
match matrix variables including the slacks (see Fig. 2) 

partial derivative of E,,," with respect to Mnj 

Begin C: (Do C until M converges or # of 
iterations z 11) 

Update M by normalizing across 
all rows: 

I, 

I, 

Update M by normalizing across all 
columns : 

maximum # of iterations allowed at each value of the 
control parameter, 
maximum # of iterations allowed for Sinkhorn's method 
(back and forth row and column normalizations) 

End C 
End B 

P+-Pl -P 
End A 

Perform Clean-up heuristic 

Variable and constant definitions can be found in Table 1. 

TABLE 1 
VARIABLE AND CONSTANT DEFINITIONS 

FOR THE GRADUATED ASSIGNMENT ALGORITHM 

P 
Pn 

I control parameter of the continuation method 

I initial value of the control parameter P 

tic-we just set the maximum element in each column to 1 
and all others to 0. This heuristic will always return a per- 
mutation matrix from a row dominant doubly stochastic 
matrix (the maximum element in each row occurs in a dif- 
ferent column), which was what the algorithm often re- 
turned, when a good solution was found. However, it is not 
guaranteed to return a permutation matrix and better and 
more sophisticated heuristics could be used. For example, 
we could as the final step solve the assignment problem 
exactly, instead of just executing a softassign. (The preced- 
ing discussion ignores the effect of the slack variables. The 
augmented match matrix can never actually be a permuta- 
tion matrix, however if the rows and columns whose slacks 
variables are turned on-representing spurious or missing 
nodes-are removed, a permutation matrix can be derived.) 

For the experiments conducted in Section 3.2 on random 
100 node graphs, the following values for the constants 
were used: Po = .5, p - IO, p,, = 1.075, Io = 4, and Il = 30. The 
values of bo, /If were chosen so that the elements of the 
match matrix M would all be roughly of equal size after the 
initial temperature, and all be close to either zero or one at 
the final temperature. The criterion for convergence was: 

f -  

u = l  1=1 

In step 8, E =.5. In step C, E =.05. 
Fig. 3 provides an overview of the algorithm. 

Fig. 3. Left: Overview of the graduated assignment graph matching 

algorithm. {C& is a sparse matrix containing similarity measures 

between the links of the two graphs and Ma, is the match matrix. Right: 

Softassign. 

The stopping criterion in Step C of the algorithm is a test 
for convergence as well as a check to see if the maximum 
number of iterations have been exceeded. This is more effi- 
cient because in practice it is unnecessary to always have an 
exactly doubly stochastic matrix-something close to one 
works well also. With a stopping criterion of one or one- 
half an iteration, the extreme version, we effectively obtain 
the one-way constraint which does not work as well, but 
still works to a degree. However, StepC is only O(np) (n 
and p are the number of nodes in the two graphs) as op- 
posed to O(Im) for the entire algorithm ( I  and m are the num- 
ber of links in the two graphs), so only in the case where the 
graphs are extremely sparse does the tradeoff between num- 
ber of iterations and accuracy here become an issue. 

The O(lm) complexity follows from the fact that we have 
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defined C to be 0 in the case where a link is missing in ei- 
ther of the graphs. That bound may then be derived since 
the number of iterations on all three loops of the algorithm 
are bounded by constants, i.e., I,, l(, and 

(1% Pf - 1% Po) /log P, 
(from Pi = P:P,,). 

When implementing this algorithm on graphs that are 
not fully connected, a sparse data structure is essential to 
exploit the O(lm) computational complexity. While working 
with large graphs (over 100 nodes) it is also advisable not to 
precompute the compatibility coefficient, C,,,, but to simply 
keep the two sets of links of the graphs as sparse structures 
and recompute Caih, when needed, since C,,,, can rapidly 
grow in size. For example, two 200 node undirected graphs 
with 10% connectivity would need a million element list of 
floating point numbers along with associated bookkeeping 
in memory which can be a resource drain even with today's 
workstations. The increased computation required is com- 
paratively minor. 

Also, when operating on undirected graphs it is impor- 
tant to take advantage of symmetry. This can result in a 
speed-up factor of 4 since we have half as many links in 
both graphs [+(+)(?)I. Note for all the experiments de- 

scribed in this paper, this technique was not implemented. 
Therefore all the execution times reported could be im- 
proved with a minor modification. 

