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Let Z i ¼ (Y i, X i
1, . . . , X i

m), i ¼ 1, . . . , n, be independent and identically distributed random vectors,

Z i � F, F 2 F . It is desired to predict Y by
P

� j X j, where (�1, . . . , �m) 2 Bn � Rm, under a

prediction loss. Suppose that m ¼ nÆ, Æ . 1, that is, there are many more explanatory variables than

observations. We consider sets Bn restricted by the maximal number of non-zero coefficients of their

members, or by their l1 radius. We study the following asymptotic question: how ‘large’ may the set

Bn be, so that it is still possible to select empirically a predictor whose risk under F is close to that

of the best predictor in the set? Sharp bounds for orders of magnitudes are given under various

assumptions on F . Algorithmic complexity of the ensuing procedures is also studied. The main

message of this paper and the implications of the orders derived are that under various sparsity

assumptions on the optimal predictor there is ‘asymptotically no harm’ in introducing many more

explanatory variables than observations. Furthermore, such practice can be beneficial in comparison

with a procedure that screens in advance a small subset of explanatory variables. Another main result

is that ‘lasso’ procedures, that is, optimization under l1 constraints, could be efficient in finding

optimal sparse predictors in high dimensions.
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1. Introduction

In practice, when modelling statistical phenomena, we tend to adopt more flexible models

(e.g., with more parameters) as we obtain more observations. This practice suggests

studying the asymptotics of triangular arrays, that is, when the model assumed for the

observations Z1, . . . , Z n depends on n. Yet triangular array formulation is hardly ever

studied in statistics. The standard mathematical statistical paradigm is the existence of a

‘true’ model, and the behaviour of estimators is studied as the number of observations

increases, while the model is kept fixed. We do not adopt this paradigm. We consider the

problem of predictor selection in a given complex situation, and not that of estimation of a

metaphysical unknown parameter, which may or may not exist. In fact, the definitions of the

predictor and of the parameter are intimately connected. Our parameter of interest is the
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best predictor in a restricted class of potential predictors. A triangular array formulation is

natural to our approach.

Consider now the setting of linear predictors in a triangular array. For simplicity, we will

denote the observations Z1
n, . . . , Z n

n of a triangular array simply as Z1, . . . , Z n. Our study

is dedicated to the case where the collection F n is a collection of distributions of (mþ 1)-

dimensional independent and identically distributed (i.i.d.) vectors Z i ¼ (Y i, X i
1, . . . , X i

m),

i ¼ 1, . . . , n, where m ¼ nÆ, Æ > 1. The set of predictors, that is, the set fg�; � 2 Rmg of

functions of the explanatory variables, is of the form g� ¼ g�(X 1, . . . , X m) ¼
Pm

i¼1� j X j,

where � ranges over all m-dimensional vectors. Denote

LF(�) ¼ EF Y �
Xm
j¼1

� j X j

 !2

: (1)

The set of all possible predictors is too large for estimation. Minimization of the empirical

analogue of (1) is essentially unrelated to the minimization of (1) itself. We will search for

natural subsets Bn � Rm, so that the task of selecting a (nearly) optimal predictor from Bn is

not too ambitious, and can be done empirically. It is, of course, desired that those sets will be

as large as possible to include better predictors. Finally, the procedures that search for a

predictor, that is to say, the ‘estimation procedures’, should be feasible in terms of their

algorithmic complexity.

In our setting a sequence of predictor selection procedures becomes a basic object. Given

a set of predictors Bn and a distribution Fn, let ��Fn
¼ arg min�2Bn LFn

(�):

Definition 1. Given a sequence of sets of predictors Bn, the sequence of procedures �̂�n is

called persistent if, for every sequence Fn 2 F n,

LFn
(�̂�n) � LFn

(��Fn
)!p 0:

Remark 1. In Definition 1 we consider the distance between LFn
(�̂�n) and LFn

(��Fn
), rather

than the more common l2 distance between �̂�n and ��Fn
. This is the more relevant distance to

study in predictor selection. For example, we do not have to worry about collinearity. A

consistent estimation of the parameter � is impossible unless we assume that the matrix of

the explanatory variables is not close to singularity.

Remark 2. The persistence criterion should have an appeal, in particular, in situations where

LFn
(��Fn

) does not approach 0. When LFn
(��Fn

) might approach 0, a more delicate asymptotic

study of rates of convergence, etc., becomes relevant. Yet in most situations and models

(nearly) perfect prediction is impossible, thus convergence to 0 of LFn
(��Fn

) does not hold.

A study of consistency (in the conventional sense of l2 distance) in a triangular array

setting in regression problems was conducted by Huber (1973) and Portnoy (1984) (see also

references therein). They studied the problem of coefficients estimation under the set-up

Yi ¼
P

� j X ij þ Ei, where the Ei are i.i.d., EEi ¼ 0, and m ¼ m(n) increases with n. Their
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set-up is more conventional than ours since they, unlike us, assume the linear model and

study cases where m(n) , n. Major differences between our work and theirs are that they

were concerned with robustness and M-estimators under heavy-tailed distributions of Ei,
unlike us, and we consider random explanatory variables, unlike them. The motivation of

these papers seems to be the same as ours: to explore the limits to increasing the parameter

set as the number of observations is increased. Yet by their approach, the number of

explanatory variables m is taken, as is customary, to be less than n. In fact, it is shown in

Huber (1973), under conditions on Ei and the design matrix X , that consistency may be

achieved as long as m(n) ¼ o(
ffiffiffi
n

p
). Portnoy, under further conditions, established

consistency as long as m(n) ¼ o(n=log(n)). Notice the huge gap!

