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Abstract: The idea of performing model combination, instead of model selection, has a long theoretical background in statistics. However,
making use of theoretical results is ordinarily subject to the satisfaction of strong hypotheses (weak error correlation, availability of large
training sets, possibility to rerun the training procedure an arbitrary number of times, etc.). In contrast, the practitioner is frequently
faced with the problem of combining a given set of pre-trained classifiers, with highly correlated errors, using only a small training sample.
Overfitting is then the main risk, which cannot be overcome but with a strict complexity control of the combiner selected. This suggests
that SVMs should be well suited for these difficult situations. Investigating this idea, we introduce a family of multi-class SVMs and assess
them as ensemble methods on a real-world problem. This task, protein secondary structure prediction, is an open problem in biocomputing
for which model combination appears to be an issue of central importance. Experimental evidence highlights the gain in quality resulting
from combining some of the most widely used prediction methods with our SVMs rather than with the ensemble methods traditionally
used in the field. The gain increases when the outputs of the combiners are post-processed with a DP algorithm.

Keywords: Classifier fusion; Generalisation performance; Hierarchical sequence processing systems; Protein secondary structure prediction;
Statistical learning theory; Support Vector Machines

1. INTRODUCTION

Since the early 1960s, and precisely the studies of Bates and
Granger [1,2], model combination has proved to be an
efficient alternative to model selection for a wide range of
statistical inference problems. Theory in the field has made
rapid strides [2–9], however, until recently, theoretical evi-
dence had been mainly developed in the framework of
regression, whereas discrimination was seldom considered
independently. In the last decade, many studies have dealt
with the specific problems of discrimination, such as the
estimation of Bayes error [10,11], or variance reduction [12],
the link between error correlation and error reduction [13]
(see also Clemen and Winkler [14]), as well as the decompo-
sition of the error into a bias and a variance term [15].
The success of methods such as bagging [16] and boosting
[17] has highlighted the usefulness of implementing boots-
trap algorithms to improve the performance of ‘weak classi-
fiers’. This is indeed of primary importance, since the theory
of boosting meets Vapnik’s theory of bounds through the
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fundamental notion of a maximal margin classifier. Classifier
combination is thus currently endowed with a rich theoreti-
cal framework, which is very useful as long as the problem
at hand satisfies the hypotheses on which it is grounded.
Unfortunately, in many real-life situations, the practitioner
is faced with the worst configuration one can think of when
combining models (pre-trained experts with different types
of outputs, errors highly correlated, small set of labelled
data available for training, etc.). These difficulties prevent
him from making the best of the potential of the theory, and
his main concern is to avoid overfitting. As a consequence, in
this context, the problem to be solved primarily consists in
finding a combiner of adequate complexity, so that, with
high probability, the training error observed could constitute
an estimate precise enough of the generalisation error, and
the gain in prediction accuracy, small as it should be, could
be ‘guaranteed’. This is precisely the type of situations for
which Support Vector Machines (SVMs) have been
developed. SVMs have been introduced by Vapnik and co-
workers [18,19] as a direct implementation of the Structural
Risk Minimisation (SRM) inductive principle [20]. The aim
of the support vector method, a description of which can
be found elsewhere [21–24], is to maximise the generalisation
capabilities by minimising an upper bound on the expected
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risk (or generalisation error) with respect to the values of
the model parameters. This bound is systematically made
up of two terms. The first one is the empirical risk (training
error), the second one, that Vapnik calls a confidence inter-
val, is a growing function of the capacity of the model,
capacity which can be expressed in terms of different meas-
ures. For instance, in the case of dichotomy computation,
the most common one is the Vapnik–Chervonenkis (VC)
dimension [25]. Simple introductions to the theory of
bounds applied to neural networks can be found in Haussler
[26] and Anthony [27]. With this structure of the bound
in mind, it appears immediately that the SRM inductive
principle can be implemented by minimising the control
term for different levels of the empirical risk, in order to
find a minimum of the guaranteed risk functional with a
linesearch. Indeed, this aim is reached with the support
vector methods developed for estimating indicator or real-
valued functions. Unfortunately, although many multi-class
discriminant models have been developed around the sup-
port vector method, none of them owns this property.
Initially, multi-class discrimination was implemented with
SVMs through the so-called one-against-the-rest or one-per-
class approaches [28,29]. Later on came the pairwise-coupling
decomposition scheme [30,31] and the k-class SVM proposed
independently by Vapnik [21], Weston and Watkins [31]
and Bredensteiner and Bennett [32], among others. Strictly
speaking, these three approaches fail to implement the SRM
inductive principle, since they are not related, at least
explicitly, to a uniform convergence result, or guaranteed
risk, which makes it impossible to characterise a satisfactory
compromise between training performance and complexity.
In this paper, building upon the uniform strong law of large
numbers introduced in Elisseeff et al [33], we develop a
theoretical framework which leads to the specification of a
family of Multi-class SVMs (M-SVMs). They differ either in
the expression of the guaranteed risk or in the specification
of the structure. This enables us to provide Vapnik’s k-class
SVM with a theoretical grounding. Two of these SVMs are
assessed as classifier combiners on an open real-world prob-
lem: the problem of protein secondary structure prediction.
This task is of central importance in predictive structural
biology. Numerous methods have been proposed to predict
the secondary structure (see elsewhere [34–36] for reviews
on the subject). A priori, implementing a combination of
models appears particularly relevant in this context, since
most of the prediction systems developed so far ordinarily
use, in addition to the amino acid sequences (or profiles of
multiple alignments), data from different knowledge sources
(physicochemical properties, homology, etc.). Consequently,
whenever secondary structure is to be predicted, several sets
of conformational scores are available, which can be expected
not to be utterly correlated. Indeed, most of the current
best prediction methods already implement conformational
score combinations at one stage or another. These combi-
nations can take many forms, ranging from the simple linear
opinion pool [37] to the more complex non-linear regression
schemes performed by neural networks [38,39]. Symbolic
methods based on empirical results have also been

