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Abstract

Many sophisticated methods are currently available to perform protein secondary structure pre-
diction. Since they are frequently based on di,erent principles, and di,erent knowledge sources,
signi>cant bene>ts can be expected from combining them. However, the choice of an appropriate
combiner appears to be an issue in its own right. The >rst di@culty to overcome when combin-
ing prediction methods is over>tting. This is the reason why we investigate the implementation
of Support Vector Machines to perform the task. A family of multi-class SVMs is introduced.
Two of these machines are used to combine some of the current best protein secondary structure
prediction methods. Their performance is consistently superior to the performance of the ensem-
ble methods traditionally used in the >eld. They also outperform the decomposition approaches
based on bi-class SVMs. Furthermore, initial experimental evidence suggests that their outputs
could be processed by the biologist to perform higher-level treatments.
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1. Introduction

Since the early 1960s, model combination has proved to be an e@cient alterna-
tive to model selection for a wide range of statistical inference problems. During
the last decade, theory in the >eld has made rapid strides, especially for discrimi-
nation. Classi>er combination is thus currently endowed with a rich theoretical frame-
work, which is very useful... as long as the problem at hand satis>es the underlying
hypotheses. Unfortunately, in many real-life situations, the practitioner is faced with
the worst con>guration one can think of: pretrained experts with di,erent types of
outputs, highly correlated errors, few training data, etc. In this context, the problem
to be solved primarily consists in >nding a combiner of adequate complexity, so that,
with high probability, the training error will constitute an estimate reliable enough of
the generalization error, and the gain in prediction accuracy, small as it should be,
will be “guaranteed”. This is precisely the type of situations for which Support Vector
Machines (SVMs) have been conceived.
The aim of the support vector method (see for instance [10,12,69,31]), is to max-

imize the generalization capabilities of kernel machines [1,50,66], by minimizing an
upper bound on the expected risk (or generalization error), named the guaranteed
risk, with respect to the values of the model parameters. This inductive principle,
called Structural Risk Minimization (SRM) [68], is implemented by the SVMs devel-
oped to estimate indicator or real-valued functions. However, this is no longer the case
with the extensions of the support vector method which were initially proposed for
multi-class discrimination [72,69,11]. Indeed, they are not related, at least explicitly, to
a guaranteed risk, which makes it impossible to characterize a satisfactory compromise
between training performance and complexity. Building upon the uniform strong law
of large numbers introduced in [18], and extended in [28,26], we speci>ed in [27,25]
a new family of multi-class SVMs (M-SVMs). Two of these SVMs are assessed as
classi>er combiners on an open problem in structural biology: protein secondary struc-
ture prediction.
Building new prediction methods by fusion of existing ones appears particularly

relevant for protein secondary structure prediction. Two main reasons can be put for-
ward to support this assertion. First, the numerous methods already available to predict
the secondary structure (see [24,60,4,59] for surveys) are based on di,erent princi-
ples. Second, they use, in addition to the amino acid sequences (or pro>les of multiple
alignments), data from di,erent knowledge sources. Consequently, whenever secondary
structure is to be predicted, several sets of conformational scores are available, which
can be expected not to be utterly correlated. Indeed, most of the current best predic-
tion systems implement conformational score combinations, which can take many forms
[8,61,5,16,51]. However, the choice of a particular combiner is hardly ever justi>ed,
and the gain resulting from the combination is seldom signi>cantly superior to the one
resulting from a simple averaging. A >rst attempt to overcome these limitations was
described in [29]. The aim of this work is to establish that noticeable bene>ts can
spring from combining protein secondary structure prediction models with M-SVMs.
The organization of the paper is as follows. Section 2 is devoted to the study of the

generalization capabilities of multi-class discriminant models, i.e. the theory on which
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our work is grounded. Section 3 outlines the pathway through which M-SVMs can be
derived from these bounds, as a direct implementation of the SRM inductive principle.
Two machines are considered more speci>cally. Their implementation for very large
database processing is detailed in Section 4. They are >rst assessed in Section 5, to
combine three standard secondary structure prediction methods: SOPMA, GOR and
SIMPA. They are then used in Section 6 to combine the experts that constitute one of
the current best methods, SSpro.

2. Guaranteed risk for multi-class discriminant models

The theoretical framework of this study is Vapnik’s statistical learning theory [69].
We are concerned with the case of Q-category pattern recognition problems, when
Q¿ 3. Let X be the space of description and C the set of categories. We make the
standard assumption that there is a joint probability distribution, >xed but unknown, on
X×C. The goal is to >nd, in a given set of multivariate regression functions H={h},
a function with lowest error rate (the corresponding discrimination function must be as
close as possible to Bayes’ decision rule). The decision function associated with h=[hk ]
is obtained by assigning each pattern x to the category Ck in C satisfying: hk(x) =
maxl hl(x). In the common case where the hk(x) are estimates of the class posterior
probabilities (see [57] for a characterization of this situation), choosing this decision
function simply amounts to implementing Bayes’ estimated decision rule. Hereafter,
C(xi) will denote indi,erently the category of pattern xi, or the index of this category.
In that context, the main uniform convergence result we established is based on the
following de>nitions.