Given observations Z1, . . . , Z n, denote their empirical distribution by F̂F and let

LF̂F(�) ¼ n�1
Xn
i¼1

Y i �
Xm
j¼1

� j X
i
j

 !2

:

Consider predictor selection methods of the following type. For some c ¼ c(n), choose:

�̂�n ¼ arg min
�

LF̂F(�) þ c(n)k�k2
1:

Here k�k1 is the l1 norm of �. A related type of method is: for some b ¼ b(n), let

�̂�n ¼ arg min
f�kj�k1<b(n)g

LF̂F(�):

These procedures provide the motivation for this paper. They were introduced in Tibshirani

(1996), where they were given the name ‘lasso’. In that paper a heuristic and numerical study

is conducted to find the appropriate c(n) and b(n) for such procedures. In Juditsky and

Nemirovski (2000), properties of such procedures with b(n) � 1 are studied. Yet the value 1

for b(n) is chosen somewhat arbitrarily. Lee et al. (1996) studied similar procedures for

estimating parameters in neural networks, and they also concentrated on b(n) ¼ 1. In Chen

et al. (2001), in the context of denoising a signal represented by an overcomplete wavelet

system, an analogue of the lasso procedure is suggested; see their equation (5.1). They also

discuss the choice of c(n) (choice of º in their set-up). An overcomplete system defines

overparametrization in our terminology.

Two types of sets, Bn � Rm, of possible predictors are studied in this paper:

• Bn is the set of all vectors (�1, . . . , �m) having at most k ¼ k(n) non-zero entries.

These are ‘model-selection’ or ‘variable-selection’ procedures that choose k explan-

atory variables from the initial set of m variables. These sets will be denoted Bn
k .

• Bn is the set of all vectors (�1, . . . , �m) having l1 norm less than or equal to

b ¼ b(n). These sets will be denoted Bn
b .

We will explore the interplay between Bn
k and Bn

b . The first type, ‘model selection’, is of

interest as problems of variable selection have long been studied from various aspects in

numerous papers. The second type is of interest because of its relation to lasso methods.

In Section 2 of this paper we will motivate the lasso procedures. We also present an
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argument that suggests that the proper values of c(n) and b(n) are c(n) ¼ o((log(n)=n)1=2)

and b(n) ¼ o((n=log(n))1=4), respectively. A careful study reveals that, in settings like the

multivariate normal, this is not the case. In fact, from the results in Section 4 it follows

that, when the Z i are multivariate normal, the values of c(n) and b(n) should be of the

order of o(log(n)=n) and o((n=log(n))1=2), respectively. In Section 3 we will show

persistence with respect to Bn
k(n) for k(n) ¼ o(n=log(n)). Optimality of the latter rate is

proved, that is, there exist no persistent procedures with respect to sets Bn
k(n), when

k(n) ¼ O(n=log(n)).

The persistency procedures in Section 3 are algorithmically inefficient: they involve

searching over all the subsets of the m explanatory variables of size of order n=log(n).

Additional assumptions, in Section 4, yield persistent and algorithmically efficient

procedures with respect to Bn
k for k(n) ¼ o(n=log(n)).

The implications of the study of the above rates are the following. Consider a triangular

array. Suppose it is known that ��Fn
, the (nearly) optimal predictor under Fn, has fewer than

k9(n) non-zero coefficients. Alternatively, suppose that it is known that k��Fn
k1 < b9(n). We

will say that the k-sparsity rate and the b-sparsity rate are respectively k9(n) and b9(n).

Suppose now that there exist persistent procedures with respect to sets Bn
k(n) (sets Bn

b(n)),

where k(n) . k9(n) (where b(n) . b9(n)). Then there is ‘asymptotically’ no virtue in

screening in advance smaller subsets of explanatory variables. This follows since the

‘persistence rates’ k(n) and b(n) imply that by doing so we will not (significantly) improve

on procedures that search through the entire set of explanatory variables. Yet obviously,

when screening a small subset in advance, we may do harm by dropping potentially

important variables.

In practice, persistence rates and sparsity rates are not known. The practical way to act is

to test estimators resulting from various assumptions about the persistence rates (e.g.,

resulting from various constraints b(n) in the lasso procedure) on a test set.

Thus, the importance of our study stems from its suggestion to turn to high dimensions,

and its pointing out that often there is ‘no harm’ in doing so.

In many cases it turns out that persistence rates are k(n) ¼ o(n=log(n)), when m ¼ nÆ.

Such cases are presented in more general prediction problems in work in progress by

Greenshtein.

Finally, a practical implication of this paper is its recommendation of the lasso procedure

in high dimensions as an effective method to find optimal predictors under sparsity

conditions.

2. Motivating and exploring lasso methods

Consider a triangular array, where Z ¼ (Y , X1, . . . , X m(n)) � F, F 2 F n. Denote X 0 ¼ Y .