2.5 Attributed Relational Graph Matching 
The graduated assignment graph matching algorithm de- 
tailed in the preceding section can handle attributed rela- 
tional graphs (ARGs) by simply modifying in (1). At- 
tributed relational graphs are graphs whose nodes may be 
assigned values, called attributes. Additionally such graphs 
may have multiple link types (relations) as well as multiple 
attribute types [l], 121, [51]. We modify to handle ARGs 
in the following manner: 

E,il,(M) = 

where R is the number of link types and S is the number of 
attributes. 

We omit a detailed description of the above objective 
which can be used to match graphs with multiple link types 
and multiple attributes. For a fuller exposition of the con- 
struction and use of graphs with multiple relations, attrib- 
utes, and compatibility functions see [ll]. We demonstrate 
how the algorithm can be applied to more complex graphs 
with another example. Suppose the weighted graph of the 
previous section now has a single attribute. The objective 
function becomes: 

The parameter a indicates how much weight to give the 
attribute values and is problem dependent. C$i is defined 

in an identical manner to C,,,, in (1). CL:' is defined by: 

C:;) = c(G,, gi) 

{Go) and {g,) are vectors corresponding to the nodes of the 
graphs, whose elements may be in R or NULL. Since there 
can be at most AI node attribute combinations, we ignore 
sparsity and do not explicitly define a zero value for the 
NULL cases. The only difference between using the above 
objective (6) and the weighted graph matching objective (1) 
in our algorithm is the addition of aC1;) to the Q,, term. 
Moreover none of the reasoning used in the algorithm deri- 
vation is affected by the additional GI term. The extension to 
attributed relational graphs as outlined above is straight- 
forward, though tedious. 

2.6 Constructing an Objective with Constraints 
The dynamics of the algorithm may also be motivated by 
taking the objective functions, (11, (5), or (61, described 
above and adding an x log x smoothing function and La- 
grange multipliers to enforce the constraints. In the case of 
weighted graph matching (l), the objective becomes: 

1 

E,, q ( M ,  iu, v )  = 

In the above we are looking for a saddle point by mini- 
mizing with respect to M and maximizing with respect to p 
and v, the Lagrange multipliers. 

The x log x term is a smoothing function (also called an 
entropy term in statistical physics), which serves to push 
the minimum of the objective away from the discrete 
points. It convexifies the objective, with the parameter P 
controlling the degree of convexity. It is different from a 
barrier function, because it does not favor points in the inte- 
rior of the feasible set over those near the boundary [521. 

Other smoothing functions may perform just as well, 
however (7) can be derived using techniques from statisti- 
cal physics which have been applied to other combinato- 
rial optimization problems [32], [41], [42], [53]. Yuille and 
Kosowsky [41] used a gradient projection method to 
minimize an objective similar to (7) arising from TSP like 
problems but such methods are typically quite slow. Pe- 
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terson and Soderberg [32] and Van der Bout and Miller 
[42] minimize an objective similar to (7) for graph parti- 
tioning and TSP. They use a synchronous updating tech- 
nique, where the values of a set of variables are held fixed 
and updated simultaneously, and Peterson and Soderberg 
show this technique has good convergence properties. 
Graduated assignment graph matching uses a similar 
technique; the match variables, {M,,], are updated simul- 
taneously. However, Peterson and Soderberg and Van der 
Bout and Miller enforce one constraint via a softmax (and 
the other constraint via a penalty function). Graduated 
assignment enforces both sets of constraints via softassign. 

The dynamics of the graduated assignment algorithm 
are also similar to the expectation-maximization (EM) algo- 
rithm when used within deterministic annealing, though 
EM also enforces just one constraint 1541, [551. 

[51], but normalized to one, over the maximum value for 
each link and attribute type. The algorithm returned a 
match matrix with the 100% correct assignment between 
the two graphs using the compatibility functions outlined 
previously. Running time on an SGI Indigo workstation 
with an R4400 processor was under a second. 

3 EXPERIMENTAL RESULTS 
Fig. 4. Graphical representation of a wrench (model). 

Several different types of experiments were conducted us- 
ing the graduated assignment algorithm. First, we repeated 
an experiment with attributed relational graphs first con- 
structed by Eshera and Fu [51] who used a tree-search 
method to perform the matching. Second, we hand de- 
signed attributed relational graphs from real images and 
matched them. Third, we generated tens of thousands of 
random graphs of different types (zero-one graphs, 
weighted graphs, weighted graphs with binary attributes) 
and tested them under varying conditions of noise. Finally, 
we ran a relaxation labeling algorithm as a control for the 
above experiments on randomly generated graphs. 

