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A refined molecular taxonomy of breast cancer
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The current histoclinical breast cancer classification is
simple but imprecise. Several molecular classifications of
breast cancers based on expression profiling have been
proposed as alternatives. However, their reliability and
clinical utility have been repeatedly questioned, notably
because most of them were derived from relatively small
initial patient populations. We analyzed the transcrip-
tomes of 537 breast tumors using three unsupervised
classification methods. A core subset of 355 tumors was
assigned to six clusters by all three methods. These six
subgroups overlapped with previously defined molecular
classes of breast cancer, but also showed important
differences, notably the absence of an ERBB2 subgroup
and the division of the large luminal ERþ group into four
subgroups, two of them being highly proliferative. Of the
six subgroups, four were ERþ /PRþ /ARþ , one was
ER�/PR�/ARþ and one was triple negative (AR�/
ER�/PR�). ERBB2-amplified tumors were split between
the ER�/PR�/ARþ subgroup and the highly prolifera-
tive ERþ LumC subgroup. Importantly, each of these six
molecular subgroups showed specific copy-number altera-
tions. Gene expression changes were correlated to specific
signaling pathways. Each of these six subgroups showed
very significant differences in tumor grade, metastatic
sites, relapse-free survival or response to chemotherapy.
All these findings were validated on large external
datasets including more than 3000 tumors. Our data thus
indicate that these six molecular subgroups represent well-
defined clinico-biological entities of breast cancer. Their
identification should facilitate the detection of novel

prognostic factors or therapeutical targets in breast
cancer.
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Introduction

Breast cancer is heterogeneous. Biological features
have proven insufficient for a comprehensive description
of the disease. Seminal work by Sorlie et al. (2003) has
delineated five major molecular subtypes of breast
cancer associated to different outcomes. This initial
classification was reproduced in independent datasets
(Bertucci et al., 2006) strongly suggesting the existence
of distinct molecular entities in breast cancer. The Sorlie
centroid approach has subsequently been redefined and
adapted to more recent technological platforms (Hu
et al., 2006; Parker et al., 2009).

However, criticisms have pointed to the instability of
the defined subtypes (Kapp et al., 2006; Weigelt et al.,
2010) and their dependence on the original set of
samples or genes. Thus, although molecular classifica-
tion brings interesting insights in breast cancer taxon-
omy, its implementation in the clinics is put in doubt
because of insufficient reliability in single sample
allocation (Weigelt et al., 2010). Rather, three broad
classes of breast tumors drawn along their ER, PR and
ERBB2/HER2 status are commonly used in the clinic.
ER�/PR�/HER2� tumors were defined as triple nega-
tive, ERþ /PRþ /HER2� as luminal, and HER2þ
tumors irrespective of their ER status form the third
class (Foulkes et al., 2010). However, this simpleReceived 17 June 2010; revised and accepted 14 June 2011
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classification is also criticized because of the biological
heterogeneity within classes. In particular, the corres-
pondence between the triple-negative group and basal-
like breast tumors and the heterogeneity of the large
ERþ /PRþ group have been repeatedly questioned
(Gusterson, 2009; Foulkes et al., 2010). This argues for a
more elaborate stratification amenable to biological
exploration and clinical choices.

This prompted us to construct a robust molecular
classification on a large number of samples to reach
high statistical power. To this aim, we produced trans-
criptomes of a series of 537 primary breast cancers and,
using a semi-supervised analysis, revealed six stable
molecular subgroups. A related classification rule was
defined. Each of the six molecular subgroups showed
distinct genomic changes, correlated with a specific set
of signaling pathways and was associated with signi-
ficant differences in tumor grade, metastatic sites and
metastasis-free survival (MFS). We propose that this
classification scheme could lay the bases of an operative
tool to reliably classify breast cancers in more homo-
geneous molecular subgroups. This classification could
be highly beneficial in future investigations aiming at
identifying novel prognostic factors or therapeutical
targets in breast cancer.

Results

Semi-supervised gene expression analysis identifies
six prototypic molecular subtypes
Our aim was to identify molecular subgroups represent-
ing homogeneous subsets of breast cancer. Our meth-
odology is detailed in Supplementary Figure 1 and the
Supplementary Methods section. Briefly, we produced a
large dataset comprising 537 primary breast cancer
transcriptomes on Affymetrix U133-Plus2.0 arrays to
ensure proper statistical power. First, this tumor set was
classified with three unsupervised methods (hierarchical
clustering, Gaussian mixture models and k-means) in
parallel. Of the 537 tumors, 355 yielded a consensus
subgroup assignment (that is, were assigned to the
same subclass) between all three methods. This subset
was named coreset and was used for further analysis.
Second, a minimal list of 256 discriminative genes
with maximal intragroup homogeneity and intergroup
heterogeneity was generated by analysis of variance
(Supplementary Table 3). Hierarchical clustering based
on this list delineated six homogeneous tumor sub-
groups, homogeneity being confirmed by the principal
component analysis (Figure 1b). To allow the classifica-
tion of independent sample profiles to one of the six
subgroups we built a single sample predictor based on
a distance-to-centroid approach (using the previously
mentioned 256 genes; Supplementary Methods). The
182 tumors of the discovery set lying outside of the
coreset were classified using this single sample predictor.