De�nition 1 (	-cover or 	-net). Let (E; �) be a pseudo-metric space, and B(v; r) the
closed ball of centre v and radius r in E. Let H be a subset of E. An 	-cover of H is
a subset SH of E such that:

H ⊂
⋃
v∈ SH

B(v; 	):

De�nition 2 (Covering numbers). Let (E; �) be a pseudo-metric space. If H ⊂ E has
an 	-cover of >nite cardinality, then its covering number N(	; H; �) is the smallest
cardinality of its 	-covers. If there is no such >nite cover, then the covering number
in de>ned to be ∞.

De�nition 3. Let H be a set of functions from X into RQ. For a set s of points in
X, de>ne the pseudo-metric dl∞ ;l∞(s) on H as: ∀(h; Sh)∈H2; dl∞ ;l∞(s)(h; Sh) = maxx∈s

maxk |hk(x)− Shk(x)|.

De�nition 4. Let H be a set of functions from X into RQ and h a function of H.
De>ne Th = [Thk ], (16 k6Q), as the function from X into RQ satisfying

Thk(x) = 1
2

{
hk(x)−max

l�=k
hl(x)

}
:
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For �∈ (0; 1], let �� : R→ [−�; �] be the piecewise-linear squashing function de>ned
as

��(x) =

{
� sign(x) if |x|¿ �;

x otherwise

∀h∈H, Th� = [Th�
k ] = [�� ◦Thk ], (16 k6Q). TH� = {Th� : h∈H}. For all N in

N∗ and all � in (0; 1], let N∞;∞(�=2;TH�; N ) =maxsN∈XN N(�=2;TH�; dl∞ ;l∞(sN )).
Extending a de>nition from Bartlett [6], we introduced the following de>nition:

De�nition 5. The empirical risk with margin �∈ (0; 1] on a training set sN of size N
is

R�
sN
(h) =

1
N

|{(xi; C(xi))∈ sN : ThC(xi)(xi)¡ �}|

With these de>nitions at hand, extending Lemma 4 and Corollary 9 from [6], as
well as the basic lemma of Theorem 4.1 in [69], we established in [26] (see also [28])
the following theorem:

Theorem 1. Let sN = {(xi; C(xi))}, (16 i6N ), be a set of labeled examples, iid
according to the joint distribution on X × C characterizing the problem of interest.
With probability at least 1 − �, for every value of � in (0; 1], the risk R(h) of a
function h computed by a numerical Q-class discriminant model H trained on sN is
bounded above by

R(h)6R�
sN
(h) +

√
1
2N

(
ln(2N∞;∞(�=2;TH�; 2N )) + ln

(
2
��

))
+

1
N

: (1)

Note that a similar result, based on a di,erent pseudo-metric, can also be found
in [18].

3. M-SVMs

Theorem 1 applies to any multi-class discriminant system obtained by combining
a multivariate model with Bayes’ estimated decision rule. In this section, we turn to
the speci>c case of multi-class SVMs. The study of the standard (bi-class) SVMs is
usually performed in two steps: >rst, the linear case, corresponding to the speci>cation
of the maximal margin hyperplane, then the non-linear one, by introduction of kernels
satisfying Mercer’s conditions. The reference on the subject is [69]. In the same way
as a “linear” SVM shares the architecture of the perceptron, a linear M-SVM is a
multivariate linear (or more precisely a@ne) regression model, i.e. a set of hyperplanes
of cardinality equal to the number of classes.
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3.1. Linear M-SVMs

We assume that the data live in Rd. Let H be the family of functions h considered,
with:

∀x∈X; h(x) = Wx + b =




wT
1

...

wT
k

...

wT
Q




x +




b1

...

bk

...

bQ




:

The capacity measure appearing in (1) can be expressed in various ways as a function
of the constraints on the couple (W; b). In a nutshell, there are two main strategies to
bound such covering numbers. The >rst one consists in making use of so-called gen-
eralized Sauer’s lemmas to relate them to extended notions of Vapnik–Chervonenkis
(VC) dimensions, such as the graph dimension [49] or the fat-shattering dimension
[41]. An illustration of this strategy can be found in [34,2]. Alternatively, one can
bound their values directly, thanks to functional analysis results such as those sketched
out in [73]. Both approaches have been extended to the case of multi-class discrim-
inant models in [18,28,26]. From these di,erent bounds, di,erent structures on the
family of functions H can be built, corresponding to di,erent implementations of the
SRM inductive principle. These implementations de>ne as many M-SVMs. A detailed
account of the process according to which training procedures can be derived directly
from (1) is given in [25]. We restrict here to two models with appealing statistical
properties, which are used in the forthcoming experiments. The structure of the >rst
one (M-SVM1) is associated with the values of the sum

∑
16k¡l6Q ‖wk − wl‖2. The

training procedure thus consists in solving the following quadratic programming (QP)
problem:

Problem 1.

min
h∈H


1

2

∑
16k¡l6Q

‖wk − wl‖2 + C
N∑

i=1

Q∑
k=1

�ik




s:t:




(wC(xi) − wk)Txi + bC(xi) − bk ¿ 1− �ik ; (16 i6N );

(16 k 
= C(xi)6Q);

�ik ¿ 0; (16 i6N ); (16 k 
= C(xi)6Q);

Q∑
k=1

wk = 0d:
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As usual, the non-negative slack variables �ik have been introduced to take into
account the fact that the data could be “non-multilinearly” separable. Their values
characterize the empirical risk (the �iC(xi) are dummy variables systematically equal
to 0). Note that this >rst model has been proposed, independently and under di,erent
formulations, by several teams [72,69,11,27]. Another model with appealing properties
(M-SVM2) results from specifying the structure as a function of maxk¡l ‖wk − wl‖2.
M-SVM2 is the solution of the following QP problem:

Problem 2.

min
h∈H

{
1
2

t2 + C
N∑

i=1

Q∑
k=1

�ik

}

s:t:




‖wk − wl‖26 t2; (16 k ¡ l6Q);

Constraints of Problem1:

The choice between this model and the former one can for instance be based on the
knowledge available regarding the domain in which the data lives.

3.2. Speci
cation of the training procedure

For the sake of simplicity, and without loss of generality, in what follows, we focus
on the case of M-SVM1. The theoretical and technical reasons which enforce to solve
the QP problems associated with standard SVMs in dual form still apply here. Let !
be the vector of dual variables. The objective function becomes

J (!) =
1
2Q




∑
i�j

Q∑
k=1

Q∑
l=1

!ik!jlxTi xj − 2
N∑

i=1

N∑
j=1

Q∑
k=1

!ik!jC(xi)x
T
i xj

+
N∑

i=1

N∑
j=1

Q∑
k=1

!ik!jkxTi xj




−
N∑

i=1

Q∑
k=1

!ik

=
1
2

!TH! − 1T(Q−1)N !;

where i � j expresses the fact that xi and xj belong to the same category. The problem
corresponding to M-SVM1 is:
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Problem 3.

min
!

{J (!)}

s:t:




∑
xi ∈Ck

Q∑
l=1

!il −
N∑

i=1

!ik = 0 (16 k6Q − 1);

06 !ik 6C (16 i6N ); (16 k6Q); k 
= C(xi):

3.3. Non-linear M-SVMs

Non-linear M-SVMs can be constructed by using di,erent kernel functions k sat-
isfying Mercer’s conditions [1], in the same way as Vapnik and co-workers did. In
practice, this simply amounts to replacing in the objective function J (!) of Problem 3
the inner products xTi xj with the convolutions of the inner products k(xi; xj). The same
transform applies to compute the outputs of the machine. For instance, the equation of
the hyperplane separating categories Ck and Cl will be:

1
Q

{∑
xi∈Ck

Q∑
m=1

!imk(xi; x)−
N∑

i=1

(!ik − !il)k(xi; x)−
∑
xi∈Cl

Q∑
m=1

!imk(xi; x)

}

+bk − bl = 0: (2)

The fact that the dimension of the feature space could be in>nite, for instance if the
kernel is Gaussian, rises no theoretical di@culty. More precisely, bounding the covering
numbers of interest, let it be directly [73,18,32], or through an extension of the VC
dimension [7,33,26], can still be done in the in>nite dimensional case.

4. Implementation of M-SVMs

The choice of an optimization method is an issue in its own right, since dealing
with Q classes multiplies the number of (dual) variables by (Q − 1). Indeed, although
an algorithm devised to train a simpli>ed variant of M-SVM1 has proved e@cient on
databases made up of tens of thousands examples [36], to the best of our knowledge,
the experiments reported in this paper constitute the >rst assessment of M-SVMs on a
large real-world problem. The size of the databases described in Sections 5.1 and 6.2
is far too big for classical solvers to be directly applied. To overcome this limitation,
we implemented the iterative method introduced in [17], and derived from the Frank–
Wolfe algorithm [19]. The basic idea was to linearize the problem in order to reduce
the requirements in terms of memory. The algorithm also includes a decomposition
method. For the sake of simplicity, we present both parts separately in the following
subsections.
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4.1. Frank–Wolfe algorithm

The Frank–Wolfe algorithm applies to problems with linear constraints of the form:

min
z

f(z)

s:t:

{
Az = b;

z¿ 0:

It is an iterative method which generates, starting from a feasible solution z(0), a series
of points z(0); z(1); : : : ; z(k); : : : where, for each k, z(k+1) is derived from z(k) as follows:

(1) Solve the linear programming (LP) problem LP(z(k)) given by

min
t
{∇f(z(k))Tt}

s:t:

{
At = b;

t¿ 0:

(2) Let t(k) be a vertex of the polyhedron optimal solution of LP(z(k)). Then z(k+1)

is chosen so as to minimise f on the segment [z(k); t(k)].

Applying the algorithm to M-SVM1 is straightforward. We can for instance set
!(0) = 0(Q−1)N . The LP program to be solved is:

Problem 4.

min
�

{∇J (!(k))T�};

s:t:




∑
xi∈Ck

Q∑
l=1

�il −
N∑

i=1

�ik = 0 (16 k6Q − 1)

06 �ik 6C (16 i6N ); (16 k6Q); k 
= C(xi)

with

∇J (!(k))T� = !(k)TH� − 1T(Q−1)N �:

Let * (k) ∈ [0; 1] be the coe@cient of the optimal convex combination between !(k)

and �(k), i.e.