3.1 Graphs from Images 

I n  [51], an image understanding system was developed 
using attributed relational graphs as a way of represent- 
ing object models or scenes. A state-space search algo- 
rithm is described in [5] with a computational complexity 
of approximately O(I'm ). In one experiment outlined in 
[51 I, attributed relational graph matching was used to 
locate an object within a multiobject scene. ARGs were 
produced from real images using a multilayer graph 
transducer scheme. An ARG produced from an image of a 
wrench (the model) was matched against an ARG pro- 
duced from an image of a number of overlapping objects 
which included the wrench (the scene). These graphs are 
depicted in Fig. 4 and Fig. 5. The multiple attributes on 
the nodes were line segment length, arc segment length, 
arc segment span and contour length. The multiple link 
types were joint, intersection and facing features. Fig. 4 
and Fig. 5 simply show the pattern of connectivity of the 
two graphs, (they are clearly sparse) without the attribute 
and link values. The nodes in Fig. 5 that match to Fig. 4 
are highlighted. Because of the noise associated with the 
image processing, the corresponding link and attribute 
values in the two graphs do not match exactly. We ran our 
graduated assignment algorithm against these two sparse 
graphs consisting of seven and 27 nodes respectively, 
with all the attribute and link values exactly as reported in 

3 2  

Fig. 5. Graphical representation of a scene with a number of overlap- 
ping machine parts. 

In the second experiment, we hand designed graphs 
from two real images, Fig. 6 representing a model, and 
Fig. 7 representing the scene in which we wish to locate the 
model. We assumed a low-level image processing sub- 
system capable of edge detection and curve grouping. Five 
curves were created for Fig. 6 and 13 curves for Fig. 7 
(curves are not shown). Three types of features were then 
marked for points on these curves, corresponding to 
whether they were points on straight lines, curved lines or 
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at discontinuities (break points) such as the end of the 
curve or at an inflection point. The feature points marked in 
this manner are represented by triangles, circles and 
squares respectively in Fig. 6 and Fig. 7. Twenty-eight 
(model) and 84 (scene) feature points were produced in the 
two images. Attributed relational graphs were then created 
from these sets of features in the following manner. Two 
graphs were created with 28 and 84 nodes each. Each node 
had three binary valued attribute types, corresponding to 
straight line, curved line or break point features. So the 
node corresponding to a straight line would have its 
straight line attribute set to 1 and its curved line and break 
point attributes set to 0. Then three different link types 
between nodes within a graph were created. The first link 
type was binary valued and set to 1 between any two nodes 
corresponding to feature points on the same curve. Between 
any two nodes not on the same curve its value was NULL. 
The second link type was binary valued and set to 1 only if 
two nodes were neighbors on the same curve. In all other 
cases it was set to NULL. Finally, the third link type was set 
to the Euclidean distance between any two feature points if 
its distance was 5 .2, NULL otherwise. (The images were 
normalized over the unit square.) Consequently, only 
nodes that were relatively close in location had a link of the 
third type. Note that the sets of links corresponding to all 
three link types were sparse. The graduated assignment 
algorithm returned a match matrix with the 100% correct 
assignment between the two graphs using the compatibility 
functions outlined previously. Notice the difference in scale 
between the coffee cup in the model and the scene 
(approximately 1.3). Running time on an SGI Indigo work- 
station was about 30 seconds. 

1 

Fig. 6. Image of coffee cup model with features hand labeled. 

3.2 Randomly Generated Graphs 
In all the experiments on randomly generated graphs, the 
following protocol was used. A random 100 node graph of 
the appropriate type was generated. The nodes of the graph 
were randomly permuted. Noise of various forms was 
added to the permuted graph i.e., nodes were deleted, links 
were deleted or added, link weights were modified or node 
attributes were modified. The graduated assignment algo- 
rithm was then run on the two graphs (the original 100 

node graph and the permuted graph). The resulting as- 
signment returned by the algorithm was then compared to 
the correct assignment. The correct and incorrect matches 
were recorded and these numbers are reported on all the 
succeeding figures. Only the correctness of the assignment 
of the nodes in the permuted graph was considered. That is, 
if the permuted graph had 40 nodes and 30 matched cor- 
rectly then we recorded 30 correct matches, 10 incorrect 
matches and reported 25% incorrect. Note this method only 
gives a lower bound on the percent correct matches (since it 
can ignore good matches that don't correspond to the 
original graph). 