We think of Y as a response variable and of X j as explanatory variables. For any linear

predictor associated with a vector (�1, . . . , �m), denote

ª9 ¼ (�1, �1, . . . , �m) ¼ (�0, . . . , �m):

Denote
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LF(�) ¼ EF Y �
Xm
j¼1

X j� j

 !2

¼ ª9�Fª:

Here �F ¼ (� ij), � ij ¼ EF X iX j, 0 < i, j < m.

We think of a sequence of problems where n observations, Z1, . . . , Z n, are given and

m ¼ nÆ, Æ . 1. Let F̂Fn be the empirical distribution determined by the sample Z1, . . . , Z n.

Note that

LF̂Fn
(�) ¼ ª9� F̂Fn

ª,

where � F̂Fn
¼ (�̂� ij) and �̂� ij ¼ n�1

Pn
k¼1X

k
i X

k
j .

Denote �̂� ij ¼ � ij þ Enij; then �̂� ¼ �F þ E, where E ¼ (Enij). Let Yij ¼ X iX j. We assume

the following condition:

Condition 1. Under the distributions in F n, the random variables Yij ¼ X iX j have bounded

variances and moment-generating functions with bounded third derivative in the

neighbourhood of 0.

We have, for large enough A, depending on the bounds in Condition 1,

sup
Fn2F n

PFn
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A log(n)

n

s
< Enij <

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A log(n)

n

s
8i, j

0
B@

1
CA! 1; (2)

(2) follows by Bonferroni, since, for large enough A, and for any pair i, j,

sup
Fn2F n

PFn
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A log(n)

n

s
< Enij <

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A log(n)

n

s0
B@

1
CA ¼ 1 � o(m�2),

by the moderate deviation principle as in Billingsley (1995, p. 153). The uniformity in F n

follows from the uniform boundness of the third derivative; such an argument can be seen in

Lemma 2.2 of Breiman and Freedman (1983).

Denote by ÊE the matrix with identical entries equal to
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
An�1log(n)

p
. Then (2) implies:

sup
Fn2F n

PFn
(LFn

(�) < ª9� F̂Fn
ªþ jªj9ÊEjªj8� 2 Rmþ1) ! 1, (3)

where jªj ¼ (1, j�1j, . . . , j�mj).
Equation (3) suggests the following method for selecting a predictor. Select the predictor

�̂� where

(�1, �̂�) ¼ arg min
(ª2Rmþ1;�0¼�1)

ª9� F̂Fn
ªþ jªj9ÊEjªj:

Equivalently, write
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(�1, �̂�) ¼ arg min
(ª2Rmþ1;�0¼�1)

ª9�̂�Fªþ c(n)kªk2
1, (4)

which may be rephrased as optimization of a convex function in a convex domain. Note that

in equation (4), c(n) ¼ O(
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
log(n)=n)

p
.

Here and throughout, we consider procedures that use the appropriate values of c(n),

b(n), etc. In practice, the appropriate values are not known, and one should try various

values and test the resulting estimators on a test set.

We will now summarize our findings on persistence of procedures of the type

�̂�n ¼ arg min
f�:k�k1<b(n)g

LF̂F(�): (5)

Theorem 1. Under Condition 1 on F n, for any sequence Bn
b(n) � Rm, where Bn

b(n) consists of

all vectors with l1 norm less than b(n) ¼ o((n=log(n))1=4), there exists a persistent sequence

of procedures. A concrete persistent sequence of procedures is given in (5).

Proof. As in (3),

sup
Fn2F n

sup
�2Bn

b(n)

PFn
(jLFn

(�) � LF̂Fn
(�)j , jªj9ÊEjªj) ! 1:

Now, for sequences of vectors � of order b(n) ¼ o((n=log(n))1=4), the corresponding

sequence jªj9ÊEjªj approaches 0. The result now follows immediately from the definition of

persistence. h

Suppose in addition that the following condition holds.

Condition 2. Let Bn
k(n) be the set of all vectors with k(n) ¼ o((n=log(n))1=2) non-zero entries.

There exists a constant C, C , 1, such that�����arg min
�2Bn

k(n)

LFn
(�)

�����
2

, C for any sequence F1, F2, . . . , Fn 2 F :

Remark 3. When EFY
2 is bounded, Condition 2 follows whenever the minimal eigenvalue of

the covariance matrix of the explanatory variables is bounded from below. As pointed out in

Remark 1, assumptions about minimal eigenvalues and near singularity of the random matrix

X are essential when dealing with persistence in the conventional sense, that is, when dealing

with consistency.

Note that the range of the procedures achieving persistence need not be within the

variable selection sets. It is a matter of formalism, but such a requirement was not part of

the definition; that is, an estimator ~��n may be persistent with respect to a set Bn, while
~��n 62 Bn for some n. We will use this fact in the proof of the following theorem, where

sequences with range outside the Bn will be considered. Yet, as shown in Section 4, these

procedures may be adjusted so that their range lies within Bn
k .
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Theorem 2. Suppose that Conditions 1 and 2 hold. There exists a persistent sequence of

procedures with respect to the sets Bn
k(n) with k(n) ¼ o((n=log(n))1=2).

Proof. We consider the particular sequence of procedures which is defined by (5). By

Condition 2, we can consider only vectors � with l2 norm bounded by, say, C , 1. However,

any vector with l2 norm c and of dimension k(n) has l1 norm less than or equal to

b(n) ¼ c
ffiffiffiffiffiffiffiffiffi
k(n)

p
. It follows from Theorem 1 that the estimator defined in (5), with b(n) as

above, is persistent with respect to the larger set Bb
b(n) hence also for Bn

k(n). h

The persistence rate in Theorem 1 is also implied by the following condition, which

serves as an alternative to Condition 1.