implemented, such as the algorithm combine [40]. However,
a constant of these studies is that the choice of a particular
combiner is hardly ever justified, although it appears to have
a crucial effect on performance. Furthermore, the scores
combined are systematically homogeneous, (i.e. they rep-
resent estimates of the same quantities), whereas the prac-
titioner who needs to make his own prediction based on
the results of several methods has most often to deal with
inhomogeneous scores. Last but not least, the gain resulting
from the combination is seldom significantly superior to
that resulting from a simple averaging of the outputs of the
base classifiers. This phenomenon is indeed acknowledged
by leading experts in the domain (B. Rost and G. Pollastri,
personal communications). A first attempt to overcome these
limitations was described in our earlier work [41]. In this
paper, we establish that noticeable benefits can spring from
combining protein secondary structure models with M-
SVMs. The gain in prediction accuracy over other standard
ensemble methods becomes statistically significant, with con-
fidence exceeding 0.98 when the outputs are post-processed
with a simple Dynamic Programming (DP) algorithm bor-
rowed from the field of speech processing, which suggests
that our SVMs would perform best when incorporated in
hierarchical prediction systems. The organisation of this
paper is as follows. In Section 2, we briefly summarise our
uniform convergence result, and explain how it can be of
practical use to study the generalisation capabilities of multi-
class discriminant models (to bound the expected risk). The
corresponding theorems and formulae are then applied to
the multivariate linear (or more precisely affine) regression
model, which leads to the specification of the new M-SVMs.
Mathematical details are reported in the Appendix. Initial
experimental results, regarding the sole combination, are
given in Section 3. The comparative study is developed in
Section 4, where the possibility of post-processing the
outputs is assessed.

2. FROM UNIFORM STRONG LAWS OF
LARGE NUMBERS TO MULTI-CLASS SVMs

2.1. Framework of the Study

We consider the case of a Q-category pattern recognition
problem, where Q � 3. Let X be the space of description
(or input space) and C the set of categories. We make the
assumption, standard in statistical learning theory, that there
is a joint probability, fixed but unknown, on X � C. Our
goal is then to find, in the set H = {h} of functions
implemented by a statistical model, a function which corre-
sponds to the lowest error rate. The decision function asso-
ciated with this function must thus be as close as possible
to Bayes’ decision rule. We make further the hypothesis that
the elements of H are multivariate real-valued functions.
Precisely, for each example x in X and each category Ck in
C, (1 � k � Q), a function hk of x taking its values in �
is computed. The discriminant function associated with these
regression functions is obtained by assigning each pattern x
to the category Ck satisfying hk (x) = maxlhl(x). This frame-
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work is very common indeed. In the case where the hk(x)
are estimates of the class posterior probabilities, which occurs
for instance when the model is a neural network and the
training criterion is adequately selected [42,43], choosing this
decision function simply amounts to implementing Bayes’
estimated decision rule. In what follows, C(xi) will denote
indifferently the category of pattern xi, or the index of this
category, while yi will be the corresponding canonical coding,
i.e. C(xi) = Cl ⇔ yi = [yik] � {�1, 1}Q, where yik = �1 1��kl,
and � is Kronecker’s symbol.

2.2. Uniform Strong Law of Large Numbers based on
Covering Numbers

In this context, we have established a uniform strong law
of large numbers which is based of the following definitions.

Definition 1 (Covering numbers). Let (E, �) be a pseudo-
metric space, and B (v, r) the closed ball of radius r and
centre v in E. The covering number N (�, H, �) of a set H
� E is the smallest cardinality of the sets H̄ � E such that

H � �
v�H̄

B(v, �)

The sets H̄ satisfying this property are called �-covers of H:
each element in H is at a distance less than � of an element
in H̄.

See Kolmogorov and Tihomirov [44] and Carl and Stephani
[45] for the fundamental results regarding covering numbers.

Definition 2. Let F be a set of functions from X into �Q.
For a set s of points in X, define the pseudo-metric dl�,l1(s) on
F as

∀(f, f̄) � F2, dl�,l1(s) (f, f̄) = max
x�s

�Q
k=1

�fk(x) − f̄k(x)�

Definition 3. For all h � H and all x � X, let M1 (h, x)
be the smallest index l such that hl(x) = maxk hk(x) and
M2(h, x) the smallest index l � M1 (h, x) such that hl(x) =
maxk�M1(x)hk(x). Define 	h = [	hk], (1 � k � Q), as the
function from X into �Q, satisfying

	hk(x) = �.(hk(x) − hM2(h,x)(x)) if k = M1(h, x)

.(hk(x) − hM1(h,x)(x)) otherwise

Note that this function is directly related to the notion of
margin introduced by Schapire and co-workers [17] to
extend to the multi-class case the uniform convergence
results established for boosting algorithms. Define the thres-
hold function sign: � → {�1, 1} as

sign(x) = �1 if x � 0

−1 otherwise

For 
 � (0, 1], define �
: � → [�
, 
] as the piecewise-
linear squashing function

�
(x) = �
.sign(x) if �x� � 


x otherwise

∀h � H, 	h
 = [	h

k] = [�
 � 	hk], (1 � k � Q). 	H
 =

{�
(	h)/h � H}. With these definitions at hand, we denote

Definition 4.