Fig. 7. Image of a table top scene with features hand labeled. 

30% 

"0 10 20 30 
Percent Connectivity 

Fig. 8. Subgraph isomorphism. Graphs of various sizes and connec- 
tivity run against 100 node graphs. 700 trials per line. Two percent 
(deleted), lo%, 2O0I0, and 30% are 98, 90, 80, and 70 node graphs, 
respectively. 

First, subgraph isomorphism was tested as shown in 
Fig. 8. Links in these graphs could only have a value equal 
to 1. Graphs were generated with 4, 8, 12, 16, 20, 24, and 28 
percent connectivity. A connectivity of 4% meant that two 
nodes would be connected with a probability of .04. The 
permuted graphs had either 2, 10,20, or 30 percent of their 
nodes deleted. For each type of graph generated (i.e., for a 
specific connectivity and size), 100 trials were run with 100 
different randomly generated graphs. So, for example, for 
10% deleted nodes and 16% connectivity, 100 trials were 
run with each trial generated in the following way. A 100 

Authorized licensed use limited to: ECOLE DES MINES PARIS. Downloaded on October 30, 2009 at 18:52 from IEEE Xplore.  Restrictions apply. 



GOLD AND RANGARAJAN: A GRADUATED ASSIGNMENT ALGORITHM FOR GRAPH MATCHING 385 

node graph was randomly generated with 16% connectiv- 
ity. It was randomly permuted. 10% of its nodes were de- 
leted. Then the graduated assignment algorithm was used 
to match the resulting 90 node graph to the original 100 
node graph. The percent correct matches were recorded. 
Then the total percent incorrect nodes over all 100 trials was 
plotted as a point in Fig. 8. From the plot we can see that 
less than 1% percent of the nodes over 100 trials at (16% 
connectivity, 10% deleted) were mislabeled. Contrast these 
results with related attempts to handle subgraph isomor- 
phism with nonlinear optimization methods such as relaxa- 
tion labeling which failed completely on this problem (next 
section). Also see Simic [17] who could not reliably find 
matches for all connectivities less than 30% in 75 node ran- 
dom graphs using a neural network approach on the much 
easier problem of graph isomorphism (equal size graphs). 
We ran 2,800 experiments with subgraph isomorphism. 

Percent Noise 

Fig. 9. Weighted graph matching. Weighted graphs of various sizes 
and connectivity run against 100 node graphs. Six hundred trials per 
line. Left-no deleted or spurious links. Right-links 5% spurious, 5% 
deleted. (a) 40% deleted (60 node graph), 15% connectivity. (b) 40% 
deleted, 10% connectivity. (c) 60% deleted, 15% connectivity. (d) 60% 
deleted, 10% connectivity. 

The second set of experiments were performed on 
weighted graphs (Fig. 9). Link weights were randomly cho- 
sen from a uniform distribution in the interval [0, 11. Four 
different types of graphs were generated, two at 40% deletqd 
(a 60 node graph) with 10% or 15% connectivity, and two at 
60% deleted (a 40 node graph) with 10% or 15% connectivity. 
Then uniform noise was added to the link weights. Trials 
were conducted at 0, .02, .04, .06, .08, .1 standard deviations. 
One hundred trials were run at each standard deviation for 
each type of graph. The results of these experiments are 
plotted on the left in Fig. 9. On the right, the same experi- 
ments were rerun, but in addition, links were deleted or 
added. After the graphs were created, there was a.05 probabil- 
ity that any link could be deleted. If cp was the connectivity 
probability, cp E {.lo, .15}, then there was a .05 cp probability 
that a spurious link could be added between any two nodes. 
The noise rate, .05 is multiplied by the connectivity to ensure 
that the resulting graph remains sparse, despite the addition of 
spurious links. Contrast the results reported here with other 
methods such as relaxation labeling which did very poorly on 
this problem (next section). Also see the experiments of Almo- 
hamad and Duffuaa (linear programming and symmetric 
polynomial transform) [22] and Umeyama (eigen- 
decomposition) 1231 which were all conducted on fully con- 
nected weighted graphs of equal sizes with 10 or less nodes. 
Our experiments are conducted on sparsely connected graphs 
10 times as large and with large differences in size (60 node 

graphs are successfully matched against 100 node graphs). 
4,800 experiments were conducted on weighted graphs. 