Condition 3. There are finite constants C and L such that, under any F 2 F n, for

n ¼ 1, 2, . . . , EFY
2 , C, and all jX jj , L with probability 1, j ¼ 1, . . . , m(n).

Theorem 3. If Condition 3 holds, then for any sequence Bn
b(n) � Rm, where Bn

b(n) consists of

all vectors with l1 norm less than b(n) ¼ o((n=log(n))1=4), there exists a persistent sequence

of procedures. A concrete persistent sequence of procedures is given in (5).

Theorem 3 is implied by an adaptation of the results in Juditsky and Nemirovsky (2000).

Condition 3 is close to their set-up. We will now describe their set-up and explain their

method and its adaptation to our purpose. We use their notation. Juditsky and Nemirovski

study prediction, in a manner similar to ours, of a response variable y, based on a linear

combination of given functions f 1, . . . , f M , where f j ¼ f j(x) are functions bounded by

some L. They assume a model y ¼ f (x) þ e, where e and x are independent and E(e) ¼ 0.

Given n independent replicates (yt, xt), t ¼ 1, . . . , n, they study the problem of estimating

the ‘best’ linear combination of f 1, . . . , f m under the constraint that the l1 norm of the

vector of coefficients is 1. ‘Best’ is understood in terms of the L2 distance between f and

the function obtained by the linear combination. As in our problem, they study asymptotics

when M ¼ nÆ, Æ . 1. This setting is very close to ours when their f j(x) is identified with

our X j. As demonstrated in what follows, their assumption, concerning the independence of

xt and et, is not needed under our definition of persistence. A definition of consistency

according to their approach (consistency is not defined in their paper) would involve the L2

distance between f and the linear combination of f j. Thus the class we handle in Theorem

3 is slightly larger than the class treated in their set-up.

In what follows we also formulate and prove the conclusion of Theorem 2 under such

alternative conditions, stated as Theorem 4. The proofs of Theorems 3 and 4 are along the

lines of the technique of Juditsky and Nemirovski.

A statement and a proof of the following key result that is needed later may be found in

Emery et al. 2000, p. 188).

Lemma 1. (Nemirovski’s inequality). Let � t 2 RK , t ¼ 1, . . . , n, be independent random

vectors with zero means and finite variance, and K > 3. Then, for every p 2 [2, 1],
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E

�����
Xn
t¼1

� t

�����
2

p

< O(1)min[ p, log(K)]
Xn
t¼1

Ek� tk2
p,

where k � k p is the l p norm.

We will use the inequality in the case p ¼ 1. There are related results in empirical

processes which bound the expectation of the maximum of a finite sequence of random

variables. However, we do not yet know of a result that can replace the above inequality in

our context.

Consider the matrix (� F̂F � �F) as an (mþ 1)2-dimensional vector. Write (� F̂F � �F) asPn
t¼1�

t, where

� t ¼ 1

n
(X t

0X
t
0 � EX t

0X
t
0, X t

0X
t
1 � EX t

0X
t
1, . . .)

is an (mþ 1)2-dimensional vector. Suppose there is an envelope function with respect to

X iX j, 0 < i, j < m, with a bounded second moment, E(maxi, j X iX j)
2 , 1. Then we obtain

by Nemirovski’s inequality that the expected value of the l1 norm of (� F̂F � �F) satisfies:

E

�����
X

� t

�����
1

¼ O

ffiffiffiffiffiffiffiffiffiffiffiffiffi
log(n)

n

r !
:

Now consider Bn
b with b ¼ b(n) ¼ o((n=log(n))1=4). For � 2 Bn

b, by the inequality

in Lemma 1 and by Markov’s inequality, for ª t ¼ (�1, �1, . . . , �m) we obtain

jª t(� F̂Fn
� �Fn

)ªj!p 0; equivalently, we obtain jLF̂Fn
(�) � LFn

(�)j!p 0.

Consequently, persistent procedures, relative to sets Bn
b(n), of predictors � with l1 norm

less than b(n) ¼ o((n=log(n))1=4) exist. Now, under Condition 2 and by the Cauchy–

Schwarz inequality, a persistent selection relative to sets Bn
k(n) with k(n) ¼ o((n=log(n))1=2)

is also possible.

Remark 4. An envelope function with a second moment for the collection X iX j,

0 < i, j < m, exists in our triangular array setting if all but a fixed number of

X j, j ¼ 0, . . . , m, are bounded by some L, and all of them have bounded second moment

– in particular, when X 0 � Y has a bounded second moment and X j, j ¼ 1, . . . , m, are

bounded as in Theorem 3. Thus Theorem 3 is obtained as a corollary.

The following theorem is obtained from Theorem 3 in the same manner as Theorem 2

follows from Theorem 1.

Theorem 4. Suppose that the set X iX j, 0 < i, j < m, has an envelope function with a

bounded second moment under Fn 2 F n n ¼ 1, 2, . . .. Suppose that Condition 2 holds. Then

there exists a method which is persistent with respect to ‘variable-selection’ sets, Bn
k , with

k(n) ¼ o((n=log(n))1=2).