N�,1(
/2, 	H
, 2N) = max
s2N�X2N

N(
/2, 	H
, dl�,l1(s2N))

To select an optimal function h � H, we make the
assumption that a training set SN = {(xi, yi)}, (1 � i � N),
made up of labelled examples, iid according to the joint
distribution on X � C to be inferred, is available. Extending
a definition from Bartlett [46], we introduce the following
definition:

Definition 5. The empirical risk with margin 
 � (0, 1] on
a training set SN of size N is

R

sN

(h) =
1

N
�{xi, C(xi)) � sN/	hC(xi)

(xi) � 
}�

Studies on the use of margins in statistical learning theory
date back from the early works of Vapnik [20]. Different
illustrations of the richness of this approach can be found
elsewhere [47,48,17,33]. In this context, extending Lemma 4
and Corollary 9 from Bartlett [46], as well as Theorem 4.1
from Vapnik [21], we established [33] the following theorem
(Corollary 2):

Theorem 1. With probability at least 1 � �, for every value
of 
 in (0, 1], the risk R(h) of a function h computed by a
numerical Q-class discriminant model H trained on a set of
size N is bounded above by

R(h) � R

sN

(h) + � 1

2N �ln(2N�,i(
/2, 	H
, 2N)) + ln � 2


��� +
1

N
(1)

Similar theorems can be derived for different pseudo-metrics
(see, for instance, Guermeur et al [49]). One of the most
interesting possibilities is to consider the pseudo-metric
dl�,l�(s) given by:

Definition 6. Let F be a set of functions from X into �Q.
For a set s of points in X, define the pseudo-metric dl�,l�(s)

on F as

∀(f, f̄) � F2, dl�,l�(s) (f, f̄) = max
x�s

max
l�k�Q

�fk(x) − f̄k(x)�

Note that, contrary to other well known bounds, these
theorems do not rest on the hypothesis that the functions
in H take their values in [�1, 1]Q, which makes them quite
general. They apply, for instance, to multi-layer perceptrons,
even when they have linear output units, and consequently
also to SVMs. The bounds are significantly tighter than
those obtained by using as a capacity measure multi-class
extensions of the VC dimension such as the graph dimension
or Natarajan dimension [50]. A preliminary comparative
study on this question can be found elsewhere [51]. To
implement the SRM inductive principle, the main term the
value of which must be determined, except for the empirical
margin risk, is the covering number characterising the model
capacity. Expressing this measure in terms of the model
parameters can thus provide us with the objective function
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of an optimisation problem corresponding to a training
algorithm.

2.3. Bounds on the Covering Numbers

Several methods have been proposed to bound covering
numbers [52,53,46]. In this section, we outline a strategy to
derive an upper bound on the covering numbers for general
multi-class models (unspecified families of functions H tak-
ing their values in �Q), using the method introduced in
Williamson et al [54] and Smola [55]. A key feature of this
approach is that it directly bounds the covering numbers of
interest rather than making use of a combinatorial dimension
such as the extensions of the VC dimension cited before or
the fat-shattering dimension [56]. To that end, we make
the additional assumption that H is included in a finite-
dimensional Banach space EH. We assume further that H
is bounded in EH (with respect to the corresponding norm).
This is indeed a mild hypothesis, since it is satisfied among
others by SVMs, regularisation networks [57] and linear
models, when prior information is assumed or is given. As
a consequence, H is precompact (see Carl and Stephani [45]
for a proof of this proposition), which means that the
covering numbers of interest will always be finite. For the
set s2N � X2N aforementioned, let us define the following
linear operator:

Ts2N
: EH → M2N,Q(Q−1)/2(�)

g = [gk] � Ts2N
(g)

with

Ts2N
(g) = �

g1(x1) − g2(x1) % gk(x1) − gl(x1) % gQ−1(x1) − gQ(x1)

% % % % %

g1(xi) − g2(xi) % gk(xi) − gl(xi) % gQ−1(xi) − gQ(xi)

% % % % %

g1(x2N) − g2(x2N) % gk(x2N) − gl(x2N) % gQ−1(x2N) − gQ(x2N)
�

Let BH be a closed ball of EH in which H is included.
We endow M2N,Q(Q�1)/2(�) with a norm 	.	 chosen in accord-
ance with the choice of the pseudo-metric on H. For
instance, in the case where the pseudo-metric is dl�,l�(s),
we set

∀A � M2N,Q(Q−1)/2(�), A = [aij],

	A	 = 	A	l�,l�(2N) = max
1�i�2N

max
Q(Q−1)/2

j=1
�aij�

After some algebra (see the Appendix), one obtains:

N(
/2, 	H, ds2N
) � fds2N

(N(
/2, Ts2N
(BH), 	.	))

where fds2N
is an increasing function which depends upon

the choice of the pseudo-metric, represented here by the
generic notation ds2N

. Since �
 satisfies the Lipschitz con-
dition with constant 1, one finally derives:

Theorem 2. For all s2N � X2N and for all 
 � (0, 1],

N(
/2, 	H
, ds2N
) (2)

� fds2N
(N(
/2, Ts2N

(BH), 	.	))

We have thus reduced the problem of bounding the
covering number appearing in Eq. (1), or other similar
formulae based on different pseudo-metrics, to the problem
of finding an upper bound of N(
/2, Ts2N

(BH), 	.	), when
s2N describes the whole set X2N. This can be done readily
thanks to functional analysis results. To detail the corre-
sponding process, we must first introduce additional defi-
nitions.

Definition 7 (Entropy numbers). Let (E, �) be a pseudo-
metric space. The nth entropy number �n(H) of a set H �
E is defined as the smallest real � such that there exists an
�-cover of H of cardinality at most n.

Let T be a linear operator from a Banach space E into a
Banach space F. Let UE be the closed unit ball of E. The nth
entropy number of T is defined as

�n(T) = �n(T(UE))

Definition 8 (operator norm). Let T be a linear operator
acting between arbitrary real Banach spaces E and F. 	T	F is
the operator norm given by 	T 	F = supf�UE

	T(f)	F.