* (k) = Argmin
*∈[0;1]

J ((1− *)!(k) + *�(k)):

After some algebra, it comes:

* (k) = min
{∇J (!(k))T�(k)

�(k)TH�(k)
; 1
}

;

where �(k) = !(k) − �(k).
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4.2. Decomposition method

The main di@culty faced when solving directly Problem 3, let it be with the Frank–
Wolfe algorithm or another standard algorithm, springs from the handling of the Hessian
matrix H . On the one hand, this matrix can be too large to be stored in memory,
since it belongs to M(Q−1)N (R). On the other hand, computing its components can
be time consuming, since it involves the computation of the components k(xi; xj) of
the Gram matrix. A natural way to overcome these di@culties consists in using a
decomposition method. This approach was already implemented in the initial study on
SVMs by Vapnik and co-workers [10]. The chunking method they used was introduced
in [68], for the case of a linear model. The main decomposition techniques introduced
afterwards (see [65,15] for a review), consist in solving the dual problem while the
values of part of the variables are >xed. This general framework is detailed below for
Problem 4.
To simplify notations, and without loss of generality, we make the hypothesis that the

working set is made up of the dual variables !B associated with the NB >rst examples
in the training set, the dual variables !H associated with the NH =N −NB last examples
being >xed. The objective function can then be rewritten as follows:

J (!) =
1
2

[
!B

!H

]T [
HBB HBH

HHB HHH

][
!B

!H

]
− 1T(Q−1)N

[
!B

!H

]
:

This functional can still be rewritten as follows:

J (!) = 1
2 !T

BHBB!B − (1T(Q−1)NB
− !T

H HHB)!B + 1
2 !T

H HHH !H − 1T(Q−1)NH
!H :

We have thus:

∇J (!B) = HBB!B + HBH !H − 1(Q−1)NB = [ HBB HBH ]! − 1(Q−1)NB :

This last formula highlights the fact that the expression of the gradient of the objective
function with respect to the variables of the working set remains unchanged. As a
consequence, the time required to compute the “partial” gradient (main part of step (1)
of the Frank–Wolfe algorithm) is equal to NB=N times the time required to compute
the whole gradient. The gain in the time required to compute the optimal learning rate
(step (2) of the algorithm) is even larger, since the new denominator to be computed
is

{�(k)B − !(k)
B }THBB{�(k)B − !(k)

B }:

The number of terms in this quadratic form is proportional to N 2
B instead of N 2.

The e@ciency of a decomposition method is obviously dependent on the way the
working set is selected. The interested reader will >nd in [65,15] detailed surveys of
the most popular possibilities. Our software, available through the website of kernel
machines, 1 implements several of them.

1 http://www.kernel-machines.org/index.html

http://www.kernel-machines.org/index.html
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5. Combining SOPMA, GOR and SIMPA

5.1. Experimental protocol

A >rst assessment of the two M-SVMs was obtained as an extension of the sec-
ond set of experiments described in [29]. For the sake of completeness, we brieVy
summarize here the corresponding protocol. It consists in combining the outputs
of three of the most widely used secondary structure prediction methods:
SOPMA [23], GOR IV [21] and SIMPA96 [46]. The resulting predictions are compared
with those of majority voting, a weighted average, optimal with respect to the
least-squares criterion, a Multi-Layer Perceptron (MLP) (see for instance [9]) and
the Multivariate Linear Regression Combiner (MLRC) introduced in [29]. There are
three main ways to perform multi-category discrimination with binary pattern recogni-
tion SVMs. Historically, the >rst of them was the one-against-all (pairwise) method,
implemented for instance in [64,69]. Then came the one-against-one approach [20,42].
The most recent one is the DAGSVM of Platt and co-workers [53]. To make the
assessment more relevant, we added to the list of aforementioned combiners of ref-
erence the one-against-all method and the DAGSVM. The MLR combiner requires
the outputs of the experts to be class posterior probability estimates. In order to
compare the combiners in a fair way, the outputs of the base classi>ers are thus
preliminary post-processed with the structure-to-structure >ltering neural network
described in [29]. The corresponding architecture is depicted in the lower part of
Fig. 1.
To constitute the training and test sets, a release of the PDBSELECT database [35],