Theorems 2 and 4 are obtained as immediate corollaries of Theorems 1 and 3
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respectively, when assuming boundedness of k��Fn
k2. With some more effort Theorem 2

may be strengthened and a more flexible condition may replace the one in Theorem 4. In

fact, under boundedness of k��Fn
k2, a sufficient condition that implies the k(n) ¼

o((n=log(n))1=2) rate is that EFn
X 2þ�

j , n ¼ 1, 2, . . . , j ¼ 0, . . . , m(n), is bounded for some

� . 0. To show this, one should apply truncation and diagonalization, as in Section 4.

To summarize, we have established the existence of persistent procedures, under various

assumptions, when b(n) and k(n) are of orders o((n=log(n))1=4) and o((n=log(n))1=2),

respectively. Proofs were based on bounding the l1 distance between �F and � F̂F .

Later, using different methods, we will explore conditions under which b(n) and k(n)

may be ‘pushed’ towards the rates o((n=log(n))1=2) and o((n=log(n))), respectively. These

rates are optimal in some sense, as will follow below. Compare the huge gap we obtain,

under various conditions, for the rates of k(n), with the differences, mentioned in the

Introduction, between the rates derived by Huber and those derived by Portnoy.

As mentioned, in work in progress by Greenshtein the o(n=log(n)) rate for k(n) is shown

to hold in general triangular arrays, extending linear prediction under a squared prediction

loss. However, we do not yet know whether the lower rates, obtained in this section, may be

improved even under the elementary assumption that the entries of Z i are bounded. We

state the problem in the following:

1. Consider the case where F n consists of all the distributions under which the entries of

Z ¼ (Y , X1, . . . , X m) are bounded. Does a procedure exist that is persistent with

respect to sets Bn
b , with l1 radius b(n) which is not o(n=log(n))1=4?

2. Assume that F n consists of all distributions under which the entries of Z are

bounded. Does a procedure exist which is persistent with respect to sets Bn
k , for k(n)

which is not o(n=log(n))1=2?

3. Persistence of model-selection procedures: the normal case

In this section we will study persistence of model-selection procedures, assuming that the

sets F n consist of multivariate normal distributions. These procedures select at the first

stage a model, that is, a subset of k(n) explanatory variables, and then choose a linear

predictor based on these variables. The persistence of such procedures is studied with

respect to the sets Bn
k that correspond to vectors that have at most k(n) non-zero entries.

The question is how far we may push k(n) and still achieve persistence.

Bickel and Levina (2004) study prediction when the explanatory variables are

multivariate normal and there are many more explanatory variables than observations.

However, they predict the 0–1 variable Y , that is, they study classification in this setting.

Denote the collection of all subsets, of size k ¼ k(n), of explanatory variables by

K ¼ Kn; each of its members is denoted by K, K 2 K. Let �̂�(K) be the least-squares

estimator based on the subset K of explanatory variables, and let

�̂� ¼ arg min
K2K

LF̂F(�̂�(K)): (6)
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Similarly, let ��F(K) be the best linear predictor based on the subset K of the explanatory

variables, under F, and ��F ¼ arg minK2K LF(��F(K)):
The following condition is assumed throughout this section.

Condition 4. The sets F n consist of all multivariate normal distributions with uniformly

bounded variance of Y .

The main result of this section is the following:

Theorem 5. Suppose k(n) ¼ o(n=log(n)); then there exists a persistent sequence of

procedures with respect to the corresponding Bn
k .

The procedure presented in the proof of Theorem 5 involves searching over all the

subsets of size k(n) of the m explanatory variables. In Section 4 we will consider

procedures with a lower complexity, which are persistent under a more restricted version of

Condition 4.

Before proving the theorem we require the following lemmas and propositions.

Proposition 1. Suppose Vn � �2
k n

, where k n < Æn, 0 , Æ , 1. Then P(Vn . n) ¼
o(exp(�ªn)), for some ª . 0.

Proof. Since Vn has ˆ(k n=2, 2) distribution, its Lebesgue density is given by

f (x) ¼ 1

ˆ(k n=2)2k n=2
x k n=2�1e�x=2:

In particular, f (x) ¼ o(1)e�(1�Æ9)x=2 on (n, 1) for any 1 . Æ9 . Æ� Æ logÆ. The proposition

follows. h

Let AE
n(K) be the event jLF̂Fn

(�̂�(K)) � LF̂Fn
(��Fn

(K))j . E, and denote by BE
n(K) the event

jLF̂Fn
(��Fn

(K)) � LFn
(��Fn

(K))j . E.

Lemma 2. There exists ª1 . 0 such that for any non-random K 2 K,

sup
Fn2F n

PFn
(AE

n(K) [ BE
n(K)) ¼ o(exp(�ª1n)):

Proof. The lemma follows from the fact that the probability of both AE
n(K) and BE

n(K)

approaches 0 exponentially fast. For AE
n(K) observe that n3 (LF̂Fn

(�̂�(K)) � LF̂Fn
(��Fn

(K))) is

distributed as �2 with k degrees of freedom and apply Proposition 1. For BE
n(K) apply the

large-deviation principle for the difference between the random mean and its expectation.

h

The number of elements in K is of order mk , k ¼ k(n), hence if mk exp(�ª1n) ! 0 for

some ª1 . 0, then we obtain by Bonferroni,
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sup
Fn2F n