The overall distribution of the six subgroups was
determined by three large gene clusters shared by at
least two subgroups. The first one (cluster-VI, Figures

1a and c, Supplementary Table 3) containing ESR1 and
correlated genes, defined two ER-negative (ER�) and
four ER-positive (ERþ ) subgroups (Figures 1a and c).
The second gene cluster (cluster-IV) included the andro-
gen receptor (AR) gene and encompassed five subgroups.
Of the six subgroups, four were ERþ /PRþ /ARþ , one
was ER�/PR�/ARþ and one was triple negative (AR�/
ER�/PR�; Figures 1a and c). Interestingly, cluster-IV
included transcription factors FOXA1, SPDEF and
XBP1, which are usually associated to the ER-cluster
(Bertucci et al., 2006). The third cluster (cluster-II) was
predominantly composed of genes regulating DNA repli-
cation and cell cycle progression, thus defining elevated
cell proliferation. This cluster encompassed both ER�
and two ERþ subgroups (Figures 1a and c).

Each subgroup was defined by a specific gene cluster
(Supplementary Figure 2) in which we found genes
previously part of the Sorlie centroids. Hence, for
simplicity we named our subgroups according to the
Sorlie subtype (Sorlie et al., 2003). ERþ subgroups
were split according to expression levels of the cell
cycle cluster. Low proliferative ERþ subgroups were
differentiated by clusters-III and IX (Figure 1a, Supple-
mentary Figure 2), comprising respectively genes from
the Sorlie luminal-A and normal-like centroids (Supple-
mentary Table 3) and were, thus, designated LumA and
NormL. The two high proliferation ERþ subgroups
differed sharply in ER-cluster expression levels. The
subgroup expressing highest levels of ER was named
LumB. The other subgroup, positioned at the boundary
between ERþ and ER� tumors, was designated LumC
(Figures 1a–c). Noteworthy, 40% of LumC tumors
overexpressed the ERBB2/HER2 gene.

Next was the ARþ /ER�/PR� subgroup (Figure 1b),
defined by cluster-VIII. The ARþ /ER� status of this
subgroup was reminiscent of the previously described
‘molecular-apocrine’ subtype (Farmer et al., 2005) and
we designated it mApo. Although ERBB2/HER2 was
overexpressed by 72% of the tumors in this sub-
group, cluster-VIII did not comprise genes co-amplified
with ERBB2/HER2. In fact, ERBB2/HER2þ tumors
distributed in mApo and LumC subgroups (Table 1).
Finally, the AR�/ER�/PR� subgroup, defined by
cluster-I, presented the greatest distance to all others
(Figure 1). As it shared genes with the ‘basal-like’
subtype, it was designated BasL (Supplementary Table 3).

Molecular subgroups show distinct clinical correlations,
metastatic sites and outcomes
BasL and mApo at one end of the spectrum, and LumA
and NormL at the other end showed an inverse balance
between high-grade and ER/PR positivity (Table 1).
TP53 mutation incidence reached 83% in the BasL
subgroup and gradually went down to 4% in NormL
and LumA tumors (Table 1). This distribution of high-
grade/ER� versus low-grade/ERþ cancers was also
coherent with the median age of onset: 50 and 62 for
BasL and LumA patients, respectively. Correlation with
histological type was observed as well. While the BasL
subgroup was composed of 98% ductal carcinomas,
NormL presented 19% of invasive lobular tumors,
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representing 53% of all lobular cancers in the dataset, in
coherence with previous findings (Bertucci et al., 2008).

Molecular subgroups showed differences in sites of
metastatic relapse. In line with previous studies (Smid
et al., 2008), LumA and NormL predominantly meta-
stasized to the bone and rarely or never to the brain,
while BasL and mApo tumors metastasized to the brain
and less to the bones (Table 1). ST6GALNAC5, COX2/
PTGS2 and HBEGF, whose expression has recently
been associated to brain metastasis (Bos et al., 2009),
were increased in BasL (Supplementary Figure 3). Clear
differences were also found in MFS (Figure 2). BasL
and mApo subgroups showed earliest recurrence (18 to
60 months). LumA and NormL had the slowest course.
Metastatic recurrence plateaued between 60 and 180

months in BasL and mApo, whereas it progressively
increased after 60 months in ERþ subgroups. LumA
and NormL tumors presented recurrences after 120
months post-surgery. Interestingly, patterns of recur-
rence (early versus late) matched cell cycle cluster
expression levels in the different subgroups.

Performance on external datasets
We applied our classification scheme to a large
Affymetrix dataset comprising 2291 breast cancer
transcriptomes we have collected from the literature
(Supplementary Methods). The six molecular subgroups
were perfectly reproduced, both in terms of distribution
and clinical correlations and outcomes (Supplementary
Table 4a, Figure 2b). To further ascertain its robustness,

Figure 1 Breast tumor classification according to the CIT classification into six subgroups of tumors. (a) Heatmap representing the
expression of the 256 genes (nine clusters of genes represented by vertical color bars on the left of the heatmap) through the six groups.
(b) Principal component analysis (PCA) of the samples of the coreset according to the 256 gene signature. The first principal
component (PC1) represents the combined expression of the three transversal clusters (ER, AR and cell cycle), the second component
(PC2) differentiates LumB and NormL. (c) Distribution of mean expression levels of the three transversal gene clusters (ER, AR and
Cell Cycle) over the six main molecular subgroups. (d) Comparison of the CIT classification with those obtained using the Sorlie, Hu,
Parker and Jönsson systems.
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we tested our classification on three expression data-
sets from different technological platforms (Swegene,
Qiagen/Operon, Eurofins MWG Operon, Roissy, France;
and Agilent, Santa Clara, CA, USA). Our prediction
rule being designed for Affymetrix datasets we had to
adapt it to different technological contexts (Supplemen-
tary Methods). Overall molecular subgroups were repro-
duced on different platforms (Supplementary Table 4b
and Supplementary Figure 4). Differences were noted
according to the dataset, which may possibly be due
to different tumor recruitment in each series. To
test inter-platform reproducibility, we classified the
GSE3155 dataset that was analyzed in parallel on two
dual-color (Agilent and Stanford University, Palo Alto,
CA, USA) and one uni-color (Applied Biosystems,
Carlsbad, CA, USA) platforms (Supplementary Table
4c). Classification on both dual-color datasets showed a
90% overlap, suggesting a good inter-platform reprodu-
cibility. However, overlap dropped dramatically when
dual and uni-color platforms were compared (48 and
52%). This indicates that classification rules need

adaptation to technological specificities of each platform
to perform optimally.