containing 629 chains made up of 147,518 residues, G629, is used. Secondary structure
assignment was performed with the DSSP program [40]. The reduction from 8 to 3
conformational states was derived according to the CASP method, i.e. H + G → H
(!-helix), E + B → E (,-strand), and all the other states in C (aperiodic or coil).
This assignment is known to be somewhat harder to predict than the other ones used
in the literature (see for instance [16]). In order to obtain unbiased estimates of the
prediction accuracy, a variant of stacked generalization [74] is applied, to train in
sequence the >ltering networks and the combiners. The database is divided into seven
disjoint parts of roughly equal size. Based on this splitting, a 2-stage cross-validation
procedure is implemented. Each subset is iteratively used as test set. The six remaining
sets are then grouped by three, to constitute disjoint training sets for the >ltering net-
works and the combiners. In this variant of stacked generalization, the leave-one-out
cross-validation procedure is thus replaced with a 7-fold cross-validation. Prediction
accuracy is assessed by means of four standard measures: the percentage of correctly
predicted residues Q3 for a three-state description of secondary structure (helix, ex-
tended and aperiodic), Pearson’s/Matthews’ correlation coe@cient C [48], the segment
overlap measure Sov [62,75] and the standard deviation in the secondary structure
content -. The Sov measure is implemented in its initial version (Sov’94) in order to
make the new results readily comparable with the former ones. Figures characterizing
the behavior of the individual methods, before and after >ltering, have been gathered
in Table 1.
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(If necessary)

E

H

C

?

Dynamic Programming

<---------------------------------------->
Content of the sliding window S

P(V in H | S) P(V in C | S)P(V in E | S)

MLRC, M−SVM...

...VKPVDNFDWSNYHGKWWEVAKYPNSVEKYGKCGWAE...

...VKPVDNFDWSNYHGKWWEVAKYPNSVEKYGKCGWAE...

Combiner

post−processing

NN 2 NN 3NN 1

Filtering neural nets

SIMPA 96GOR IVSOPMA

Fig. 1. Hierarchical architecture for protein secondary structure prediction.

Table 1
Initial relative prediction accuracy of individual experts (+f=after >ltering) on the G629 set

GOR IV GOR IV+f SOPMA SOPMA+f SIMPA SIMPA+f

Q3 64.1 66.5 68.4 69.7 69.2 69.4
C! 0.47 0.51 0.55 0.58 0.56 0.57
C, 0.39 0.43 0.48 0.49 0.49 0.49
Cc 0.44 0.46 0.49 0.50 0.49 0.49
Sov′94 0.66 0.68 0.72 0.71 0.71 0.70
-! 13.9 12.5 10.8 10.7 10.8 10.6
-, 11.5 11.6 10.3 11.1 11.2 10.7
-c 9.4 10.1 9.9 10.6 11.6 11.1
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Table 2
Relative prediction accuracy of combiners on the G629 set

Vote Average MLP MLRC SVM!+,+c DAGSVM M-SVM1 M-SVM2

Q3 70.2 70.9 71.2 71.3 71.4 71.4 71.7 71.6
C! 0.59 0.60 0.60 0.60 0.60 0.60 0.61 0.60
C, 0.49 0.50 0.52 0.52 0.52 0.52 0.52 0.53
Cc 0.51 0.50 0.52 0.52 0.52 0.52 0.52 0.52
Sov′94 0.72 0.71 0.72 0.72 0.72 0.72 0.73 0.72
-! 10.5 10.0 10.1 10.3 10.6 10.7 10.6 10.6
-, 10.3 10.2 10.1 10.9 10.9 10.9 10.8 10.8
-c 10.1 10.3 10.5 11.4 11.3 11.3 11.2 11.1

5.2. Raw results of the combinations

Table 2 summarizes the relative performance of the di,erent combiners. Figures
given correspond to M-SVMs with radial basis kernels. Let d be the number of pre-
dictors (inputs). Here, d=3(experts)×3(categories)=9. We set 2-2=0:1d and C=1:0.
This parameterization was selected since it appeared to be “satisfactory” for both mod-
els. However, additional testing performed with polynomial kernels suggests that the
choice of the kernel could have signi>cant incidence on the prediction accuracy (data
not shown).
The comparison of the predictive success of native methods and combinations il-

lustrates the usefulness of implementing ensemble methods. M-SVMs obtain the best
results, the di,erence with MLRC being statistically signi>cant with high con>dence
(¿ 0:95).

5.3. Post-processing of the conformational scores

Promising as they may seem, these results are not su@cient to determine to what
extent the conformational scores computed by the M-SVMs can be of interest for the
biologist, for subsequent use as input to ab initio calculations or threading algorithms,
or simply to provide a measure of reliability of the predictions [61,22,58]. In order
to evaluate the quality of the combiners with respect to these criteria, their outputs
were post-processed with a Dynamic Programming (DP) algorithm inspired by [56]
(upper part of Fig. 1). Recent studies [47,44] have highlighted the fact that pattern
recognition SVMs target directly at the Bayes rule without estimating the class posterior
probabilities. As a consequence, the dot products they compute cannot be used in a
straightforward manner to estimate observation probability distributions. In [52], Platt
has proposed a solution to overcome this di@culty in the bi-class case. Here, we simply
standardized the outputs by application of a softmax function. This could not be done
for the DAGSVM, which was thus discarded. The underlying Inhomogeneous Hidden
Markov Model (IHMM) is depicted in Fig. 2.
It has three states, one for each conformational state. The observations are the

residues of the primary structure. The speci>city of the algorithm lies in the state
duration modeling. Instead of the standard stationary state transition probabilities, the
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Fig. 2. Topology of the IHMM used to post-process the outputs of the combiners.