PFn

[
K2Kn

(AE
n(K) [ BE

n(K))

 !
! 0:

If k(n) ¼ �n=log(n) for � small enough, then mk exp(�ª1n) ! 0. Thus we obtain:

Corollary 1. If k(n) ¼ �n=log(n), then for small enough �,

sup
Fn2F n

PFn
(jLF̂Fn

(�̂�) � LFn
(��Fn

)j . E) ! 0:

Corollary 1 establishes that LF̂Fn
(�̂�) is a consistent estimator for LFn

(��Fn
). It does not,

however, imply that, �̂� is a persistent estimator for ��Fn
. Recall that for the latter it is

necessary that, for every E . 0,

sup
Fn2F n

PFn
(jLFn

(�̂�) � LFn
(��Fn

)j . E) ! 0: (7)

To obtain (7), and hence to prove Theorem 5, we need the following lemma and its

corollary.

Lemma 3. Suppose k(n) ¼ o(n). Then for any fixed K 2 K and E . 0, there exists ª . 0

such that

sup
Fn2F n

PFn
LFn

(�̂�(K)) � LFn
(��Fn

(K)) . E
� �

¼ o(exp(�ªn)):

Proof. We consider a concrete subset K with indices (say) 1, 2, . . . , k, and a concrete Fn.

We will omit the index n when there is no ambiguity. Note that for such a concrete subset we

may assume, without loss of generality, that

(i) ��F(K) ¼ 0,

(ii) the random variables X1, . . . , X k are i.i.d. N (0, 1).

Assumption (ii) is possible thanks to our definition of persistence in which we consider

LF(�̂�) � LF(��F) rather than k�̂�� ��Fk
2
2, so the problem is invariant under linear

transformation of the explanantory variables. Now LF(�̂�(K)) � LF(��F(K)) ¼
E((W �̂�(K))2j�̂�(K)); the random vector W is k-dimensional and consists of i.i.d. N (0, 1)

entries which are independent of �̂�(K); W may be thought of as the explanatory variables in

the subset of a future observation. Thus E((W �̂�(K))2j�̂�(K)) ¼ k�̂�(K)k2. Let X (K) be the

random design matrix, corresponding to the subset of explanatory variables, obtained by the n

observations. Then �̂�(K) � N (0, � 2
K (X (K)9X (K))�1); without loss of generality, � 2

K ¼ 1.

Hence, �̂�9(K)(X (K)9X (K))�̂�(K) � V � �2
(k). Let º be the (random) minimal eigenvalue of

X (K)9X (K); then V . k�̂�(K)k2º. Hence,

P(k�̂�(K)k2 . E) < P
V

º
. E

� �
¼ P

V

º=n
. En

� �
:
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Now from Silverstein’s (1985) proof of almost sure convergence of the minimal

eigenvalue of a Wishart matrix, for any 0 , a , 1 there exists ª . 0 such that

P
º

n
, a

� �
¼ o(exp(�ªn)):

Also, since k ¼ o(n) and V � �2
(k) as in Proposition 1 we have

P(V . aEn) ¼ o(exp(�ªn)),

for some ª . 0. Combining the last two equations, we obtain

P(k�̂�(K)k2 . E) ¼ o(exp(�ªn))

for ª . 0. The proof now follows. h

Corollary 2. Suppose k(n) ¼ o(n=log(n)); then

sup
Fn2F n

PFn

[
K2K

[LFn
(�̂�n(K)) � LFn

(��Fn
(K)) . E]

 !
! 0:

Proof of Theorem 5. The proof follows from Corollaries 1 and 2. h

We now show an optimality property of the suggested procedure. It is shown that

persistence cannot be achieved under Condition 4 if k(n) is of order n=log(n).

Theorem 6. Suppose that m ¼ nÆ, Æ . 1: If k(n) . c(n=log(n)), c . 0, then there exists no

procedure which is persistent with respect to the corresponding Bn
k .

Proof. We begin by stating Fano’s inequality (see Le Cam and Yang 1990, p. 128). Let

K(P, Q) be the Kullback–Leibler distance between P and Q and let

J (P, Q) ¼ K(P, Q) þ K(Q, P). Suppose X � F, F 2 fF1, . . . , FMg, and M . 2; consider

the problem of estimating F, based on X , under a 0–1 loss function. Then the minimax risk

is at least

1 � 1

log(M � 1)
log(2) þ 1

2
max
i, j

J (Fi, Fj)

� �
:

Let Z ¼ (Y , X 1, . . . , X m), where X i are i.i.d. N (0, 1). For any subset X i1 , . . . , X ik of

size k, of the explanatory variables, consider the joint distribution of Z determined by

Y ¼ (c1=
ffiffiffi
k

p
)
Pk

j¼1X i j þ E; here E � N (0, 1) is independent of X j, i ¼ 1, . . . , m, and c1 is a

small enough constant properly chosen. Among all subsets of size k, choose M such

subsets in the following way. At each stage after choosing a subset, ‘delete’ all

‘neighbouring’ subsets having more than k=2 common indices with that subset, and then

choose the next subset from the remaining ones; keep on selecting subsets according to this

procedure until all the subsets of size k are either deleted or chosen. There are M chosen

subsets at the end of the process, with M corresponding distributions. Denote the
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distributions by F1, . . . , FM. Given n i.i.d. observations Z1, . . . , Z n, the relevant

distributions are the product measures F
(n)
1 , . . . , F

(n)
M . Now note that for the distributions

Fi, i ¼ 1, . . . , M , J (Fi, Fj) ¼ O(1), which may be made arbitrarily small by choosing c1

small enough; thus, J (F
(n)
i , F

(n)
j ) , c3n, for some c3 that may be made arbitrarily small

when choosing sufficiently small c1. By construction LFi
(��Fj

) . LFi
(��Fi

) þ c2, for a

sufficiently small constant c2 when i 6¼ j.