Our last series of experiments were conducted with attrib- 
uted relational graphs (Fig. 10 and Fig. 11). All graphs had 
either three or five binary valued attributes, i.e., all attribute 
values were restricted to 0 or 1. The attributes were set equal to 
1 with a probability of $, where rz E (3, 5), is the number of 
attributes. All link values were selected from a uniform distri- 
bution over the unit interval. The graphs in Fig. 10 and Fig. 11 
had one and two link types respectively. All graphs had 10% 
connectivity. Experiments were run on graphs with 60% and 
80% deleted nodes. As in the weighted graph matching ex- 
periments uniform noise was added to the links. Trials were 
conducted at (0, .02, .04, .06, .08, .l, .12, .14, .16, .18, .2} standard 
deviations. One hundred trials were run at each standard de- 
viation for each type of graph. Also, the plots on the right in 
Fig. 10 and Fig. 11 had links deleted and spurious links added 
with a probability of .05 as described in the weighted graph 
matching experiments. In addition, in the plots on the right, 
attributes were mislabeled with a probability of .05. As can be 
seen from these experiments, the addition of attribute infor- 
mation greatly increases the ease with which the graphs can be 
matched. Addition of a second type of link makes the match- 
ing process even easier. Under these conditions, with multiple 
attributes and multiple links, even 20 node graphs can be 
matched to 100 node graphs under conditions of high noise- 
see right hand plot of Fig. 11. Related results (i.e., the impor- 
tance of attribute [unary] information) have also been reported 
within the relaxation labeling framework [12]. The difference 
in performance between graduated assignment and relaxation 
labeling is still large (next section). Seventeen thousand, six 
hundred experiments were run with attributed relational 
graphs. Running times for the experiments in this section 
range between 20 seconds and two minutes on a SGI Indigo 
workstation except for some of the subgraph isomorphism 
experiments involving graphs of higher connectivity. 

3.3 Comparisons to Relaxation Labeling 
In contrasting graduated assignment with relaxation label- 
ing (RL), note that relaxation labeling is a tool for classifica- 
tion, also known as labeling. When performing classifica- 
tion, a one-way constraint is usually more appropriate than 
an assignment constraint since typically one would like to 
be able to assign multiple objects to the same class i.e., have 
the same label. Despite these differences, we choose to 
compare graduated assignment with relaxation labeling for 
three reasons. 

0 First, they are both nonlinear methods, in contrast to 
combinatorial approaches to graph matching. 
Second, RL appears to be the most successful stan- 
dard method available for graph matching, at least, 
among nonlinear methods. 

0 Third, because it is a widely known method it can 
serve as a useful benchmark for our new approach. 
(Even if its relative success can be disputed, being the 
most widely known nonlinear method would make it 
a suitable control.) 
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Percent Noise Percent Noise 

Fig 10 Attributed relational graph matching ARGs (10% connec- 
tivity, one link type) of various sizes and number of binary attributes run 
against 100 node graphs One thousand one hundred trials per line 
Left-no deleted or spurious links, no attributes mislabeled Right-links 
5% spurious, 5% deleted, 5% attributes mislabeled. (a) 60% deleted 
(40 node graph), five binary attributes (b) 60% deleted, three binary 
attributes (c) 80% deleted, five binary attributes (d) 80% deleted, 
three binary attributes 

Fig. 11. Attributed relational graph matching. ARGs (10% connec- 
tivity, two link types) of various sizes and number of binary attributes 
run against 100 node graphs. Eleven hundred trials per line. Left-no 
deleted or spurious links, no attributes mislabeled. Right-5% spuri- 
ous, 5% deleted, 5% attributes mislabeled. (a) 60% deleted (40 node 
graph), five binary attributes. (b) 60% deleted, three binary attributes. (c) 
80% deleted, five binary attributes. (d) 80% deleted, three binary attributes. 