The idea underlying the introduction of the entropy num-
bers is simple. On the one hand, there is a simple relation-
ship between a bound on an entropy number and a bound
on a covering number. On the other hand, functional analy-
sis provides us with results, such as Maurey’s theorem (see
Williamson et al [58] and below), to bound the entropy
numbers of linear operators. For the sake of simplicity, we
illustrate the first point in the (univariate) linear case, bor-
rowing our example from Williamson et al [54]. Similarly,
the formulation of Maurey’s theorem we give should be
adapted to apply to the specific context at hand.

Theorem 3. Let F
w be the set of linear applications fw, from
EX, Banach space containing X, into �, satisfying 	w 	l2

�

w , where 	.	l2

is the Euclidean norm. Then

�n(T: 	.	l2
→ 	.	l�(s2N)) � �0 ⇒ N�(�0, F
w, 2N) (3)

� n

Theorem 4 (Maurey). Let T � L(E, l�(sm)), where E is an
Hilbert space. Then there exists a constant c � 0 such that,
for all n, m � �,

�n(T) (4)

� c	T	 �(log n + 1)−1 log �1 +
m

logn + 1��1/2

In a nutshell, applying Eq. (4), or more precisely the
adequate extension of this formula, it is possible to derive
an upper bound on the entropy numbers of the linear
operator Ts2N

. From this bound, an upper bound on the
covering number of interest, N�,1 (
/2, 	H
, 2N), N�,�

(
/2, 	H
, 2N), etc. can then be derived, by making use
of Eq. (2), or the appropriate extension of Eq. (3). A last
difficulty must be overcome, which springs from the fact
that by hypothesis, the functions in H live in BH, whereas
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the aforementioned results involve UEH, the unit ball of EH.
This is done very simply, thanks to the following proposition:

Proposition 1. Let T be a linear operator acting between
arbitrary real Banach spaces (E, 	.	E) and (F, 	.	F). For all
balls B
 of radius 
 centred in a:

T(B
) = 
T(UE) + T(a) (5)

This means that, once one has been able to characterise
a ball of EH in which the functions of H live, the nature
of its parameters (centre and radius) raise no (theoretical)
difficulty to bound the covering numbers of interest (bearing
in mind that the smaller the radius is, the better the bound
will be).

2.4. Architecture of the M-SVMs

The results presented in the previous sections apply to any
multi-class discriminant system obtained by combining a
multivariate model with Bayes’ estimated decision rule. In
this section, we turn to the specific case of M-SVMs. The
study of the standard (bi-class) SVMs is usually done in
two steps: first, the linear case (optimal hyperplane), then
the non-linear one (by introduction of kernels satisfying
Mercer’s conditions [59]). Indeed, the specification of the
training procedure does not take into account explicitly the
nature of the kernel, although bounds on the generalisation
error of kernel machines have been derived (see, for instance,
Williamson et al [54] for a very powerful theoretical frame-
work on the subject). In the same way as a ‘linear’ SVM
shares the architecture of the perceptron, a multi-class linear
SVM is a multivariate linear regression model (a set of
hyperplanes of cardinality equal to the number of classes).
We thus have H = {h}, with

∀x � X, h(x) = Wx + b = �
wT

1

�

wT
k

�

wT
Q

� x + �
b1

�

b2

�

bQ
�

Given the results reported in the preceding subsections, to
apply the SRM inductive principle to M-SVMs, and conse-
quently to determine the objective function of the training
procedure, we must thus bound the covering numbers of
the multivariate linear (affine) model.

2.5. Covering Numbers of the Multivariate Linear
Regression Model

A bound on the covering numbers of the model of interest
can be deduced from the following two theorems. Note that,
for the sake of simplicity, both have been expressed for a
specific choice of the pseudo-metric on H, which induces
no loss of generality.

Theorem 5. Let F̃ be a set of functions from X into �Q and

F a set of functions satisfying ∀f � F, ∃(f̃, b) � F̃ � [�B,
B]Q/f = f̃ � b. Let 	F and 	F̃ be the sets of functions
derived from F and F̃, respectively, by applying Definition 3.
Then the following bounds hold:

N�,1(Q�, F, 2N) � �

2B

�

 + 1�Q

N�,1(�, F̃, 2N)

N�,1(Q�, 	F, 2N) � �

4B

�

 + 1�Q

N�,1(�, 	F̃, 2N) (6)

Theorem 6. Let H be the multivariate linear model from X
� �d into �Q. H and �d are endowed with the Euclidean
norm 	.	l2

. If X is included in a ball of radius 
X about the
origin, then the following bound holds:

∀h � H, 	Ts2N
(h)	l�,l1

� 
X �Q(Q − 1)

2 ��
k�1

	wk − wl	2
l2

(7)

To sum up, combining the results exposed in the previous
subsections with Eqs (6) and (7), it was possible to express
the confidence interval which constitutes, with the empirical
risk, the expression of the guaranteed risk, as an increasing
function of �k�l 	wk � wl	2. Since this sum is a convex
functional, this result nicely extends Vapnik’s well known
bound on the VC dimension of canonical hyperplanes in
terms of the square of the norm of the corresponding vector
(see Vapnik [21], Theorem 10.3).