Comparison with other molecular classifiers
We next compared our classification with the Sorlie, Hu
and Parker centroids (Sorlie et al., 2003; Hu et al., 2006;
Parker et al., 2009). Variable overlaps were found for
BasL, LumB, LumA and NormL subgroups (Figure 1d).
However, significant differences were noted for the mApo
and LumC subgroups, which not only overlapped at
variable levels with the ERBB2 subtype, but also with
basal-like, luminal-A and –B, and normal-like groups,
depending on the classifier (Supplementary Table 5).
Classification differences affected the distribution of
bioclinical markers among molecular subgroups. Main
differences were in the fraction of ERþ /PRþ and ARþ
tumors in basal-like subtypes and the distribution of
ERBB2þ tumors (Supplementary Table 6). MFS curves
showed better separation of good and bad outcome
subgroups with our classification (the CIT classification)
(Supplementary Figures 5 and 6).

Table 1 Molecular subgroups show differential correlation to breast cancer clinico-biological parameters and different sites of metastatic relapse

CIT classification

Variable pv BasL mApo LumC LumB LumA NormL

Total 53 39 48 66 61 88

ERþ (IHC) 1.00E–50 5 (10%) 1 (3%) 37 (84%) 63 (98%) 58 (97%) 81 (93%)
ER� (IHC) 46 (90%) 35 (97%) 7 (16%) 1 (2%) 2 (3%) 6 (7%)
ERþ (EXP) 6.00E–68 3 (6%) 2 (5%) 48 (100%) 66 (100%) 61 (100%) 87 (99%)
ER� (EXP) 50 (94%) 37 (95%) 0 (0%) 0 (0%) 0 (0%) 1 (1%)
PRþ (IHC) 2.00E–25 4 (8%) 1 (3%) 25 (54%) 43 (67%) 53 (88%) 62 (71%)
PR� (IHC) 48 (92%) 34 (97%) 21 (46%) 21 (33%) 7 (12%) 25 (29%)
PRþ (EXP) 1.00E–37 5 (9%) 5 (13%) 32 (67%) 47 (71%) 58 (95%) 85 (97%)
PR� (EXP) 48 (91%) 34 (87%) 16 (33%) 19 (29%) 3 (5%) 3 (3%)
ERBB2þ (IHC) 9.00E–19 3 (7%) 19 (68%) 10 (26%) 5 (11%) 0 (0%) 0 (0%)
ERBB2� (IHC) 43 (93%) 9 (32%) 28 (74%) 41 (89%) 37 (100%) 74 (100%)
ERBB2þ (EXP) 4.00E–31 2 (4%) 29 (74%) 20 (42%) 2 (3%) 0 (0%) 5 (6%)
ERBB2� (EXP) 51 (96%) 10 (26%) 28 (58%) 64 (97%) 61 (100%) 83 (94%)
ARþ (EXP) 2.00E–57 2 (4%) 32 (82%) 47 (98%) 63 (95%) 61 (100%) 88 (100%)
AR� (EXP) 51 (96%) 7 (18%) 1 (2%) 3 (5%) 0 (0%) 0 (0%)
P53mut 1.00E–15 29 (83%) 13 (72%) 24 (69%) 5 (16%) 1 (4%) 1 (5%)
P53wt 6 (17%) 5 (28%) 11 (31%) 27 (84%) 27 (96%) 21 (95%)
Ductal 0.05 51 (98%) 32 (84%) 39 (87%) 54 (84%) 50 (83%) 61 (77%)
Lobular 0.004 1 (2%) 1 (3%) 3 (7%) 3 (5%) 5 (8%) 15 (19%)
Other 0.1 0 (0%) 5 (13%) 3 (7%) 7 (11%) 5 (8%) 3 (4%)
SBR Grade 1 8.00E–11 0 (0%) 0 (0%) 0 (0%) 0 (0%) 7 (12%) 23 (27%)
SBR Grade 2 2.00E–13 6 (11%) 8 (21%) 21 (47%) 38 (58%) 44 (77%) 53 (62%)
SBR Grade 3 4.00E–26 47 (89%) 30 (79%) 24 (53%) 28 (42%) 6 (11%) 9 (11%)
Age (median) 4.00E–07 50 56 54 57 62 52

MR 5year 0.001 17 (36%) 14 (38%) 11 (34%) 15 (26%) 9 (20%) 6 (8%)
MR 15year 0.01 17 (36%) 14 (38%) 13 (41%) 18 (32%) 10 (22%) 11 (15%)
Bones 0.01 4 (24%) 8 (57%) 7 (54%) 14 (78%) 7 (70%) 9 (82%)
Brain 0.06 5 (29%) 3 (21%) 1 (8%) 0 (0%) 0 (0%) 2 (18%)
Liver 0.7 5 (29%) 6 (43%) 7 (54%) 8 (44%) 3 (30%) 3 (27%)
Lung 0.9 6 (35%) 4 (29%) 6 (46%) 8 (44%) 3 (30%) 4 (36%)
Other 0.1 4 (24%) 1 (7%) 7 (54%) 8 (44%) 3 (30%) 3 (27%)