Table 3
Quality of the predictions when the outputs of the combiners have been post-processed by an inhomogeneous
DP algorithm

Average MLP MLRC SVM!+,+c M-SVM1 M-SVM2

Q3 71.1 71.5 71.5 72.0 72.3 72.2
C! 0.60 0.61 0.61 0.61 0.62 0.60
C, 0.50 0.52 0.52 0.51 0.53 0.51
Cc 0.52 0.52 0.52 0.52 0.53 0.52
Sov′94 0.72 0.74 0.74 0.74 0.74 0.73
-! 10.6 11.8 10.8 10.9 10.7 10.7
-, 10.4 10.6 11.1 11.0 10.9 10.9
-c 10.6 10.8 11.6 11.8 11.8 11.7

terms aij(d) are used, where parameter d represents the duration spent in the current
(conformational) state i. These probabilities are estimated by the corresponding fre-
quencies observed on the training set, whereas the observation pdf are derived from
the outputs of the combiners, by means of Bayes’ theorem.
As can be seen in Table 3, such a post-processing induces a global improvement

of all the measures of prediction accuracy. Once more, the M-SVMs obtain the best
results. The margin with respect to the standard combiners is larger, and statistically
signi>cant with con>dence exceeding 0.99 for M-SVM1. This means that the level of
the outputs of these machines carries some valuable information.
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6. Combining BRNNs models from SSpro

SSpro is a protein secondary structure prediction method based on Bidirectional
Recurrent Neural Networks (BRNNs) [5]. In its initial con>guration, SSpro1, it was
already one of the best methods published, with a recognition rate exceeding 76%.
Recently, an improved version, SSpro2 [54], making use of new PSI-BLAST pro-
>les [3,39], has become available online. 2 It achieved a sustained performance of
about 78% correct prediction on di,erent test sets. In order to assess the possibility
for M-SVM combinations to improve consistently the test performance, even in the
case of state-of-the-art experts, we implemented M-SVM1 to combine >rst the BRNNs
incorporated in SSpro1, and then the BRNNs of SSpro2.

6.1. SSpro1

Experiments were performed with the 126 chains of soluble proteins used in [61]
(RS126 set), with a total of 23,348 residues. This choice had the advantage to make
our results readily comparable with those of most of the state-of-the-art prediction
methods. It could be done since the sequences on which the 11 BRNNs had been
trained have less than 25% identity with them. Secondary structure assignment was
performed with the DSSP program, in the same way as for the G629 base (see Sec-
tion 5.1 for details). The database was devided into four parts of equal size, in order
to implement a simple 4-fold cross-validation procedure (no >ltering was required
here, since the outpouts of the BRNNs are already class posterior probability esti-
mates). The recognition rates of the BRNNs on the 126 chains were ranging from
73.3% to 75.3%, with an average of 74.6%. Five types of combiners were assessed.
A simple average with equal weights, corresponding to what was actually performed
in SSpro1, a MLP, MLRC, M-SVM1 and a consensus prediction (SVM!+,+c) re-
sulting from the one-against-all decomposition. Test performance is summarized in
Table 4. The columns SVM!, SVM, and SVMc contain the >gures corresponding to the
two-class SVMs devoted to the recognition of one single conformational state. The pa-
rameters of the training algorithms of the SVMs have been set as in Section 5.2. Here,
d = 11× 3 = 33.

Q! (resp. Q,, Qc) stands for the recognition rate when the problem of interest
simply consists in determining whether or not the conformational state of a given
residue is !-helix (resp. ,-strand or random coil). The Sov measure implemented
corresponds to the modi>ed de>nition introduced in [75]. In contrast with the MLP,
MLRC and the combination of two-class SVMs, the M-SVM succeeds once more in
improving over the performance of the averaging. However, the gain is no longer
high enough to be statistically signi>cant. This obviously springs from the fact that
its value is lower, but also from the fact that the database used is smaller. We
took this latter aspect into consideration to derive the experimental protocol regarding
SSpro2.

2 http://www.igb.uci.edu/tools/scratch/

http://www.igb.uci.edu/tools/scratch/
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Table 4
Combination of the 11 BRNNs of SSpro1 with two-class and multi-class SVMs (performance is measured
on the RS126 set)

Average MLP MLRC SVM! SVM, SVMc SVM!+,+c M-SVM1

Q3 76.62 76.25 76.65 – — — 76.23 76.73
Q! 88.4 88.3 88.5 88.6 — — 88.3 88.6
Q, 86.3 85.8 86.3 — 86.2 — 85.9 86.4
Qc 78.5 78.4 78.5 — — 78.4 78.3 78.5
C! 0.73 0.73 0.73 — — — 0.73 0.74
C, 0.60 0.60 0.60 — — — 0.60 0.60
Cc 0.57 0.56 0.57 — — — 0.56 0.57
Sov 70.6 70.2 71.0 — — — 70.2 70.6
Sov! 74.5 74.8 74.7 — — — 73.2 73.0
Sov, 65.5 67.4 65.6 — — — 65.6 66.3
Sovc 67.6 66.0 68.0 — — — 67.5 67.7