2.6. Unification of the Multi-class SVMs Proposed so Far

Making use of Theorem 6, we can readily specify a multi-
class SVM, the objective function of which takes the confi-
dence interval into account through the term �k�l 	wk �
wl	2. The training procedure associated with this model
consists in solving the following quadratic programming
problem:

Problem 1

min
h�H

� 1

2
�

1�k�l�Q

	wk − wl	2 + C �N
i=1

�Q
k=1

�ik

s.t. �(wC(xi)

− wk)T xi + bC(xi)
− bk � 1 − �ik, (1 � i � N), (1 � k � C(xi) � Q)

�ik � 0, (1 � i � N), (1 � k � C(xi) � Q)

As usual, the non-negative slack variables �ik have been
introduced to take into account the fact that the data could
be non-separable by the multivariate linear model. Their values
characterise the empirical risk. Many algorithms are available
to find an optimal solution (see, for instance, Fletcher [60],
Smola [55] and Elisseeff [61]). In fact, additional specifications
are required to ensure the unicity of the optimal solution, due
to the following result. Let (W(1), b(1)) be an optimal solution
of Problem 1. Then the couple (W(2), b(2)) such that w(2)

k

= w(1)
k � v, (1 � k � Q), where v is an arbitrary vector of

�d, and b(2)
k = b(1)

k � c, (1 � k � Q), where c is an arbitrary
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real, is also an optimal solution of Problem 1. To ensure the
unicity, we thus impose the following additional constraints:

��Q
k=1 wk = 0d

�Q
k=1 bk = 0

Taking into account these constraints, the SVM specified com-
pares directly with the other multi-category SVMs developed
so far. Indeed, the only difference between these SVMs lies in
the expression of the objective function, as can be seen in
Table 1.

In fact, all these models are utterly equivalent. A sketch of
the proof can be found in the Appendix.

To sum up, starting from a uniform strong law of large
numbers, we have been able to derive in the framework of
statistical learning theory the specifications of the sole multi-
class SVM published so far, which had been ‘discovered’ inde-
pendently by several people. This result is interesting in its own
right, since this rigorous justification was lacking, the reasons
used by the aforementioned authors to support their choice
being mainly the analogy with the bi-class case [21,31,32], and
considerations regarding the regularisation theory [32]. In the
following section, we establish that our framework can be used
to specify other models.

2.7. Different Models Obtained by Changing the Metric

The specifications of the M-SVM considered in the previous
subsection are based on the use of the dl�,l1(s2N) pseudo-distance
and 	.	l�,l1

norm. We have seen that this is not a compulsory
choice. Furthermore, to optimise performance, selecting a spe-
cific (pseudo)-metric should result from a study of the nature
of the problem at hand. This is precisely one of the degrees
of freedom which generates the family of models we have been
dealing with. The primary limitation, to extend nicely Vapnik’s
bi-class SVM, is that the resulting training procedure must still
amount to solving a convex programming problem. An exhaus-
tive study of the different possibilities goes beyond the scope
of this paper. In this section, we focus on the use of the
pseudo-metric dl�,l�(s) (see Definition 6), thus specifying the
other M-SVM which will be used in the experiments detailed
in the following sections. For this definition of the pseudo-
distance, and the corresponding norm, the following result,
established by A. Elisseeff, holds:

Theorem 7. If H is the multivariate linear model, X � �d and
maxk�l 	wk � wl	l2

is bounded, then the expression of N�,�(
/2,
	H
, 2N) with respect to the norm 	.	l�,�

satisfies

Table 1. Specifications of the different multi-category SVMs published so far

SVM Objective function Add.
constraints

Vapnik [21] �Q
k=1 	w2

k	2 –

Bredensteiner and Bennett [32] �Q
k�l 	wk � wl	2 � �Q

k=1 	wk	2 –

This work �Q
k�l	wk � w1	2 �Q

k=1 wk = 0d

ln(N�,�(
/2, 	H
, 2N)) = O �Qd ln �1


�� (8)

Building upon this formula, we can then specify the new
multi-class SVM, the objective function of which takes the
confidence interval into account through the convex function
maxk�l 	wk � wl	2. Its parameters are still the solution of a
convex programming problem.

Problem 2

min
h�H

� 1

2
t2 + C �N

i=1

�Q
k=1

�ik

s.t. � constraints of Problem 1

	wk − wl	2 � t2, (1 � k � l � Q)

The choice between this model and the former one can, for
instance, be based on the knowledge available regarding the
domain in which the data live.

3. IMPLEMENTATION OF M-SVMs TO
COMBINE PROTEIN SECONDARY STRUCTURE
PREDICTION METHODS

3.1. Characterisation of the Problem

To estimate the generalisation capabilities of M-SVMs, we used
those specified above to combine protein secondary structure
prediction methods. Prediction of protein 3D structure from
the primary sequence of amino acids is a very challenging task,
for which no satisfactory solution is currently available. A step
forward is to predict the local conformation of the polypeptide
chain, which is called the secondary structure. Protein secondary
structure prediction is usually treated as a three-class discrimi-
nation task, which consists in assigning a conformational state
�-helix, �-strand or aperiodic (coil), to each residue (amino
acid) of a sequence. Apart from the fact that this problem is
of central importance in structural biology, it presents character-
istics which make it highly attractive from the point of view
of pattern recognition. First, large databases of protein chains
are available. It is thus possible to assess the models developed
to process them in a wide spectrum, ranging from small samples
to asymptotic behaviour. Secondly, many different methods have
been proposed to predict the secondary structure, as was already
pointed out in Section 1. Thirdly, combining these methods is
not an easy task, since the risk of decreasing the training error
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while increasing the test error has been stressed by many
specialists of the field. For all these reasons, we consider this
problem to be a touchstone to assess ensemble methods.