We now approximate the term log(M � 1) that appears in Fano’s inequality. At each stage

we delete ‘neighbouring’ subsets having at least k=2 common indices with the subset that

was chosen at this stage, until all subsets are either deleted or chosen. The number of

subsets of size k is of order mk. The number of deleted subsets at each stage is of order

nÆ9k , Æ9 , Æ. Thus, the number of stages, or, equivalently the number of chosen subsets, M ,

is

M � mk

nÆ9k
� n(Æ�Æ9)k ¼ exp log(n)[Æ� Æ9]

n

log(n)

� �
:

Thus log(M) . c4n, for c4 small enough. Applying Fano’s inequality, we obtain the desired

result. h

Remark 5. For the case where the explanatory variables are non-random, related results are

the ‘oracle inequality’, Theorem 3 of Donoho and Johnstone (1994), and Lemma A.2 of

Foster and George (1994). These results give finer inequalities than needed for the proof of

Theorem 6, in the case of orthogonal and non-random explanatory variables.

It seems that these results may be adjusted for our case of random explanatory variables,

and yield the conclusion of Theorem 6 even for the case Æ ¼ 1. Yet the main interest in

this paper is the case Æ . 1, that is, more explanatory variables than observations. Thus,

our relatively simple argument, using Fano’s inequality, seems worthwhile. Another

advantage of our proof is that it does not rely on normality; it uses general properties of

Kullbach–Leibler numbers. Thus, this method of proof indicates that k(n) ¼ o(n=log(n))

cannot be improved in typical situations.

4. Complexity of persistent procedures

The persistent procedure suggested in Section 3 has high complexity. It involves searching

through all subsets of the m explanatory variables of size k(n) ¼ o(n=log(n)). Under further

restrictions on the triangular array, we will show, in this section, the existence of ‘low-

complexity’ procedures. The complexity of these procedures is essentially the same as that

of solving a lasso problem. The lasso method involves optimization of a convex target

function subject to convex constraints. Such convex optimization problems have efficient

algorithms in general; see Nemirovski and Yudin (1983). For a particular lasso method, an

efficient computation algorithm was recently developed by Efron et al. (2004).

A key lemma is the following Lemma 4. A proof under a slightly different setting is
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given by Juditsky and Nemirovski in their Proposition 2.2, and is attributed to B. Maurey.

We give the proof here since we have introduced a slight difference in the formulation, but

mainly for completeness’ sake.

Lemma 4. Let Z ¼ (Y , X 1, . . . , X m), Z � F, be a random vector. Suppose EFY
2 , 1;

suppose further that jX jj , c, j ¼ 1, . . . , m, with probability 1. Then for any predictor �
with l1 norm �, there exists a corresponding predictor �9 such that �9 has k or fewer non-

zero entries, and LF(�9) , LF(�) þ c2�2=k.

Proof. Assume first that the entries � j of � are positive. Denote pj ¼ � j=�, j ¼ 1, . . . , m.

Now consider a randomization of k trials in a multinomial setting with m categories, where

the probability of category j is pj, j ¼ 1, . . . , m. Let P̂P j be the fraction of the k trials whose

outcome is in category j, j ¼ 1, . . . , m. Denote P̂P ¼ (P̂P1, . . . , P̂Pm). Note that the vector P̂P has

at most k non-zero entries. We will show that

EF LF(�P̂P) < LF(�) þ �2c2

k
;

the proof then follows.

Let Z ¼ (Y , X 1, . . . , X m) be independent of P̂P. In the following the expectation operator

E is taken with respect to both P̂P and Z:

ELF(�P̂P) ¼ E Y �
X

�P̂PjX j

 !2

¼ E Y �
X

�pjX j þ
X

�pjX j �
X

�P̂PjX j

 !2

¼ E Y �
X

�pjX j

 !2

þ E
X

�X j(pj � P̂Pj)

" #2

þ 2E Y �
X

�pjX j

 ! X
X j�( pj � P̂Pj)

 !

¼ LF(�) þ E
X

�X j( pj � P̂Pj)

" #2

:

The last equality follows since E(P̂Pj � pj) ¼ 0 and since P̂P and Z are independent. Now note

that cov(P̂Pl, P̂Pk) , 0 for k 6¼ l, to obtain
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LF(�) þ E
X

�X j( pj � P̂Pj)

" #2

< LF(�) þ �2c2
X

var(P̂Pj)

¼ LF(�) þ �2c2
X pj(1 � pj)

k

< LF(�) þ �2c2

k
:

The adaptation of the proof to the case where � j may also be negative is straightforward.

h

Corollary 3. Let Z � F, EFY
2 , 1. Given E . 0 and �, let c ¼ c(E) be such that

jEF(Y �
P

� j X j)
2 � EF(Y �

P
� j

~XX j)
2j , E, where ~XX j ¼ maxf�c(E), minfX j, c(E)gg is a

truncation of X j. Then there exists a corresponding predictor �9 such that �9 has k or fewer

non-zero entries, and LF(�9) , LF(�) þ Eþ c2k�k2
1=k.