6.2. SSpro2

In order to assess the combination of the 11 BRNNs of SSpro2, we had >rst to gen-
erate a new database exhibiting no homology with the training set. To do so, we used
the latest release of the PDB. We >rst excluded all NMR proteins, and then ordered
the remaining sequences by decreasing quality (increasing value of the resolution). All
structures with a resolution worse than three angstroms were discarded. We then run
the standard all-against-all redundancy reduction with a 25% threshold for proteins of
length greater than 80 amino acids, and larger for shorter chains (see [63] for details).
The same redundancy reduction was also applied to discard the sequences exhibiting
a too high similarity with sequences of the training set. At last, all sequences with
non-standard amino acids were excluded. We ended up with a set of 1096 protein
sequences (P1096), made up of 255,551 amino acids. Their PSI-BLAST pro>les were
compiled according to the protocol described in [54]. This way, SSpro2 could be run
on them in optimal conditions, providing us with the outputs of the 11 BRNN models.
Their prediction accuracy was ranging from 72.4% to 75.2%, with an average of 74.3%.
The combination of the outputs was performed according to two di,erent protocols.

The >rst one is the protocol used for SSpro1 (three categories, de>ned as in the
CASP experiments, 33 predictors, each of them corresponding to one output of a
BRNN, 4-fold cross-validation, same set of >ve ensemble methods, etc.). In the second
set of experiments, new predictors were added. They represented the coding of the
PSI-BLAST derived pro>les for a window of size seven centered on the residue for
which the prediction is made. Each location in the window is coded on 21 positions,
one for each of the 20 amino acids plus one for non-standard cases. The total number
of covariates was thus d=33+7×21=180. The results of these two sets of experiments
can be found respectively in Tables 5 and 6.
Two distinct conclusions can be derived from these statistics. Whereas no ensemble

method performs signi>cantly better that the simple averaging in the case when the
sole BRNN outputs are combined, adding the pro>les of alignment induces an increase
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Table 5
Combination of the 11 BRNNs of SSpro2 with two-class and multi-class SVMs (performance is measured
on the P1096 set)

Average MLP MLRC SVM! SVM, SVMc SVM!+,+c M-SVM1

Q3 76.94 76.91 77.11 — — — 77.01 77.09
Q! 86.7 86.7 86.8 86.8 — — 86.8 86.8
Q, 87.7 87.6 87.7 — 87.8 — 87.3 87.8
Qc 79.5 79.6 79.7 — — 79.6 79.6 79.6
C! 0.72 0.72 0.72 — — — 0.71 0.72
C, 0.62 0.63 0.62 — — — 0.62 0.63
Cc 0.58 0.58 0.58 — — — 0.58 0.58
Sov 72.2 72.2 72.3 — — — 72.0 72.4
Sov! 75.6 76.1 75.7 — — — 76.0 76.1
Sov, 67.1 69.0 67.3 — — — 67.3 68.9
Sovc 69.0 67.6 68.9 — — — 68.1 68.5

Table 6
Combination of the 11 BRNNs of SSpro2 and PSI-BLAST derived pro>les with two-class and multi-class
SVMs (performance is measured on the P1096 set)

MLP SVM!+,+c M-SVM1

Q3 77.02 77.06 77.26
Q! 86.9 86.9 87.1
Q, 87.6 87.3 87.8
Qc 79.5 79.7 79.6
C! 0.72 0.73 0.73
C, 0.63 0.62 0.64
Cc 0.58 0.58 0.58
Sov 72.3 72.2 72.5
Sov! 74.8 74.8 74.6
Sov, 69.0 68.7 69.4
Sovc 68.8 68.5 68.7

in the prediction accuracy. This increase is particularly noticeable for M-SVM1. The
di,erence with the average (see the last column of Table 6 and the second column
of Table 5) is signi>cant with con>dence exceeding 0.95. With the results at hand, it
is di@cult to characterize more precisely the nature of the improvement, which seems
to a,ect primarily the ,-sheets. We are currently performing additional testing, with
larger sizes of the sliding window, so as to clarify this point.

7. Discussion

7.1. SVM versus standard ensemble methods

Given the number of methods currently available to predict the secondary structure
of proteins, and the speed at which their performance improves, there is no denying
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that basic jury decisions will soon become ine@cient to perform combinations in the
>eld. In the past, signi>cant advances have resulted from designing prediction methods
based on simple MLPs [55,61,51]. However, quite surprisingly, these models do not
appear appropriate to combine prediction systems. Indeed, the main problem faced when
implementing them for this task is over>tting. This observation, which holds even for
small sizes of the hidden layer, is con>rmed by leading experts of the domain (B.
Rost, personal communication). Although the generalization performance of MLRC is
systematically superior to the generalization performance of a simple average, weighted
or not, this combiner su,ers from a drawback in the context of interest: it can only
take class posterior probabilities as inputs. SVMs, on the contrary, do not su,er from
over>tting, and can process virtually any kind of data. They should thus rise high
expectations as ensemble methods. If the initial results reported here are only promising,
many improvements can be considered. For instance, we are currently assessing the
e,ect of presenting in input, in addition to the conformational scores provided by
the experts and the content of a sliding window on PSI-BLAST pro>les, additional
physico-chemical data.