Abbreviations: CIT, Cartes d’Identité des Tumeurs program; MR, metastasis relapse.
Expression of ER, PR and ERBB2/HER2 were determined by immunohistochemistry as well as by RNA expression (for greater details see Supplementary
Methods). TP53 mutation status was determined by the yeast functional assay (Supplementary Methods). P-values for qualitative variables (ER, PR,
ERBB2/HER2, TP53 mutation, histological type, SBR grading) result from a Fisher exact test. P-values for quantitative variables (median age) result from
an analysis of variance. MR was determined 5 and 15 years after surgery. Frequency of MR in a subgroup was calculated as the ratio of MR with the total
number of MR. For each subgroup, percentages of MR in a given site are determined by the number of MR in this site over the whole number of MR in
the subgroup. MR may occur at more than one site; hence, the sum of percentages may not equate 100.
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Molecular subgroups show differential activation
of signaling pathways
We selected 40 cancer relevant pathways from public
databases and tested for specific enrichment in our
molecular subgroups (Supplementary Methods). Genes
specific for each subgroup were identified using four
algorithms. Pathways were ordered for each subgroup
on the mean rank of P-values across the four methods.
As shown in Figure 3, each subgroup was associated to
different up or downregulated signaling pathways. The
upregulation of DNA replication and repair in BasL
and LumB contrasted with its downregulation in
NormL. The upregulation 4/5 immune system pathways
in LumC was of further note. These data indicate that
molecular subgroups relate to different signaling path-
ways and biological processes.

Molecular subgroups show specific genomic anomalies
Of the 537 tumors profiled for RNA expression, 488
tumors were analyzed by array-CGH (comparative
genome hybridization). A total of 21 regions of gain
and 33 regions of loss were found in more than 30% of

the tumors (Figure 4a, top panel). BasL and LumB
showed extensive copy-number alterations (CNAs),
whereas NormL and LumA were the least rearranged.
Qualitative differences were also apparent (Figure 4a) and
we searched for CNAs specifically associated to each
subgroup. BasL and LumB tumors presented the greatest
number of CNAs with 39 and 46 specific CNAs,
respectively (Figure 4a, Supplementary Table 7). The
number of specific events was lower in the other
subgroups ranging from 2 to 8. Expectedly, amplifications
at 17q12 were found in 70% of mApo tumors. LumA
showed gains at 4q35 and 16p11-p13, whereas NormL
tumors could be differentiated from LumA by frequency
of gains at 9q33, 8p23, 16p13 and loss at 16q12.

CNAs were associated to large-scale gene expression
modifications. A total of 786 genes comprised in
intervals of gains or losses showed significantly modified
expression levels. A number of regions of gains over-
expressed genes encoding cell cycle and proliferation
activators and, conversely, known tumor suppressors,
pro-apoptotic or DNA damage checkpoint genes were
found downregulated in regions of loss (Supplementary
Table 7). These findings suggest that CNAs are part of
a selective process associated with tumor progression,
with differences from one subgroup to another. In that
respect, 28 CNAs presented inverse patterns in different
subgroups. These inverted patterns involved mainly BasL
and LumB, but were also found in mApo and LumB or
LumB and NormL (Supplementary Figure 7). Strikingly,
they were associated to inverse expression of key cancer

Figure 2 Breast cancer molecular subgroups show distinctly
different disease outcome. Kaplan–Meier curves shown in this
figure represent disease-free survival with metastatic relapse as an
end point. (a, b) show survival curves in the CIT and validation set,
respectively. Abrupt breaks in some curves of (a) are related to
small numbers of patients with long-term follow-up in these
subgroups. These appear smoothed out in (b) because of greater
numbers in the validation set.

Figure 3 Molecular subgroups show differential activation
of major signaling pathways: correlations between a given path-
way and a subgroup are indicated by color boxes. Red boxes
show upregulation of the pathway, green downregulation. Up or
downregulation was deduced using KEGGanim tool where relative
expression measures are projected in the related KEGG pathway
interaction graph. Pathways showing no clear direction of
regulation were excluded.

Molecular classification of breast cancer
M Guedj et al

5

Oncogene



genes. These data support the notion that breast cancer
subgroups arise along distinct genetic pathways.

Focal DNA amplification (defined as high-level gains
occurring in regions not larger than 3Mb) occurred
significantly more frequently in LumB, mApo and
LumC than in the other subgroups (Supplementary
Table 8a). We further investigated the occurrence of
focal CNAs and analyzed a subset of 72 tumors from the
CIT discovery set with high-resolution Illumina 610K-
SNP-arrays (Supplementary Table 8b). We detected
246 gains and 337 losses (mean size 132 and 161 kb,
respectively). We noted that 53% of the gains were also
detected in our BAC-array data, while the overlap was
lower for losses (19%). However, gains showed modest
copy-number increase and were infrequently recurrent.
Losses showed greater recurrence but this corresponded
mainly to probable CNVs (identical starts and ends).

We verified the overlap of our subgroups with the
recently proposed CNA-based classification (Jönsson
et al., 2010) and observed an overall coherence with our
findings. Their CNA-based Basal-complex class over-
lapped with our BasL, 17q12 with part of our mApo and
LumC, Luminal complex and amplifier with LumB and

LumC, while the Luminal-simple corresponded globally
to LumA and NormL (Figure 1d).