For our main result in this section we will assume the following assumption about F n,

which is more restrictive than Condition 4.

Condition 5. Consider variable selection subsets Bn
k, with k(n) ¼ o(n=log(n)). Let

k, C , 1. Assume, for every n, that F 2 F n if and only if F is multivariate normal with

second moments bounded by C, and k�Fk2 < k.

Theorem 7. Suppose that the F n satisfy Condition 5. Let Bn
k be the set of predictors with

k(n) ¼ o(n=log(n)) non-zero entries. Then there exists a sequence of procedures �n 2 Bn
k ,

n ¼ 1, 2, . . ., such that f�ng is persistent with respect to Bn
k , and the numerical complexity of

calculating �n is no more than the numerical complexity of the lasso plus an Op(m) term.

The Op(m) term in the statement of Theorem 7 comes from extracting a vector �9, with

o(n=log(n)) non-zero entries, from a vector � obtained by solving a lasso problem. The

extraction is in the manner described in the proof of Lemma 3. The strength of Theorem 5,

compared with the results in Section 3, is in the lower complexity of the persistent

procedures.

Proof. First we will show that, for every E . 0 and n, there exists a ~��n ¼ ~��n(E) such that

sup
Fn2F n

PFn
(jLFn

(~��n) � LFn
(��Fn

)j . E) ! 0,

where ~��n has o(n=log(n)) non-zero coefficients. The result will then follow by a

diagonalization argument: ~��n(En) will satisfy the theorem for En ! 0 slowly enough.

For a given E, we will obtain such a ~�� ¼ ~��(E) in a few stages. At the first stage, we

obtain ~��1 as follows. Without loss of generality, let k ¼ 1 in Condition 5. Let
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~��1 ¼ arg min
f� jk�k1<

ffiffiffiffiffiffiffi
k(n)

p
g
LF̂F(�): (8)

Note that by the Cauchy–Schwarz inequality and since k ¼ 1, the l1 norm of ��F is less thanffiffiffiffiffiffiffiffiffi
k(n)

p
, hence

LF̂Fn
(~��1) < LF̂Fn

(��Fn
): (9)

One may check that Corollary 3 may be applied on F̂Fn with E . 0 and

c ¼ cn(E) ¼ Op(1). Thus we may extract from ~��1 a vector ~��91, having k1 ¼ k1(n) non-

zero coefficients that satisfy

LF̂Fn
(~��91) < LF̂Fn

(~��1) þ Eþ c2k

k1

: (10)

The extraction is through the multinomial simulation method, described in the proof of

Lemma 4.

Choose k1(n) ¼ o(n=log(n)) satisfying k(n)=k1(n) ! 0: Let ~�� be the least-squares

estimator, with respect to the subset on which ~��91 has non-zero coefficients. Since this subset

is chosen to be of order o(n=log(n)), we may apply the reasoning and arguments of Section

3 which, together with the above, imply that

sup
Fn2F n

PFn
(LFn

(~��) � LFn
(��Fn

) . 2E) ! 0: (11)

The ~�� constructed above is not persistent, since (11) should hold for every E. The latter is

now easy to achieve using the diagonalization described above. h

5. Concluding remarks

We have demonstrated for the case of multivariate normal Z i that by increasing the number

of explanatory variables from o(n) (for which persistence may be achieved) to nÆ, Æ . 1,

we can still achieve persistence with respect to all subsets of size k(n) ¼ o(n=log(n)). In

cases where there are no clear favourite explanatory variables or a phenomenon has no clear

physical interpretation (a ‘black box’ situation), such a practice merits recommendation.

This is especially true since we have demonstrated the existence of algorithmically effective,

persistent procedures. In situations more general than the normal case, our results and

techniques of proof also indicate that there is almost no loss, but a lot to be gained when

increasing the number of explanatory variables. Thus we recommend an inverse of Occam’s

razor. Occam’s razor does not seem relevant for prediction.

The various theorems we have proved show that we may expect persistence for k(n) of

an order between o((n=log(n))1=2) and o(n=log(n)). Consequently the l1 constraint, b(n), in

the lasso procedure should be of an order between o(n=log(n))1=4) and o(n=log(n))1=2).

In practice, we do not know what is the right value for b(n). Thus, we might want to use

cross-validation in order to try various points in that range. It might even be helpful to try,
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through cross-validation, values of b(n) that are larger than those suggested by our theory,

for example, values for which there is still a unique solution to the lasso optimization.

Finally, methods that use many more parameters than observations have recently been

employed, and the fact that they do not yield poor results due to overfitting is something of

a mystery; see Breiman (2001). We have demonstrated that methods that use many more

parameters than observations may give good results as long as some restraint is exercised

(e.g., optimization under an l1 constraint). This might give some insight into the mystery of

not obtaining poor results due to overfit.

We speculate that in the more general framework of predictor selection from a

parametrized set of predictors fg�; � 2 Bg, under appropriate conditions, empirical

minimization subject to l1 constraints might have good properties, as explored here in

the case of linear predictors. This is a subject that is studied in the work in progress

mentioned earlier.
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