3.2. Experimental Protocol

We have implemented the SVMs associated with the 	.	l�,l1

norm (M-SVM1) and 	.	l�,l�
norm (M-SVM2) to combine the

outputs of three of the most widely used secondary structure
prediction methods: SOPMA [62], which uses multiple align-
ments, GOR IV [63], which is based on the formalism of the
information theory, and SIMPA96 [64], a nearest-neighbour
method. To assess the resulting predictions, we compared them
with those of majority voting, a weighted average, optimal with
respect to the least squares criterion, a Multi-Layer Perceptron
(MLP) and the Multivariate Linear Regression Combiner
(MLRC) introduced by Guermeur et al [11,41]. Two learning
architectures involving multiple binary pattern recognition SVMs
were also implemented. The first, involving three SVMs, was
implementing the widely used one-against-all method (see, for
instance, Vapnik [21]). The second one was the new DAGSVM
of Platt and co-workers [65]. The MLR combiner requires the
outputs of the experts to be class posterior probability estimates,
and precisely to be non-negative and sum to unity. This is not
the case with the prediction methods used here. To compare
the combiners in a fair way, the outputs of the base classifiers
were thus preliminary post-processed with the structure-to-
structure filtering neural network described in Guermeur et al
[41]. To constitute the training and test sets, we selected a
release of the PDBSELECT database [66] containing 629 chains.
These chains are made up of 147,518 residues. The secondary
structure assignment was carried out according to DSSP [67].
To obtain unbiased estimates of the accuracy of the predictions,
a variant of stacked generalisation [68] was applied, to train in
sequence the filtering networks and the combiners. The database
was divided into seven disjoint parts of roughly equal size.
Based on this splitting, a two-stage cross-validation procedure
was implemented. Each subset was iteratively used as the test
set. The six remaining sets were then grouped by three in six
different ways, to constitute as many pairs of disjoint training
sets for the filtering networks and combiners. In this variant,
the initial leave-one-out cross-validation procedure was thus
replaced with a more computationally efficient six-fold cross-
validation. This implementation of stacked generalisation,
although suboptimal, has been observed not to deteriorate the
generalisation performance, or more precisely the test error,
which is consistent with other results (for instance, those
reported in Breiman [69]). The prediction accuracy was assessed
by means of four standard measures: the percentage of correctly
predicted residues Q3 for a three-state description of secondary
structure (helix, extended and aperiodic); Pearson’s/Matthews’
correlation coefficient C [70]; the segment overlap measure
Sov’94 [71,72]; and the standard deviation in the secondary
structure content �. The Sov measure plays a specific role,
since it evaluates the quality of the prediction with respect to
the conformational segments, which is a criterion of primary
importance for the task. The figures characterising the behaviour
of the individual methods, before and after filtering, have been
gathered in Tables 2 and 3.

Table 2. Initial relative prediction accuracy of individual
experts on a set of 629 non-homologous globular proteins
from the PDBSELECT database

GOR IV SOPMA SIMPA

Q3 64.1 68.4 69.2
C� 0.47 0.55 0.56
C� 0.39 0.48 0.49
Cc 0.44 0.49 0.49
Sov 0.66 0.72 0.71
Sov� 0.63 0.72 0.74
Sov� 0.67 0.73 0.67
Sovc 0.68 0.72 0.72
�� 13.9 10.8 10.8
�� 11.5 10.3 11.2
�c 9.4 9.9 11.6

Table 3. Relative prediction accuracy of individual experts
on a set of 629 non-homologous globular proteins from the
PDBSELECT database. Initial scores have been post-processed
as was done in Guermeur et al [41]

GOR IV SOPMA SIMPA

Q3 66.5 69.7 69.4
C� 0.51 0.58 0.57
C� 0.43 0.49 0.49
Cc 0.46 0.50 0.49
Sov 0.68 0.71 0.70
Sov� 0.67 0.73 0.72
Sov� 0.64 0.68 0.66
Sovc 0.70 0.72 0.71
�� 12.5 10.7 10.6
�� 11.6 11.1 10.7
�c 10.1 10.6 11.1

3.3. Raw Results of the Combinations

Table 4 summarises the relative performance of the different
combiners. Figures given here correspond to SVMs and M-
SVMs with radial basis kernels (� = 0.1) and C = 10. These
values of the parameters were selected, since they appeared to be
‘satisfactory’ for all the models. However, systematic experiments
should be conducted in order to assess more precisely the
influence of the parameterisation. Furthermore, additional
experiments performed with two different polynomial kernels
seem to suggest that the choice of a particular kernel could
have significant incidence on the prediction accuracy (data not
shown). The training procedure of the M-SVMs consisted in a
slight modification of the algorithm described in Elisseeff [61].
The comparison of the predictive success of native methods
and combinations illustrates the usefulness of the best com-
biners, which succeed in significantly increasing the recognition
rate, even though the spectrum of quality among the classifiers
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Table 4. Relative prediction accuracy of combiners on a set of 629 non-homologous globular proteins from the PDBSE-
LECT database

Vote Average MLP MLRC SVM����c DAGSVM M-SVM1 M-SVM2

Q3 70.2 70.9 71.2 71.3 71.4 71.4 71.7 71.6
C� 0.59 0.60 0.60 0.60 0.60 0.60 0.61 0.60
C� 0.49 0.50 0.52 0.52 0.52 0.52 0.52 0.53
Cc 0.51 0.50 0.52 0.52 0.52 0.52 0.52 0.52
Sov 0.72 0.71 0.72 0.72 0.72 0.72 0.73 0.72
Sov� 0.73 0.72 0.73 0.74 0.73 0.74 0.74 0.74
Sov� 0.69 0.70 0.70 0.68 0.69 0.69 0.68 0.68
Sovc 0.73 0.73 0.73 0.73 0.73 0.73 0.73 0.74
�� 10.5 10.0 10.1 10.3 10.6 10.7 10.6 10.6
�� 10.3 10.2 10.1 10.9 10.9 10.9 10.8 10.8
�c 10.1 10.3 10.5 11.4 11.3 11.3 11.2 11.1

is wide. The M-SVMs obtain the best results, although the
difference with the MLR combiner is too low to be statistically
significant (the corresponding confidence is slightly over 0.9).