Fraction of non-tumor cells and distribution in molecular
subgroups
The fraction of non-tumor cells is frequently discussed
as a confounding factor in molecular analyses of breast
cancer fostering the proposition that the normal-like
group was a possible artifact (Prat et al., 2010). To get
an objective estimate of the rate of non-diploid cells in
our dataset and determine its distribution within mole-
cular subgroups, we computed an estimate based on
Illumina 610K-SNP data using a recent formula (Van
Loo et al., 2010). Significant differences were seen
among molecular subgroups (Supplementary Figure 8a)
with, surprisingly, mApo showing the lowest rate of
non-diploid cells. NormL ranked third and LumA and
LumB presented the highest fraction of non-diploid
cells. Our results agreed with recent data (Van Loo
et al., 2010). However, a variable fraction of tumor cells
may also be diploid, leading to an overestimation of
normal cells. To assess this, a histological estimate of the

Figure 4 Breast cancer molecular subgroups present different copy-number change (CNC) profiles. CNC profiles were established
using genome-wide array-CGH on a 488 breast tumor dataset and subsequently stratified according to the CIT classification. Panel a
shows frequency of gains (vertical bars going up) or losses (bars going down) at a given location on the genome. Graphs from top to
bottom correspond to profiles of the whole CIT breast cancer set and each of the six molecular subgroups. Panel b represents regions of
CNC correlating to a specific subgroup. Specific genomic regions for the whole CIT set are the ones for which the proportion of
alterations (in gain or loss) exceeded 20%. Subgroup-specific regions are those that present significant increase in proportion (at a 0.1
FDR level) in a given subgroup tested against all others. Bars represent P-values after a standard logarithmic transformation.
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non-tumor cell fraction was performed on the tumors
analyzed with the Illumina 610K-SNP-arrays. This
showed that SNP-based estimates of non-diploid cells
were lower than pathological tumor cell content (Sup-
plementary Figure 8b). Overall these data are coherent
with the idea of NormL representing a bonafide breast
cancer subgroup.

Breast cancer subgroups and mammary epithelial cell
hierarchy
To test whether our subgroups relate to distinct cells of
origins in the mammary gland, we took advantage of
three published expression profiling datasets of sorted
normal mammary epithelial cell subpopulations (Raouf
et al., 2008; Lim et al., 2009; Pece et al., 2010). We
inferred a signature that discriminated the mammary
stem cell (MaSC) enriched, luminal progenitor (LPC),
mature luminal (MLC) and stromal cell populations,
and used this signature to classify our breast tumor
expression data (Supplementary Methods). As shown in
Figure 5, the principal component analysis ordered
normal mammary epithelial cell fractions according to
a differentiation gradient and breast tumors from BasL,
mApo, LumC, LumB/NormL to LumA, suggesting a
proximity of BasL and mApo with either MaSC or LPC,
whereas ERþ subgroups showed a gradient between
LPCs and MLCs. The correlation of BasL and mApo
with least differentiated cells (MaSC or LPC) in the
normal mammary gland was confirmed in a second
analysis (Supplementary Table 9).

Prognostic significance of molecular subgroups
We next compared the prognostic significance in terms of
metastatic relapse of our molecular subgroups to classical
prognostic factors (ER, ERBB2/HER2, SBR grading and
nodal involvement). As shown in Table 2, our classifica-
tion signature performed better in both univariate and
multivariate analyses than the classical prognostic factors,
in both the discovery and validation sets. However, the
absence of central pathology review in both datasets
prevents us to draw firm conclusions on the independent
prognostic power of our signature. In a comparative
analysis with five expression signatures (Sorlie et al., 2003;
van ‘t Veer et al., 2003; Hu et al., 2006; Sotiriou et al.,
2006; Parker et al., 2009), our signature came second
after the van’t Veer signature in the discovery set and
performed best in the validation set (Supplementary
Table 10), demonstrating the important difference in
terms of prognosis among molecular subgroups.

Molecular subgroups show differential response
to chemotherapy
To test whether our classification could predict chemo-
therapy response, we analyzed three datasets of locally
advanced breast cancers treated by neoadjuvant therapy
followed by surgery and assessment of the pathological
response. ER� breast cancers were overrepresented in
the three cohorts, but our signature allowed the assign-
ment of tumors to four subgroups after pooling LumB
and LumC, as well as LumA and NormL to reach

sufficient sample size by subgroup. Despite different
chemotherapy protocols in individual cohorts, obvious
differences in response were observed. BasL and mApo
showed the best response rates with 50%, and
37% of complete response, respectively. ERþ sub-
groups showed 15% of complete response in LumB/
LumC tumors and 0% in LumA/NormL (Table 3a).
Prediction of complete pathological response of the CIT
classification was then compared with that of ER status
and SBR Grade in the three pooled datasets. Both in the
univariate and multivariate analysis the CIT classifica-
tion showed the strongest score (Table 3b).

Discussion

Breast cancer heterogeneity, reflected in molecular
subgroups, can be attributed to differences in molecular
alterations, cellular origin or both. We present a classi-
fication of breast cancer into six molecular subgroups,
which differed upon gene expression, genomic profiles,
differentiation level and clinical features.

First, gene expression differences strongly suggested
that they outlined distinct biological entities, reflecting
initiating mutations and/or cell-of-origin. Specific sets of
signaling pathways were associated to each subgroup.