7.2. Bi-class versus multi-class SVMs

As for the choice between an architecture based on binary SVMs and a M-SVM, two
strong arguments speak in favor of the latter. First, the (empirical) recognition rate of
M-SVMs is higher. Second, M-SVMs use far fewer support vectors. In [37], the authors
predicted the secondary structure directly from BLAST alignment pro>les, using binary
SVMs and di,erent decomposition schemes, among which the one-against-all method
and decision trees. According to their Table 6, this systematically resulted in a ratio of
support vectors of about 50%. Such a ratio is hardly acceptable, if one keeps in mind
that in Vapnik’s theory, it corresponds to a very high bound on the expected risk (see
for instance [67,69]). In our experiments, the M-SVMs had at most three times fewer
support vectors (non-zero dual variables) than the decomposition schemes with which
they were compared. This had the expected e,ect on the decoding time, which was far
lower. Indeed, representer theorems establish that the output of a bi-class SVM is of the
form: h(x)=

∑N
i=1 ,ik(xi; x)+b and that, similarly, any output hk(x) of any M-SVM is

of the form: hk(x)=
∑N

i=1 ,i;kk(xi; x)+bk (at least, this is the case for all training criteria
proposed so far). The lower the number of support vectors, the lower the number of
terms in the sum, and, by way of consequence, the lower the time required to compute
the outputs. Note that an additional advantage of the M-SVMs is that the value k(xi; x)
needs to be computed only once for all the expansions hk(x), (16 k6Q). This more
than compensates for the fact that the expression of ,i;k (M-SVM) in terms of the dual
variables is more complex than the expression of ,i (bi-class SVM).
To illustrate the gain in decoding time, the following experiment was implemented.

M-SVM1 and the three bi-class SVMs, SVM!, SVM, and SVMc (see Section 6.1),
were trained directly on the primary sequences of the P1096 set. Precisely, the input
was the coding of the content of a sliding window of size 13, centered on the residue
to be assigned. This choice had the advantage to make it possible to compare the
ratios of support vectors obtained with those reported by Hua and Sun. For the sake
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Table 7
Time in minutes and percentage of support vectors required to process the P1096 set (training+test) with
M-SVM1 and the one-against-all approach

SVM! SVM, SVMc SVM!+,+c M-SVM1

Training (mn) 567 532 605 1704 6030
Decoding (mn) 218 277 233 728 157
% SV 51.2 45.5 58.7 51.8 16.9

of simplicity, the training set was also used as test set. Although this procedure makes
the recognition rates observed meaningless, this is utterly satisfactory when the concern
is only on cpu time. For each machine, training was stopped when the ratio of the
dual objective function on the estimate of the primal objective function exceeded 0.95.
This could be done since the software (eval SVM) actually computes an upper bound
on the primal objective function (see the technical documentation for details). The
interested reader will >nd alternative stopping criteria in [15]. The computer used is
a DELL Precision 530 MT. It has two Xeon 2.8GHz/512k processors and 4GB of
RDRAM memory. Note however that the released version of our programs, which should
be parallelized in a near future, currently only use one processor at a time. A Gaussian
kernel was used with 2-2 = 6d and the value of the soft margin parameter C was
set to 10.0. Performance in terms of cpu time (training+test) as well as percentage
of support vectors (SV) are reported in Table 7. The percentage of support vectors is
simply the ratio of the number of positive dual variables over the total number of dual
variables. This means for instance that for M-SVM1, one example can be considered
twice in the numerator, if its dual variables associated with the two categories to which
it does not belong are both positive.

8. Conclusion and future work

We have introduced a family of multi-class SVMs, the learning algorithms of which
correspond to explicit implementations of the SRM inductive principle. This family
includes the >rst M-SVM proposed in literature, thus endowing it with a theoretical
grounding which was lacking so far. Two of these models have been used to combine
protein secondary structure prediction methods. To the best of our knowledge, these
combinations represent the >rst assessment of M-SVMs on a very large real-world prob-
lem. M-SVMs appear to give better performance than standard ensemble methods, or
the implementation of decomposition schemes involving binary SVMs. Additional ex-
periments are currently underway, to extend the comparison to the main multi-category
SVMs which have been introduced lately [13,14,44,43]. Furthermore, experimental ev-
idence suggests that the conformational scores produced could be processed by the
biologist to perform higher-level treatments. This is all the more promising that no
special e,ort was made to derive class posterior probabilities from them.
We are con>dent that noticeable bene>ts should be expected from generalizing the

use of M-SVMs in the discriminant models performing tasks in biocomputing, such
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as gene expression measurements processing, translation initiation sites recognition, or
the identi>cation of ligand molecules binding by a@nity on given target molecules. In
order to meet the requirements of these implementations, we are currently investigat-
ing a development of central importance, the design of kernels taking into account the
characteristics of the problem at hand [30]. This approach, which has already proved
fruitful in bioinformatics [38,76,71,70,45], should lead us to specify the training proce-
dure accordingly, i.e. to specify new machines, for which original uniform convergence
results will have to be derived.
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