4. POST-PROCESSING OF THE
CONFORMATIONAL SCORES

Promising as they may seem, these results are not sufficient to
determine to what extent the conformational scores computed
by the M-SVMs can be useful for the biologist. A property
one usually expects from these scores is the possibility to use
them in higher-level treatments, or simply to provide a measure
of reliability of the predictions, as was done elsewhere [37,73,39].
To evaluate the quality of the combiners with respect to
these criteria, we post-processed their outputs with a dynamic
programming algorithm inspired by Ramesh and Wilpon [74],
and first assessed for protein secondary prediction in earlier
work [11]. To that end, the outputs of the SVMs and M-
SVMs had to be preliminary standardised. This could be perfor-
med simply for each architecture, except the DAGSVM, which
was thus discarded. The outputs of the weighted average, the
MLR combiner and the MLP were already class posterior
probability estimates. The underlying Inhomogeneous Hidden
Markov Model (IHMM) is depicted in Fig. 1.

It has three states, one for each conformational state. The
observations are the residues of the primary structure. The
specificity of the algorithm lies in the modelling of state dur-
ations. Instead of the standard stationary (first order) state
transition probabilities, the terms aij(d) are used, where the
extra parameter d represents the duration spent in the current
(conformational) state i. These probabilities are estimated by
the corresponding frequencies observed on the training set,
whereas the observation probability density functions are derived
from the outputs of the combiners by means of Bayes’ theorem.

As can be seen in Table 5, the main advantage of such a
post-processing is to narrow the gap between the length distri-
butions of observed and predicted structural segments. However,
its use also induces an improvement of the other standard
measures of prediction accuracy. Indeed, the overall increase in

Fig. 1. Topology of the IHMM used to post-process the outputs of
the combiners.

recognition rate compared to the best results obtained so far
on the same database, with the same experimental procedure
[41], is now statistically significant with confidence exceeding
0.99. Once more, the M-SVMs obtain the best results among
the combiners, the difference in performance between M-SVM1
and MLRC being statistically significant with confidence
exceeding 0.98. This means that the values of their outputs
carry some valuable information, and can for instance be used
to estimate the class posterior probabilities. This property could
prove to be very useful. One could, for instance, think about
incorporating M-SVMs in hierarchical models far more complex
than the one described here, such as the hybrid systems used
in speech processing, user modelling or handwriting recognition.
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Table 5. Quality of the predictions when the outputs of the combiners have been post-processed by an inhomogeneous
DP algorithm

Average MLP MLRC SVM����c M-SVM1 M-SVM2

Q3 71.1 71.5 71.5 72.0 72.3 72.2
C� 0.60 0.61 0.61 0.61 0.62 0.60
C� 0.50 0.52 0.52 0.51 0.53 0.51
Cc 0.52 0.52 0.52 0.52 0.53 0.52
Sov 0.72 0.74 0.74 0.74 0.74 0.73
Sov� 0.72 0.74 0.74 0.74 0.75 0.74
Sov� 0.68 0.70 0.70 0.70 0.70 0.69
Sovc 0.72 0.73 0.75 0.75 0.75 0.75
�� 10.6 11.8 10.8 10.9 10.7 10.7
�� 10.4 10.6 11.1 11.0 10.9 10.9
�c 10.6 10.8 11.6 11.8 11.8 11.7

5. CONCLUSION AND FUTURE WORK

We have introduced a new family of multi-class SVMs. Unlike
the previous work in the field [21,31,32], this study grounds
the specification of the models directly on a uniform strong
law of large numbers, with the consequence that the training
procedure corresponds to an explicit implementation of the
SRM inductive principle. Precisely, the training procedure
amounts to minimising an expression of the guaranteed risk
derived from a uniform convergence result specifically estab-
lished for Q-category discriminant models. This bound is
tighter than those derived so far for models with multiple
outputs, which should make the implementation of the SRM
principle better justified in the context of multi-category
discriminant analysis. Moreover, an appealing feature of
these M-SVMs is the fact that they exhibit the properties
which represent the main advantages of the bi-class SVM.
Indeed, our models appear as natural generalisations of
Vapnik’s, since their definitions are compatible with the
extension of some of the main theorems regarding the
generalisation capacities [75]. Two of them have been
implemented to combine protein secondary structure predic-
tion methods. These combinations appear to give better
performance than those resulting from the implementation
of standard ensemble methods, the gain becoming statistically
significant when the outputs are post-processed with a DP
algorithm. The recognition rate of the overall system high-
lights the benefits that one could expect from generalising
the use of M-SVMs in the discriminant models performing
tasks in biocomputing. So far, only bi-class SVMs, or variants
of them, had been implemented in biology, for protein
homology detection [76–78] or to process gene expression
data [79].

Since we started this work, new prediction methods with
superior accuracy have become available [80–82]. We have
begun to assess the influence of their inclusion in different
combinations [83]. The rudimentary hierarchical approach
represented by the combination of the base classifiers and
the DP algorithm can be developed in various ways. Cur-
rently, we are studying the use of N-Best algorithms [84] to

provide the practitioner with alternative predictions among
which he will be able to make his own choice, based on
his expertise. Furthermore, we are implementing a system
with multiple sliding windows, inspired by what has been
done in Krogh and Riis [85]. Our long-term goal is to
incorporate in our prediction systems the symbolic knowl-
edge currently available for the task. This is the subject of
collaborations with biologists. Concomitantly, we intend to
derive new theoretical results, and specifically study the
asymptotical behaviour of the different multi-class SVMs
developed so far. In this respect, we see another benefit
bestowed upon us by the use of models the capacity of
which can be estimated precisely. It must be borne in mind
that with the rapid strides made in molecular biology,
especially in the field of genome sequencing, huge quantities
of data will soon become available to underly the main
predictive tasks in bioinformatics. As a consequence,
implementing cross-validation to estimate the generalisation
error will become prohibitive, particularly in the context of
hierarchical systems such as ours [11], trained with variants
of stacked generalisation [68]. Bounds similar to those
presented in this article, and specifically distribution-depen-
dent bounds, should then represent an efficient alternative,
which could make it possible to save both in terms of CPU
time and training data. These bounds could naturally be
adapted, to make a better use of the specificities of model
combination. Finally, concentration inequalities [86] could
provide us with new tools to meet all these goals.