Figure 5 Principal component analysis (PCA) of the CIT coreset
expression profiles based on a meta-signature comparing normal
mammary epithelial cell subpopulations. A 163 gene signature was
produced by comparing different normal mammary cell contin-
gents from three independent studies (GSE16997, GSE18931,
GSE11395) and used in a PCA. Samples from the CIT coreset
(panel a) and normal mammary gland samples (panel b) from
GSE16997 were projected in the two first principal components in
the upper and lower panel, respectively.
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The distribution of the six subgroups was determined
by the combination of the expression of three large gene
clusters organized around the (i) estrogen receptor,
(ii) androgen receptor and (iii) cell cycle regulator genes.
The ER cluster is well known as defining luminal breast
tumors (Bertucci et al., 2006) and the expression of
AR in breast cancer is long-known (Isola, 1993), but has
been confounded with that of the ER cluster (Doane
et al., 2006). Its combined expression with the ER cluster
yields three broad classes determined by nuclear receptor
expression; AR�/ER�/PR� (triple negative) corres-
ponding to the BasL subgroup, ARþ /ER�/PR�
(mApo), ARþ /ERþ /PRþ (triple positive) including
the four ERþ subgroups. The AR cluster comprises key
genes previously associated to the ER cluster, such as the
pioneer factor FOXA1, which recruits ER, AR and
RAR/RXR (Carroll et al., 2006; Lupien et al., 2008).

The existence of an ER�/ARþ breast tumor subset
(our mApo subgroup) has been proposed (Farmer et al.,
2005; Doane et al., 2006), and its important overlap
with ERBB2/HER2 amplification is intriguing, possibly
reflecting cross-talks between the AR and ERBB2/HER2
pathways (Naderi & Hughes-Davies, 2008). How-
ever, it is notable that our classification did not define
an ERBB2 subgroup. Instead, ERBB2-amplified cancers
distributed in mApo (ER�) and LumC (ERþ ) sub-
groups. We found less expression differences between
mApo/ERBB2þ and mApo/ERBB2� than between

mApo and LumC tumors (Supplementary Figure 9).
Interestingly, Staaf et al. (2010) showed that ER� and
ERþ ERBB2-amplified tumors presented different 17q
CNA patterns. These observations could have implica-
tions in the clinic as they indicate that ERBB2þ breast
cancer correspond to a biologically heterogeneous group.
Moreover, it seems important to distinguish ERBB2þ
and mApo tumors, because the so-called triple-negative
group comprises both BasL and ERBB2�/mApo tumors
despite clear molecular and clinical differences.

Second, subgroups were also characterized by
different patterns of genomic anomalies. These data
were concordant with previous results (Chin et al., 2006;
Natrajan et al., 2009) and the CGH classification
recently proposed by Jönsson et al. (2010). Moreover,
the existence of chromosomal regions showing inverse
patterns (gain in one subgroup/loss in another) further
supported the notion that these subgroups progress
along distinct genetic routes, which possibly involve
different mechanisms of genetic instability.

Third, our data indicated that subgroups differed
in their differentiation level, pointing to possible
differences in cell-of-origin. This was suggested by
similarities between the transcriptome of distinct cellular
contingents in the normal mammary gland and those of
molecular subgroups. While BasL and mApo showed
proximity to MaSC or luminal progenitors, ERþ
subgroups formed a gradient between LPCs (LumC)

Table 2 Prognostic significance of the CIT classification

Variable Univariate analysis Multivariate analysis

Value HR 95% CI P-value
modality

P-value
model

n HR 95% IC P-value
modality

P-value
model

n

(a) Clinical parameters
CIT (ref¼normL) LumA 1.66 0.84–3.30 0.15 1.8� 10�5 426 1.66 0.78–3.52 2.5� 10�4 6.4� 10�6 371

Other 3.16 1.82–5.48 4.3� 10�5 426 2.99 1.62–5.51
ER (ref¼Pos) Negative 1.85 1.22–2.81 0.003 0.003 426 1.19 0.72–1.97 0.5
ERBB2 (ref¼Neg) Positive 1.18 0.74–1.9 0.49 0.49 426 0.89 0.52–1.5 0.66
N (ref¼ 0) 1þ 1.43 0.85–2.38 0.18 0.17 373 1.55 0.92–2.63 0.1
T (ref¼ {0,1}) 41 2.08 1.3–3.31 0.0021 0.0016 422 2.21 1.3–3.76 0.003
SBR (ref¼ 1) 2 2.92 0.91–9.36 0.07 3� 10�4 418

3 5.19 1.63–16.53 0.005 418
Chemotherapy adjuvant
(ref¼No)

Yes 1.09 0.73–1.62 0.67 0.67 378

Hormononal adjuvant
(ref¼No)

Yes 0.64 0.44–0.94 0.02 0.02 375

(b) Molecular signatures
CIT (ref¼NormL) LumA 1.66 0.84–3.30 1.8� 10�5 426 2.0 0.74–5.33 3.7� 10�1 426

Other 3.16 1.82–5.48 426 1.8 0.63–5.06
Sorlie (ref¼NormL) LumA 1.37 0.74–2.52 2.4� 10�3 426 1.9 0.7–5.03 5.0� 10�1

Other 2.29 1.31–4.00 426 1.4 0.57–3.29
Hu (ref¼LumA) NormL 1.67 0.86–3.25 9.6� 10�5 426 2.7 0.98–7.35 4.2� 10�1

Other 2.88 1.69–4.93 426 1.6 0.72–3.73
Parker (ref¼LumA) NormL 1.43 0.74–2.75 3.5� 10�3 426 1.25 0.49–3.18 3.5� 10�1

Other 2.26 1.34–3.81 426 0.8 0.36–1.79
GGI (ref¼Low risk) High risk 2.51 1.60–3.93 3.4� 10�5 426 1.0 0.43–2.47 8.0� 10�1

Van0t Veer (ref¼Low risk) High risk 2.93 2.00–4.27 5.9� 10�9 426 2.8 1.53–5.1 3.4� 10�3