Additionally, because it is widely known, we choose to 
contrast our technique with the standard method of relaxa- 
tion labeling [34] rather then implement some enhance- 
ments such as variants of gradient projection or the product 
combination rule [8],  [9], [56]. The benchmark is simpler 
and clearer; possible variations in implementations of these 
enhancements can be avoided. More importantly, while the 
enhancements offer some improvements over the original 
method these improvements are relatively small [571 com- 
pared to the enormous differences in performance between 
relaxation labeling and graduated assignment as demon- 
strated by our experiments. We implement the original 
method exactly as outlined in [341. We used compatibility 
functions identical to those used in the graduated assign- 
ment experiments. All experiments outlined in the above 
section were repeated in exactly the same manner, except 
that only 10 trials were run at each data point, instead of 
100. This was partly because relaxation labeling ran be- 
tween five and 15 times slower. The results were unambi- 
guous. Three representative examples have been directly 
plotted against the same graduated assignment experi- 
ments so that the contrast can be clearly seen. In Fig. 12 the 
performance of both algorithms on the subgraph isomor- 
phism problem can be seen. Ninety,node graphs of differ- 
ent connectivities are matched against 100 node graphs. As 
is easy to see, relaxation labeling fails completely on this 
problem. In fact on all the subgraph isomorphism experi- 

ments we ran, relaxation labeling performed barely better 
then chance. In Fig. 13, we compare the relative perform- 
ances on the weighted graph matching problem. Again 
there is an enormous difference in performance. Relaxation 
labeling performs with a slight improvement but overall 
quite poor, while graduated assignment performs very well 
on this difficult example. Finally, we contrast the results on 
attributed relational graph matching (Fig. 14). On this 
problem, relaxation labeling does much better. However 
graduated assignment performs almost perfectly even un- 
der conditions of high noise and the gap in performance 
between the two methods remains very large. 

RL 

6 0 -  

2 40-  
L L 

0 

- 

Percent Connectivity 
Fig 12. Comparison between graduated assignment and relaxation 
labeling on subgraph isomorphism Ninety node graphs of varying 
connectivity run against 100 node graphs GA - 700 trials RL - 70 
trials 

1001 I 

0 '  I 
0 5 10 

Percent Noise 

Fig 13. Comparison between graduated assignment and relaxation 
labeling on weighted graph matching. Sixty node graphs, 15% connec- 
tivity, 5% deleted links, 5% spurious links, run against 100 node 
graphs. GA - 600 trials. RL - 60 trials 

4 CONCLUSION 

Graphs are representations of flexibility and power perhaps 
capable of expressing the large amount of information used 
by our visual systems to recognize objects. Unfortunately, 
graph matching is an extremely difficult problem-an in- 
tractable one when exact solutions are required. However, 
for many intractable problems, good heuristics have been 
developed, which yield adequate solutions for many practi- 
cal instances of these problems For example, good heuris- 
tics have been developed for the traveling salesman prob- 
lem [581. In contrast, finding good heuristics for graph 
matching has proven to be much more difficult. This is not 
surprising since graph matching is similar to the quadratic 
assignment problem of which the traveling salesman prob- 
lem is but one special case. 
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Percent Noise 

Fig. 14. Comparison between graduated assignment and relaxation 
labeling on attributed relational graph matching. Forty node graphs, 
10% connectivity, three binary features, 5% deleted links, 5% spurious 
links, 5% attributes mislabeled run against 100 node graphs. GA- 
1,100 trials. PR-110 trials. 

In search of good heuristics, we have developed an op- 
timization technique, graduated assignment, specifically 
tailored to the type of objective functions used in graph 
matching. A formal relationship can be established between 
this technique and methods derived from statistical physics 
now being applied to neural networks [28], [41]. However, 
here we have primarily tried to motivate the method without 
recourse to sophisticated mathematical techniques, by simply 
using techniques commonly employed in well-known con- 
tinuation methods. Essentially, the new algorithm has been 
developed, by combining a method of two-way (assignment) 
constraint satisfaction-the softassign, with continuation 
methods, while paying close attention to sparsity. 

Powerful evidence has been provided of the algorithm’s 
performance, including experimental evidence on a scale 
never before provided for any graph matching technique. 
We have demonstrated that it will work on a problem from 
the research literature [51], applied it to graphs from real 
images, tested it on a wide variety of graphs under condi- 
tions of noise, and benchmarked it against relaxation la- 
beling. The method is universal-it is applicable to any type 
of graph. It has low order computational complexity 
(O(Im)). And it is accurate-it will work on problems such 
as subgraph isomorphism which have proved difficult for 
nonlinear methods. Especially noteworthy is the stability of 
our algorithm. Adding large amounts of noise to the link 
weights and deleting or adding nodes or links will only 
cause gradual degradation in performance. Graduated as- 
signment graph matching holds enormous promise. 
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