APPENDIX

This appendix contains details and illustrations regarding
the computations of Section 2.

A.1. Illustration of Theorem 2

In the case of the dl�,l�(s2N) pseudo-metric, a particular case
of inequality (2) can be simply derived form the following
proposition:
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Proposition 2. ∀(g, h) � H2

dl�,l�(s2N) (	g
, 	h
) � dl�,l�(s2N) (	g, 	h)

�
1

2
	Ts2N

(g) − Ts2N
(h)	l�,l�

(9)

The left inequality directly springs from the fact that �


satisfies a Lipschitz condition with constant 1. Furthermore,
from an exhaustive study of the different cases:

� (k = M1(g, xi) � k = M1(h, xi));

� (k = M1(g, xi) � k � M1(h, xi));

� (k � M1(g, xi) � k � M1(h, xi)).

It appears that we have

∀(i, k) � {1, %, 2N} × {1, %, Q}, ∃l(i, k) � {1, %, Q}�{k}/

�	gk(xi) − 	hk(xi)� �
1

2
�gl(i,k)(xi) − gk(xi) − hl(i,k)(xi) + hk(xi)�

Let Ts2N,i,j(g, h) be the general term of
Ts2N

(g − h) = Ts2N
(g) − Ts2N

(h). We thus have

∀(i, k) � {1, %, 2N} × {1, %, Q}, ∃j0 � {1, %, Q(Q − 1)/2}/

�	gk(xi) − 	hk(xi)� �
1

2
�Ts2N,i,j0

(g, h)�

By way of consequence,

max
xi�s2N

max
k

�	gk(xi) − 	hk(xi)�

�
1

2
max

i
max

j
�Ts2N,i,j(g, h)�

from which Proposition 2 directly springs, due to the defi-
nitions of dl�,l�(s2N) and 	.	l�,�

.

A.2. Proof of Theorem 6

∀s2N � X2N, ∀h � H, 	Ts2N
(h)	l�,l1

= max
1�i�2N

�
k�l

�(wk − wl)Txi�

Applying the Cauchy–Schwarz inequality, it becomes

	Ts2N
(h)	l�,l1

� 
X �
k�l

	wk − wl	

and consequently

	Ts2N
(h)	l�,l1

� 
X �Q(Q − 1)

2 ��
k�1

	wk − wl	2

which is precisely (7).

A.3. Equivalence of the M-SVMs of the Literature

Computing the gradient of the Lagrangian function of the
M-SVM proposed by Bredensteiner and Bennett and setting
it equal to the null vector, at the optimum we get �Q

k=1 Wk

= 0d. This equality is also satisfied by the other multi-

category SVMs [21,31]. As a consequence, at the optimum
we get

�Q
k�l

	wk − wl	2 = Q �Q
k=1

	wk	2

from which it springs that all the objective functions appear-
ing in Table 1 are identical (modulo a multiplicative
constant). A more formal proof can be obtained by studying
the Kuhn–Tucker conditions associated with the different
quadratic programming problems considered, conditions
which are satisfied by a common set of primal variables W,
b (with different Lagrange multipliers). The extension of the
proof of equivalence to the non-separable case is also
straightforward.
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73. Geourjon C, Deléage G. SOPM: a self-optimized method for
protein secondary structure prediction. Protein Engineering 1994;
7(2):157–164

74. Ramesh P, Wilpon JG. Modeling state durations in Hidden
Markov Models for automatic speech recognition. ICASSP-92
1992; I:381–384

75. Guermeur Y, Elisseeff A, Paugam-Moisy H. A new multi-class
SVM based on a uniform convergence result. IJCNN’00 2000;
IV:183–188

76. Jaakola TS, Haussler D. Exploiting generative models in discrimi-
native classifiers. Advances in Neural Information Processing
Systems 11 1998

77. Jaakola T, Diekhans M, Haussler D. A discriminative framework
for detecting remote protein homologies. J Computational
Biology 2000; 7:95–114

78. Jaakola T, Diekhans M, Haussler D. Using the Fisher kernel
method to detect remote protein homologies. ISMB’99 1999;
149–158

79. Brown M, Grundy W, Lin D, Cristianini N, Sugnet C, Furey T,
Ares M, Haussler D. Knowledge-based analysis of microarray
gene expression data using support vector machines. Technical
report, University of California, Santa Cruz, 1999 (submitted
for publication)

80. Jones DT. Protein secondary structure prediction based on pos-
ition-specific scoring matrices. J Mol Biol 1999; 292:195–202

81. Baldi P, Brunak S, Frasconi P, Soda G, Pollastri G. Exploiting
the past and the future in protein secondary structure prediction.
Bioinformatics 1999; 15(11):937–946

82. Petersen TN, Lundegaard C, Nielsen M, Bohr H, Bohr J, Brunak
S, Gippert GP, Lund O. Prediction of protein secondary structure
at 80% accuracy. PROTEINS: Structure, Function, and Genetics
2000; 41(1):17–20

83. Guermeur Y, Zelus D. Combining protein secondary structure
prediction models with ensemble methods of optimal complexity.
JOBIM’01 2001; 97–104

84. Steinbiss V. Sentence hypotheses generation in a continuous-
speech recognition system. Eurospeech-89 1989; 051–054

85. Krogh A, Riis S. Prediction of beta sheets in proteins. NIPS 8
1996; 917–923

86. Boucheron S, Lugosi G, Massart P. A sharp concentration
inequality with applications. Technical Report NC2-TR-1999-
057, NeuroCOLT2, 1999
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