Abbreviations: CI, confidence-interval; CIT, our classification; HR, hazard ratio.
Relative risk was calculated taking metastatic relapse as an endpoint and compared with that of (a) clinical parameters and (b) of three molecular
classifiers (Sorlie, Hu, Parker) and two prognostic signature (GGI, Van0t Veer). The dataset comprised 426 patients from the CIT discovery set for
which MFS information was available. Complete clinical information was available in 371 cases explaining the smaller numbers in the multivariate
analysis on prognostic factors. Prognostic significance was assessed by applying a Cox model. Columns refer to the HR, the 95% CI and the
P-values for both univariate and multivariate models.
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and MLC cells (LumA). Our findings are consistent with
recent work suggesting that LPCs were the cells of origin
of basal cancer and Brca1 mammary tumors (Lim et al.,
2009; Molyneux et al., 2010). These findings bring
insight on the prevalence of Grade 3 tumors in BasL and
mApo contrasting sharply with that of low-grade
cancers in NormL and LumA. Our data thus suggest
that breast cancer may arise from at least two distinct
cell types and that the final phenotype will result from
genetic and epigenetic changes occurring during cancer
progression. This may also have some link with the
striking gradient of TP53 mutations observed between
BasL and NormL subgroups. The correlation with
elevated expression of the cell-cycle cluster and in-
creased genomic instability was also notable. Moreover,
there is a striking parallel between the incidence of TP53
inactivation and the response rates of neoadjuvant
chemotherapies. These data are in line with our previous
observation proposing that TP53 is not the mediator of
chemotherapy-induced cell death (Bertheau et al., 2007).

Fourth, molecular subgroups show striking differ-
ences with respect to metastatic relapse both in terms of
kinetics and site of recurrence. While BasL and mApo
tumors preferentially metastasized to the brain and
rarely to the bone, ERþ subgroups exhibited an inverse
pattern, strengthening previous studies (Smid et al.,
2008). Our data suggest that these differences could be
due to differential expression of key metastasis genes

(Bos et al., 2009). Hence, metastasis to a specific organ
can also be the result of a subgroup-specific gene
program and coexist with the de novo acquisition of
stochastic mutations, as recently shown by massively
parallel sequencing work (Ding et al., 2010; Yachida
et al., 2010). Outcomes of the different subgroups were
very different as well. BasL and mApo showed earlier
relapse, but a remarkably stable MFS for the next 100
months. In contrast, although all ERþ subgroups did
better during the first years, a continuous incidence of
late relapse was observed. LumB and LumC outcome
progressively became worse than that of BasL or mApo.
However, a number of recurrences occurring after
5 years in ERþ subgroups are probably linked to
interruption of anti-estrogen treatments.

The status of the NormL subgroup is of particular
interest because its existence has been put in doubt
and attributed to an elevated content of normal cells
(Prat et al., 2010). In line with recently published data
(Van Loo et al., 2010), we showed that NormL tumors
did not present a lower fraction of non-diploid cells
than mApo or LumC. Furthermore, our data showed
that 70% of NormL tumors showed loss at 16q, further
supporting that this subgroup does not result from a
co-cluterization of breast tumors presenting smaller
fractions of tumor cells.

Our results are in favor of the existence of different
breast cancer subtypes bearing distinct biologies and

Table 3 Differential response to chemotherapy according to molecular subgroups of the CIT classification

Treatment n Response BasL mApo LumC/LumB LumA/NormL P-value

(a) Correlation between the molecular subgroups of the CIT classification and pathological complete response to chemotherapy
Hess T/FAC 125 pCR 17 (68%) 11 (32%) 3 (7%) 0 (0%) 2.6� 10�9

no pCR 8 (32%) 23 (68%) 41 (93%) 22 (100%)

CIT EC 58 pCR 8 (53%) 6 (46%) 2 (7%) 0 (0%) 1.6� 10�3

no pCR 7 (47%) 7 (54%) 25 (93%) 3 (100%)

Bonnefoi FEC 66 pCR 16 (43%) 7 (41%) 5 (42%) NS
no pCR 21 (57%) 10 (59%) 7 (58%)

TET 58 pCR 17 (45%) 6 (35%) 3 (100%) 0.11
no pCR 21 (55%) 11 (65%) 0 (0%)

Total 307 pCR 58 (50%) 30 (37%) 13 (15%) 0 (0%) 4.3� 10�10

no pCR 57 (50%) 51 (63%) 73 (85%) 25 (100%)

Univariate Analysis Multivariate Analysis

Value n Odds ratio 95% CI P-value n Odds ratio 95% CI P-value

(b) Uni- and multivariate analyses of factors predictive for pathological complete response to chemotherapy in the three pooled datasets
ER ER� 307 4.5 2.5–8.4 2.1� 10�08 291 1.6 0.67–4.2 0.28
Grade Grade3 291 3.2 1.8–5.8 3.6� 10�05 1.9 1–3.5 0.04
CIT molecular classification BasL/mApo 307 6.1 3.1–13 7.0� 10�10 3.8 1.3–11 0.01

Abbreviations: CIT, our classification; NS, not significant; pCR, pathological complete response.
Table 3a shows the correlation between pCR and CIT molecular subgroups. pCR and absence of response (no pCR) to chemotherapy were
analyzed in three clinical trials (Hess et al., 2006, Bonnefoi et al., 2007, CIT set). Owing to the small number of data, four main subgroups and two
intermediate subgroups were combined into two groups: (LumB; LumC; LumB/C) and (NormL; LumA; NormL/LumA). Treatment description:
EC, six cycles of a dose-dense regimen of 75mg/m2 epirubicin and 1200mg/m2 cyclophosphamide, given every 14 days; T/FAC, 24 weeks
of sequential paclitaxel and fluorouracil-doxorubicin-cyclophosphamide; FEC, fluorouracil, epirubicin, and cyclophosphamide for six cycles;
TET, docetaxel for three cycles followed by epirubicin plus docetaxel for three cycles. Correlations were calculated using Fisher exact test. Table 3b
shows uni- and multivariate analyses of factors predictive of pCR in the three pooled datasets. Univariate analysis was done using the Fisher exact
test and multivariate analysis by logistic regression.
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clinical courses. We propose that stratifying breast
cancers according to such a classification could be highly
beneficial when searching for new prognostic or response
to treatment indicators. These would be subgroup specific
instead of expressing the differences between highly and
poorly proliferating tumors. Furthermore, such a classi-
fication, once adapted in a format compatible with
clinical setting, could efficiently contribute to disease
management. Indeed, the different subgroups outlined
here occur in different age groups, metastasize to different
organs and exhibit distinct survival kinetics. Similarly, the
association with immune system activation pathways in
LumC may be indicative for an anti-tumor immunity in
this specific subgroup. All of these are clear indications
that they represent distinct clinical and biological entities.

Materials and methods

Patients and tumors
A total of 724 primary breast carcinomas were collected and
analyzed for expression profiling on Affymetrix U133-Plus2.0
chips and a subset of 488 samples were analyzed by array-CGH.
In addition, 58 fine-needle aspiration biopsies from patients
undergoing neoadjuvant chemotherapy were analyzed by trans-
criptome and included in the response-to-chemotherapies set.
Full description can be found in Supplementary Table 1 and
Table 2. Mean follow-up time was of 65 months. Four RNA
from normal human breast tissue were used as reference. Histo-
logical grade as well as ER, PR and HER2 levels determination
are detailed in the Supplementary Methods.

Discovery and validation sets
Our 724 breast tumor transcriptome dataset was split in a CIT-
discovery-set comprising 537 (75%) tumors of which 488 were
analyzed by array-CGH and 187 (25%) cases were set apart
for the validation-set. The Affymetrix validation set comprised
the 187 samples from CIT and 2225 transcriptomes collected
from GEO and array-express (Supplementary Table 2).

Expression profiling and data analysis
RNA profiling. Methods used for RNA purification, quality
control, fluorescent probe production, hybridization and data
processing were essentially as previously described (de Reynies
et al., 2009).

Transcriptome analysis and molecular subgroup determination
Our rational was to ensure the greatest possible homogeneity to
identified subgroups. Subgroup determination was based on the
CIT-discovery-set including 537 transcriptomes and a clustering
approach iterating unsupervised and supervised steps (Supple-
mentary Figure 1, Supplementary Methods). Microarray data
were first classified with a set of 244 most variant probe sets
using in parallel hierarchical clustering, k-means and Gaussian
mixture model. Tumors that were assigned to the same group by
the three methods were kept, defining a coreset of 355 tumors.
Based on this coreset most discriminative genes were selected by
analysis of variance and ranked by random-forest, producing a
256 gene signature, leading to the identification of six homo-
geneous molecular subgroups. Validation datasets were inde-
pendently classified in the CIT molecular subgroups by applying
a classical distance-to-centroid approach, implemented in the
citbcmst R package available at the following URL http://
cran.r-project.org/web/packages/citbcmst/index.html and com-

ing with a (Sweave) user documentation. The complete classifi-
cation procedure is detailed in the Supplementary Methods.

Comparison with the Sorlie, Hu and Parker classifiers
Sorlie (Sorlie et al., 2003), Hu (Hu et al., 2006) and Parker
(Parker et al., 2009) centroids were retrieved from http://
genome-www.stanford.edu/breast_cancer/robustness/data/Intrinsic
GeneList.txt, https://genome.unc.edu/pubsup/breastTumor/data/
306genes-X-249samples-X-5subtypes+5centroids.xls and https://
genome.unc.edu/pubsup/breastGEO/pam50_centroids.txt, respec-
tively. To build the classifiers corresponding clone UniGene_IDs
were mapped to Affymetrix (U133A or U133Plus2) probe sets. For
Sorlie this was possible for 334 UniGene_IDs gene symbols,
for Hu 232 UniGene_IDs and Parker all genes could be
directly mapped.

Comparison with the Jönsson array-CGH-based classification
The 6 Jönsson centroids are relative to genomic regions
determined with the GISTIC algorithm (Jönsson et al., 2010).
Details are provided in the Supplementary Methods.

Cancer pathways analysis
Cancer relevant pathways were retrieved from KEGG (ftp://
ftp.genome.ad.jp/pub/kegg/pathways/hsa), Biocarta (http://
www.biocarta.com) and GO (http://www.geneontology.org/),
and related genes were mapped to non-redundant HUGO Gene
symbols. Four gene set analysis methods were used (Supple-
mentary Methods), yielding P-values, which were transformed
into ranks. Gene sets were ranked by order of interest according
to the mean of the ranks across the four methods.

Array-CGH
Array-CGH was performed on a 4434 BAC-array with a
median resolution of 0.6Mb. DNA labeling, hybridization and
data processing are as described in the Supplementary Methods.

Statistical tests
Clinical correlations were determined by w2 for qualitative
factors and analysis of variance for quantitative variables.
Disease outcome was investigated with Kaplan–Meier curves
using metastatic recurrence as an endpoint and subgroup for
stratification. MFS was calculated from the date of diagnosis
until first metastatic relapse. P-values at 60 and 180 months
resulted from a log-rank test on Cox estimates. Benjamini and
Hochberg method was applied for multiple-testing adjustment.
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